RU2598624C1 - Способ определения термоокислительной стабильности смазочных материалов - Google Patents

Способ определения термоокислительной стабильности смазочных материалов Download PDF

Info

Publication number
RU2598624C1
RU2598624C1 RU2015131202/28A RU2015131202A RU2598624C1 RU 2598624 C1 RU2598624 C1 RU 2598624C1 RU 2015131202/28 A RU2015131202/28 A RU 2015131202/28A RU 2015131202 A RU2015131202 A RU 2015131202A RU 2598624 C1 RU2598624 C1 RU 2598624C1
Authority
RU
Russia
Prior art keywords
lubricant
viscosity index
oxidative stability
viscosity
absorption coefficient
Prior art date
Application number
RU2015131202/28A
Other languages
English (en)
Inventor
Болеслав Иванович Ковальский
Олег Николаевич Петров
Юрий Николаевич Безбородов
Вячеслав Геннадьевич Шрам
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет"
Priority to RU2015131202/28A priority Critical patent/RU2598624C1/ru
Application granted granted Critical
Publication of RU2598624C1 publication Critical patent/RU2598624C1/ru

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Изобретение относится к технологии определения качества смазочных масел, в частности к определению влияния продуктов окисления на индекс вязкости. Способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием постоянного объема при оптимальной температуре, выбранной в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств. Причем через равные промежутки времени отбирают пробу окисленного смазочного материала, определяют фотометрированием коэффициент поглощения светового потока, кинематическую вязкость и проводят оценку процесса окисления согласно изобретению. При этом дополнительно определяют кинематические вязкости окисленного смазочного материала при температурах 40 и 100°C, по которым определяют индекс вязкости, строят графическую зависимость индекса вязкости от коэффициента поглощения светового потока, по которой определяют термоокислительную стабильность смазочного материала при окислении. Причем, чем выше значение индекса вязкости при данном значении коэффициента поглощения светового потока, тем выше термоокислительная стабильность испытуемого смазочного материала. Техническим результатом является повышение достоверности оценки качества смазочных масел различного назначения и классов вязкости путем учета влияния продуктов окисления на индекс вязкости. 1 ил., 1 табл.

Description

Изобретение относится к технологии определения качества смазочных масел, в частности к определению влияния продуктов окисления на индекс вязкости.
Известен способ определения термоокислительной стабильности смазочных материалов, включающий нагревание смазочного материала в присутствии воздуха, перемешивание, фотометрирование и определение параметров оценки процесса окисления. При этом испытывают пробу смазочного материала постоянного объема при оптимальной температуре, выбранной в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, определяют фотометрированием коэффициент поглощения светового потока окисленным смазочным материалом, строят графическую зависимость изменения отношения коэффициента поглощения светового потока от времени испытания, продлевают линию зависимости после точки перегиба до пересечения с осью абсцисс и по абсциссе этой точки определяют время начала образования нерастворимых примесей, по точке перегиба зависимости определяют время начала коагуляции нерастворимых примесей, а по предельному значению коэффициента поглощения светового потока определяют ресурс работоспособности смазочного материала (Патент РФ №2219530 C1, дата приоритета 11.04.2002, дата публикации 20.12.2003, авторы Ковальский Б.И. и др., RU).
Недостатком известного аналога является то, что в нем не учитывается влияние продуктов окисления на индекс вязкости.
Наиболее близким по технической сущности и достигаемому результату является способ определения термоокислительной стабильности смазочных материалов, принятый в качестве прототипа, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием постоянного объема при оптимальной температуре, выбранной в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, определяют фотометрированием коэффициент поглощения светового потока окисленным смазочным материалом, вязкость и коэффициент термоокислительной стабильности КТОС из соотношения
Figure 00000001
,
где КП - коэффициент поглощения светового потока окисленным смазочным материалом; µO и µИСХ - соответственно вязкость окисленного и исходного смазочного материала, строят графическую зависимость коэффициента термоокислительной стабильности от коэффициента поглощения светового потока окисленным смазочным материалом и по тангенсу угла наклона этой зависимости к оси абсцисс на участке до точки перегиба определяют скорость образования промежуточных продуктов окисления, по тангенсу угла наклона зависимости к оси абсцисс после точки перегиба определяют скорость образования конечных продуктов окисления и их влияние на увеличение вязкости испытуемого смазочного материала, а по координатам точки перегиба зависимости определяют начало образования конечных продуктов окисления (Патент РФ №2247971 С1, дата приоритета 17.02.2004, дата публикации 10.03.2005, авторы: Ковальский Б.И. и др., RU, прототип).
Способ определения термоокислительной стабильности смазочных материалов, принятый в качестве прототипа, так же, как и известный аналог, обладает недостаточной информативностью о качестве товарных смазочных материалов, так как не учитывает влияние продуктов окисления на индекс вязкости.
Задачей изобретения является повышение достоверности оценки качества смазочных материалов различного назначения и классов вязкости путем учета влияния продуктов окисления на индекс вязкости.
Для решения поставленной задачи в способе определения термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием постоянного объема при оптимальной температуре, выбранной в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, определяют фотометрированием коэффициент поглощения светового потока, кинематическую вязкость и проводят оценку процесса окисления, согласно изобретению дополнительно определяют кинематические вязкости окисленного смазочного материала при температурах 40 и 100°С, по которым определяют индекс вязкости, строят графическую зависимость индекса вязкости от коэффициента поглощения светового потока, по которой определяют термоокислительную стабильность смазочного материала при окислении, причем, чем выше значение индекса вязкости при данном значении коэффициента поглощения светового потока, тем выше термоокислительная стабильность испытуемого смазочного материала.
Для пояснения способа представлена графическая зависимость индекса вязкости окисленных смазочных материалов от коэффициента поглощения светового потока (см. чертеж): 1 - минеральное моторное масло Роснефть Optimum 10W-40 SQ/CD; частично синтетические моторные масла: 2 - Роснефть Maximum 10W-40 SL/CF; 3 - Лукойл Люкс 5W-40 SL/CF.
Способ определения термоокислительной стабильности смазочных материалов осуществляется следующим образом. В начале определяется кинематическая вязкость выбранных для испытания смазочных материалов при температурах 40 и 100°С, затем по этим данным рассчитывается индекс вязкости по ГОСТу 25371 - 97 (ИСО 2909-81).
Второй этап исследования заключается в окислении исследуемых смазочных материалов. Пробу исследуемого смазочного материала постоянной массы нагревают до температуры в зависимости от назначения смазочного материала, базовой основы и группы эксплуатационных свойств с перемешиванием с помощью механической мешалки. Температура испытуемого смазочного материала в процессе испытания поддерживается автоматически с помощью терморегулятора с точностью ±1°C.
Через равные промежутки времени, например 8 часов, отбирают две пробы окисленного смазочного материала, первая из которых используется для прямого фотометрирования и определения коэффициента поглощения светового потока КП, а вторая - для измерения кинематической вязкости при 40 и 100°C. Испытания прекращают по достижению коэффициента КП значений, приблизительно равных 0,75-0,8 ед.
По полученным данным кинематической вязкости окисленных смазочных материалов определяют индекс вязкости окисленного смазочного материала, строят зависимость данного индекса вязкости от коэффициента поглощения светового потока, по которой определяют термоокислительную стабильность исследуемого смазочного материала. Причем, чем меньше значение индекса вязкости при выбранном значении коэффициента поглощения светового потока, тем ниже вязкостно-температурные свойства и термоокислительная стабильность смазочного материала.
Результаты испытания выбранных моторных масел представлены в следующей таблице.
Figure 00000002
Согласно данным приведенной таблицы кинематическая вязкость масел, независимо от базовой основы, измеренная при 40°C, падает по сравнению с вязкостью товарного масла до определенного значения коэффициента поглощения светового потока КП. Для минерального масла Роснефть Optimum 10W-40 SQ/CD (кривая 1) снижения вязкости составило от 97,04 до 75,68 мм2/с; частично синтетических Роснефть Maximum 10W-40 SL/CF (кривая 2) - от 101,61 до 75,07 мм2/с; Лукойл Люкс 5W-40 SL/CF (кривая 3) - от 75,44 до 59,51 мм2/с. Причем снижение вязкости происходит до различных значений коэффициента КП, которое составляет: для минерального масла КП=0,46 ед; частично синтетического Роснефть Maximum 10W-40 SL/CF до КП=0,64 ед; Лукойл Люкс 5W-40 SL/CF до КП=0,48 ед.
Кинематическая вязкость, измеренная при 100°С, изменяется для: минерального масла Роснефть Optimum 10W-40 SQ/CD от 13,95 до 12,10 мм2/с; частично синтетических масел Роснефть Maximum 10W-40 SL/CF от 15,19 до 12,84 мм2/с; Лукойл Люкс 5W-40 SL/CF от 13,21 до 11,61 мм2/с.
Согласно графическим и табличным данным наивысшая термоокислительная стабильность установлена для частично синтетического моторного масла Лукойл Люкс 5W-40 SL/CF (кривая 3), имеющего наивысший показатель индекса вязкости, а самая низкая - для масла Роснефть Optimum 10W-40 SQ/CD (кривая 1).
Предлагаемое техническое решение позволяет оценить влияние продуктов окисления смазочных материалов на индекс вязкости, характеризующий вязкостно-температурные свойства, и промышленно применимо.

Claims (1)

  1. Способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием постоянного объема при оптимальной температуре, выбранной в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, определяют фотометрированием коэффициент поглощения светового потока, кинематическую вязкость и проводят оценку процесса окисления, отличающийся тем, что дополнительно определяют кинематические вязкости окисленного смазочного материла при температурах 40 и 100°C, по которым определяют индекс вязкости, строят графическую зависимость индекса вязкости от коэффициента поглощения светового потока, по которой определяют термоокислительную стабильность смазочного материала при окислении, причем, чем выше значение индекса вязкости при данном значении коэффициента поглощения светового потока, тем выше термоокислительная стабильность испытуемого материла.
RU2015131202/28A 2015-07-27 2015-07-27 Способ определения термоокислительной стабильности смазочных материалов RU2598624C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015131202/28A RU2598624C1 (ru) 2015-07-27 2015-07-27 Способ определения термоокислительной стабильности смазочных материалов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015131202/28A RU2598624C1 (ru) 2015-07-27 2015-07-27 Способ определения термоокислительной стабильности смазочных материалов

Publications (1)

Publication Number Publication Date
RU2598624C1 true RU2598624C1 (ru) 2016-09-27

Family

ID=57018494

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015131202/28A RU2598624C1 (ru) 2015-07-27 2015-07-27 Способ определения термоокислительной стабильности смазочных материалов

Country Status (1)

Country Link
RU (1) RU2598624C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0458557A1 (en) * 1990-05-22 1991-11-27 Eaton Corporation Procedure for qualifying synthetic base gear lubricant
RU2222012C1 (ru) * 2002-09-16 2004-01-20 Красноярский государственный технический университет Способ определения работоспособности смазочных масел
RU2247971C1 (ru) * 2004-02-17 2005-03-10 Красноярский государственный технический университет (КГТУ) Способ определения термоокислительной стабильности смазочных материалов
RU2334976C1 (ru) * 2006-12-26 2008-09-27 Федеральное государственное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет" (СФУ ) Способ определения термоокислительной стабильности смазочных материалов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0458557A1 (en) * 1990-05-22 1991-11-27 Eaton Corporation Procedure for qualifying synthetic base gear lubricant
RU2222012C1 (ru) * 2002-09-16 2004-01-20 Красноярский государственный технический университет Способ определения работоспособности смазочных масел
RU2247971C1 (ru) * 2004-02-17 2005-03-10 Красноярский государственный технический университет (КГТУ) Способ определения термоокислительной стабильности смазочных материалов
RU2334976C1 (ru) * 2006-12-26 2008-09-27 Федеральное государственное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет" (СФУ ) Способ определения термоокислительной стабильности смазочных материалов

Similar Documents

Publication Publication Date Title
RU2334976C1 (ru) Способ определения термоокислительной стабильности смазочных материалов
RU2618581C1 (ru) Способ определения термоокислительной стабильности смазочных материалов
RU2247971C1 (ru) Способ определения термоокислительной стабильности смазочных материалов
RU2627562C1 (ru) Способ определения термоокислительной стойкости смазочных материалов
RU2637621C1 (ru) Способ определения термоокислительной стабильности смазочных материалов
RU2649660C1 (ru) Способ прогнозирования показателей термоокислительной стабильности смазочных материалов
RU2219530C1 (ru) Способ определения термоокислительной стабильности смазочных материалов
RU2598624C1 (ru) Способ определения термоокислительной стабильности смазочных материалов
JP6744065B2 (ja) 工業用油の劣化評価方法及び工業用油の劣化評価システム
US7875458B2 (en) Application of test for residual wax contamination in basestocks to correlate with the low temperature viscometric properties of fully formulated oils
US8999901B2 (en) Lubricant base stocks with improved filterability
RU2625037C1 (ru) Способ классификации смазочных материалов по параметрам термоокислительной стабильности
RU2318206C1 (ru) Способ определения термоокислительной стабильности смазочных материалов
RU2528083C1 (ru) Способ определения качества смазочных масел
CN107132341A (zh) 一种润滑油氧化安定性的测试方法
RU2685582C1 (ru) Способ определения термоокислительной стабильности и температурной стойкости смазочных материалов
RU2419791C1 (ru) Способ определения смазывающей способности масел
RU2408886C1 (ru) Способ определения термоокислительной стабильности смазочных материалов
RU2705942C1 (ru) Способ определения предельно допустимых показателей работоспособности смазочных материалов
RU2485486C1 (ru) Способ определения термоокислительной стабильности смазочных материалов
RU2453832C1 (ru) Способ определения термоокислительной стабильности смазочных материалов
RU2484463C1 (ru) Способ определения смазывающей способности масел
RU2213961C1 (ru) Способ оценки седиментационной устойчивости моторных масел
RU2240558C1 (ru) Способ определения термической стабильности смазочного масла
RU2567087C1 (ru) Способ определения смазывающей способности масел

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180728