RU2633962C1 - Способ определения местоположения сканирующей РЛС пассивным многолучевым пеленгатором - Google Patents

Способ определения местоположения сканирующей РЛС пассивным многолучевым пеленгатором Download PDF

Info

Publication number
RU2633962C1
RU2633962C1 RU2016128913A RU2016128913A RU2633962C1 RU 2633962 C1 RU2633962 C1 RU 2633962C1 RU 2016128913 A RU2016128913 A RU 2016128913A RU 2016128913 A RU2016128913 A RU 2016128913A RU 2633962 C1 RU2633962 C1 RU 2633962C1
Authority
RU
Russia
Prior art keywords
radar
antenna
signal
angle
signals
Prior art date
Application number
RU2016128913A
Other languages
English (en)
Inventor
Георгий Михайлович Машков
Евгений Геннадьевич Борисов
Олег Саулович Голод
Игорь Сергеевич МАРТЕМЬЯНОВ
Юрий Викторович Рябуха
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича"
Priority to RU2016128913A priority Critical patent/RU2633962C1/ru
Application granted granted Critical
Publication of RU2633962C1 publication Critical patent/RU2633962C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • G01S11/04Systems for determining distance or velocity not using reflection or reradiation using radio waves using angle measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/04Position of source determined by a plurality of spaced direction-finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems

Abstract

Изобретение относится к области радиолокации и предназначено для определения местоположения работающей радиолокационной станции (РЛС), имеющей сканирующую направленную антенну. Достигаемый технический результат – расширение функциональных возможностей путем обеспечения определения направления на сканирующую РЛС и дальности до нее, при одновременном повышении достоверности результатов измерений. Указанный результат достигается за счет определения местоположения сканирующей РЛС пассивным многолучевым, по меньшей мере трехлучевым, пеленгатором, при котором измеряют период вращения антенны РЛС, определяют угол поворота антенны РЛС относительно направления на пеленгатор, при этом в каждом цикле зондирования при данном угле поворота антенны РЛС измеряют временные задержки Δτ21, Δτ31 сигналов, рассеянных отражающей поверхностью не менее, чем в двух лучах пеленгатора, при этом соответственно Δτ21 - задержка сигнала, принятого по второму лучу, относительно сигнала, принятого по первому лучу, Δτ31 - задержка сигнала, принятого по третьему лучу, относительно сигнала, принятого по первому лучу, затем на основании проведенных измерений расстояние RK от пеленгатора до цели, а также угол между направлением на РЛС и направлением первого луча пеленгатора вычисляют по соответствующим формулам. 5 ил.

Description

Изобретение относится к области радиолокации и предназначено для определения местоположения работающей радиолокационной станции (РЛС), имеющей сканирующую направленную антенну.
В настоящее время для некоторых измерительных комплексов (например, систем определения дальности до объектов радиотехническими методами, радионавигации и комплексах радиоэлектронного подавления) актуальна задача оперативного определения дальности до цели, получаемых пассивной автономной угломерной системой.
Известен способ пассивного определения дальности до цели с использованием сигнала обзорной сканирующей РЛС (см. 1. патент РФ на изобретение №2217772, МПК G01S 3/02, опубл. 02.11.2001). Сущность способа состоит в следующем. Измеряют разность азимутов приемной позиции и цели относительно РЛС, разность азимутов РЛС и цели относительно приемной позиции, разность расстояний РЛС - цель - приемная позиция, угол места цели β и угол места РЛС ϕ с помощью направленной антенны приемной позиции, при этом горизонтальная дальность до цели определяется по формуле:
Figure 00000001
Схема устройства для реализации данного способа состоит из антенны основной, антенны дополнительной, первого измерителя, второго измерителя, вычитателя, вычислителя, при этом выход основной антенны соединен одновременно с первым входом первого измерителя, второго измерителя, вычислителя и вычитателя, таким же образом выход дополнительной антенны соединен со вторым входом первого измерителя, второго измерителя и вычитателя, выход первого измерителя соединен со вторым входом вычислителя, выход второго измерителя соединен с третьим входом вычислителя, а выход вычитателя соединен с четвертым входом вычислителя, выход которого является выходом системы.
Способ реализуется следующим образом. Остронаправленный луч основной антенны направлен на цель. Эхосигналы поступают в первый и второй измерители. Антенна дополнительная направлена на излучающую РЛС. Прямые сигналы поступают в первый и второй измерители. В первом измерителе определяется разность расстояний τ по задержке эхосигнала относительно прямого. В первом измерителе определяют задержку α - интервал времени между моментом приема пачки эхосигналов и моментом приема пачки прямых импульсов с учетом известного периода вращения антенны РЛС, который может быть измерен заранее. В вычитателе вычисляют угол γ - как разность азимутов антенны основной и антенны дополнительной. В вычислитель поступают значения τ, α, γ, а также углы места цели β и РЛС ϕ от антенны основной. В вычислителе определяют горизонтальную дальность цели R по формуле (1).
Данный способ может быть применим только при наличии дополнительной излучающей РЛС, что ведет к удорожанию и усложнению комплекса, а также невозможности обеспечения скрытной работы из-за необходимости наличия источника излучения.
Известен метод определения местоположения ИРИ с неизвестной несущей частотой (см. 2. Боков И.Г., Евдокимов О.Ю., Евдокимов Ю.Ф. Метод определения местоположения источников излучения с неизвестной несущей частотой. ТРТУ Специальный выпуск. №9, 2006, с. 22). Метод заключается в следующем. С борта летательного аппарата (ЛА) измеряется доплеровская частота сигнала по формуле:
Figure 00000002
где v - скорость ЛА,
λ - длина волны ИРИ,
θ(t) - текущий угол между направлением движения ЛА и направлением на ИРИ определяемый из выражения:
Figure 00000003
где D0 - дальность до ИРИ на начало измерений,
θ0 - начальный угол между направлением движения ЛА и направлением на ИРИ.
За счет разницы частоты ИРИ и опорных частот приемника эта частота измеряется с некоторой дополнительной постоянной составляющей Δƒ. Данная частота интегрируется на трех интервалах времени [t0, t1], [t0, t2], [t0, t3] в соответствии с формулой:
Figure 00000004
Уравнения (3) образуют систему, решая которую и используя уравнение (4), находят D0, θ0, Δƒ.
Данный способ применим только для определения местоположения когерентных источников радиоизлучения, тогда как большинство обзорных РЛС являются некогерентными.
Известен способ (см. 3. патент США на изобретение №4882590, G01S 13/00, G01S 13/87, G01S 5/12, G01S 13/02, опубл. 21.11.1989 г.) определения дальности до цели по переотражениям от рельефа местности.
Способ состоит в следующем. Считается, что частота повторения импульсов, излучаемых передатчиком, постоянна. Примером такого передатчика может служить судовая радиолокационная станция, работающая в режиме кругового обзора. Приемное устройство способно разделять прямой сигнал передатчика и сигнал, переотраженный объектом, и измерять временное запаздывание τ переотраженного сигнала по отношению к прямому. Подсчитывая в точке приема количество импульсов, принятых между моментами приема прямого сигнала по главному лепестку диаграммы направленности антенны за один период ее вращения (это количество импульсов обозначим N), и количество импульсов между моментами приема прямого и отраженного сигналов (обозначим это количество импульсов как n), можно определить угол поворота θ антенны РЛС от направления на приемник до направления на отражающий объект. Угол поворота антенны РЛС определяется выражением
Figure 00000005
Любая отражающая точка лежит на эллипсе, являющимся геометрическим местом точек, сумма расстояний от которых до точек нахождения передатчика и приемника равна R+δ, где δ=сτ; с - скорость распространения радиоволн; τ - разность времени прихода в точку приема прямого и переотраженного сигналов, R - расстояние между приемником и передатчиком. Соотношения между R, δ, x и y определяется уравнениями:
Figure 00000006
Из этих выражений можно найти координаты отражающего объекта через расстояние между приемником и передатчиком R, угол поворота θ антенны передатчика от направления на приемник до направления на отражающий объект, а также разность длин путей δ прямого и переотраженного сигналов:
Figure 00000007
Figure 00000008
Местность в районе приемного пункта «накрывают» координатной сеткой. Оценивают видимость каждого узла сетки на местности со стороны передатчика и приемника, и данные об отражающих объектах заносят в память компьютера. Компьютер сравнивает координаты x и y точки отражения, вычисленные по измеренной задержке τ, величине угла θ и предполагаемой дальности R с координатами реального отражающего объекта, заложенными в память компьютера. Подбирается такая величина R, чтобы рассчитанные координаты совпадали с координатами, заложенными в память компьютера. Подобным образом каждой отражающей точке, углу θ и временному запаздыванию τ ставится в соответствие местоположение источника радиосигнала на координатной сетке. Поскольку точек, от которых происходят отражения радиосигнала на местности, обычно несколько, местоположение передатчика в координатной сетке оценивается вероятностной величиной. Наиболее вероятная точка принимается за положение передатчика.
Устройство, реализующее данный способ, содержит каскадно соединенные антенну, приемное устройство, первый управляемый аналоговый вентиль, второй управляемый аналоговый вентиль, аналого-цифровой преобразователь, устройство памяти и компьютер, детектор максимума луча антенны РЛС, вход которого соединен с выходом приемного устройства, а выход - с управляемым входом первого управляемого аналогового вентиля, каскадно соединенные устройство выделения прямых сигналов РЛС, вход которого соединен с выходом первого управляемого логического вентиля, и счетчик временных интервалов, выход которого соединен с управляемым входом второго управляемого логического вентиля.
Для реализации данного способа необходима априорная информация о точных координатах неровностей рельефа, что зачастую не осуществимо, а при определении дальности до корабельной РЛС принципиально невозможно.
Известно изобретение (см. 4. патент РФ на изобретение №2457505, МПК G01S 5/04, опубл. 27.07.2012) для определения местоположения работающей РЛС, имеющей сканирующую направленную антенну. Данное изобретение выбрано в качестве прототипа.
Способ определения местоположения работающей РЛС реализуется следующим образом. Предполагается, что приемные устройства пассивного многолучевого (двухлучевого) пеленгатора в месте наблюдения имеют достаточную чувствительность для приема прямых сигналов передатчика по боковому излучению его антенны. Ставя в соответствие измеренным разностям углов и моментам приема сигналов пеленгатором координаты реально существующих на местности отражающих объектов, вычисляется местоположение передатчика.
Способ поясняется фиг. 1, согласно которой в точке Е расположен импульсный передатчик РЛС, в точке О - пеленгатор, в точке А - единственный переотражающий объект. Импульсы, излученные передатчиком, приходят в точку приема О по прямому пути ЕО и по пути ЕАО, отразившись от объекта А. Приемный пункт имеет слабонаправленные антенны и способен принимать как прямые сигналы передатчика РЛС, излученные боковыми лепестками антенны РЛС, так и переотраженные от объектов поверхности сигналы при направлении на них главного лепестка антенны РЛС и измерять углы прихода прямого и переотраженного сигналов и задержку τ между ними. По задержке τ определяется разность длин путей прямого и переотраженного сигнала δ=сτ=ЕА+АО-ЕО, где с - скорость света.
Из последнего соотношения следует, что EA+AO=R+δ, где R - расстояние. Это означает, что точка А лежит на эллипсе, в фокусах которого расположены передающее и приемное устройства, и что сумма расстояний от любой точки эллипса до его фокусов равна R+δ.
Из фиг. 1 также следует, что для любой точки, находящейся на эллипсе, выполняется соотношение:
Figure 00000009
где α - угол между приемником и отражающим объектом,
x - горизонтальная координата точки эллипса,
y - вертикальная координата точки эллипса.
Подставляя формулу (6) в уравнение эллипса находим координаты x и y отражающего объекта А:
Figure 00000010
Figure 00000011
Дальность до источника радиоизлучения оценивается путем сравнения действительных координат xni, yni, занесенных в память компьютера, с рассчитанными по формулам (7 и 8), в которые были подставлены измеренные значения угла α, пространственная разность путей распространения сигналов δ и переменная величина R. За оценку дальности принимается такое значение R, при котором разность между рассчитанными и заложенными в память компьютера координатами минимальна. Вследствие неизбежности ошибок измерений полное совпадение рассчитанных координат и координат, занесенных в память компьютера, маловероятно, поэтому формула для оценки дальности до источника радиоизлучения при использовании одного переотражающего объекта может быть записана как:
Figure 00000012
где xi(R, α, δ) и yi(R, α, δ) - координаты i-го отражающего объекта.
Поскольку, как показывает практика, в зоне действия приемного пункта (пеленгатора) обычно имеется несколько отражающих объектов, которые могут быть использованы для определения дальности R, формула для оценки дальности R в этом случае может быть записана в виде:
Figure 00000013
Дальность R, удовлетворяющая формуле (9) принимается за истинную.
Структурная схема устройства приведена на фиг. 2, на которой обозначено:
1 - первая антенна;
2 - первое приемное устройство;
3 - первый аналого-цифровой преобразователь (АЦП);
4 - устройство обнаружения сигналов;
5 - генератор тактовых импульсов;
6 - устройство выделения прямых сигналов РЛС;
7 - счетчик временных интервалов;
8 - устройство памяти;
9 - компьютер;
10 - вторая антенна;
11 - второе приемное устройство;
12 - второй АЦП;
13 - управляемый логический вентиль;
14 - моноимпульсный вычислитель пеленга.
Устройство содержит первую антенну 1, первое приемное устройство 2, вход которого подключен к выходу первой антенны 1, первый АЦП 3, устройство обнаружения сигналов 4, устройство 6 выделения прямых сигналов РЛС, счетчик 7 временных интервалов и устройство 8 памяти, и компьютер 9, вход которого соединен с выходом устройства 8 памяти, вторую антенну 10 и второе приемное устройство 11, вход которого соединен с выходом второй антенны 10, второй АЦП 12, содержащий два входа, первый из которых соединен с выходом второго приемного устройства 11, и один выход, генератор 5 тактовых импульсов, имеющий один выход, управляемый логический вентиль 13, имеющий два входа, первый из которых соединен с выходом счетчика 7 временных интервалов, второй - с выходом устройства 4 обнаружения сигналов, и один выход, моноимпульсный вычислитель пеленга 14, имеющий четыре входа, первый из которых соединен с выходом устройства обнаружения сигналов, второй и третий - с выходами первого и второго аналого-цифровых преобразователей, четвертый - с выходом генератора тактовых импульсов, и один выход, второй вход в первом аналого-цифровом преобразователе соединен с выходом генератора тактовых импульсов, а его первый вход соединен с выходом первого приемного устройства, второй и третий входы в устройстве обнаружения сигналов соединены соответственно с выходом второго аналого-цифрового преобразователя и выходом генератора тактовых импульсов, входы второй, третий и четвертый в устройстве памяти соединены соответственно с выходом устройства выделения прямых сигналов РЛС, выходом моноимпульсного вычислителя пеленга и выходом генератора тактовых импульсов, второй вход в устройстве выделения прямых сигналов соединен с выходом генератора тактовых импульсов, второй вход в счетчике временных интервалов соединен с выходом генератора тактовых импульсов, а его первый вход соединен с выходом устройства обнаружения сигналов, второй вход второго аналого-цифрового преобразователя соединен с выходом генератора тактовых импульсов, первый вход устройства обнаружения сигналов - с выходом первого аналого-цифрового преобразователя, первый вход устройства выделения прямых сигналов РЛС - с выходом моноимпульсного вычислителя пеленга, и первый вход устройства памяти - с выходом управляемого логического вентиля.
В способе, реализуемом в прототипе, для определения дальности до РЛС необходима точная априорная информация о координатах переотражающих объектов, что на море принципиально невозможно, а на суше требует выполнения предварительных трудоемких измерений. Кроме того, в способе прототипа предполагается нахождение РЛС только в пределах лучей многолучевого пеленгатора, обусловленное использованием моноимпульсного метода пеленгации, что уменьшает функциональные возможности способа. Кроме того, необходимость использования сигнала, излученного антенной РЛС по боковым лепесткам, уменьшает дальность действия прототипа. Дальность в прототипе оценивается вероятностным критерием, что допускает возможность появления грубых ошибок измерений.
Технический результат изобретения заключается в расширении функциональных возможностей способа путем обеспечения определения направления на сканирующую РЛС и дальности до нее в отсутствии априорных данных о местных отражающих объектах при нахождении РЛС как в лучах, так и вне лучей пассивного многолучевого пеленгатора, при одновременном повышении достоверности результатов измерений.
Достижение указанного технического результата обеспечивается в предлагаемом способе определения местоположения сканирующей РЛС пассивным многолучевым пеленгатором (ПМП), по меньшей мере, трехлучевым пеленгатором, заключающийся в приеме и выделении ПМП прямых импульсных сигналов РЛС, обнаружении импульсных сигналов, переотраженных подстилающей поверхностью земли или моря, и измерении временных задержек между сигналами, отличающемся тем, что осуществляют прием ПМП в моменты
Figure 00000014
,
Figure 00000015
прямых импульсных сигналов при первом обороте сканирующей антенны РЛС и в моменты приема
Figure 00000016
,
Figure 00000017
прямых импульсных сигналов при втором обороте сканирующей антенны РЛС, определяют период TA вращения антенны РЛС по формуле
Figure 00000018
, после чего начинают измерение интервала времени TB поворота антенны РЛС относительно направления на ПМП, затем обнаруживают сигналы, принятые по первому, второму и третьему лучам ПМП, и определяют угол поворота антенны РЛС относительно направления на ПМП по формуле:
Figure 00000019
, далее измеряют времена задержки τ21 и τ31 сигналов, принятых соответственно по второму и третьему лучам относительно сигнала, принятого по первому лучу, после чего определяют угол βk1 между направлением на РЛС и границей первого луча ПМП, наиболее удаленной от РЛС, по формуле:
Figure 00000020
,
где τ21=tn2-tnl - временная задержка между моментами приема рассеянного сигнала по второму лучу tn2 по отношению к первому лучу tn1, τ31=tn3-tn1 - временная задержка между приемами сигнала tn3 по третьему лучом по отношению к первому лучу tn1, ψ - угол между диаграммами направленности смежных лучей ПМП, а расстояние Rk до РЛС определяют по формуле:
Figure 00000021
.
Достижение технического результата приведенными отличиями можно пояснить с использованием геометрических построений, представленных на фиг. 3.
Пассивный многолучевой пеленгатор расположен в точке О, первый, второй и третий лучи пеленгатора имеют одинаковую ширину θ, углы между смежными лучами одинаковы и равны ψ. Если θ<ψ то лучи не пересекаются, если ψ<θ, то лучи пересекаются, если θ=ψ, то лучи касаются границами. При нахождении РЛС вне лучей ПМП, как показано на фиг. 3, и вращении антенны РЛС, в моменты направления антенны РЛС на ПМП, одновременно на выходах всех лучей пеленгатора появляются пачки импульсов, следующие с периодом ТА,, принятые по боковым лепесткам антенны. При нахождении РЛС в пределах любого из лучей ПМП, пачки импульсов, следующие с периодом ТА,, будут приниматься приемником соответствующего луча и иметь не менее чем на 20 дб большую амплитуду. Измерив временной интервал от момента прохождения сканирующей антенной РЛС направления на ПМП до текущего момента времени TB, можно определить угол поворота антенны РЛС относительно направления на ПМП для каждого текущего момента времени. Пусть αKi - угол поворота антенны РЛС от направления на пеленгатор до момента времени TB, тогда
Figure 00000022
, где TB - интервал времени между моментом прохождения лучом антенны РЛС направления на приемник ПМП и моментом начала измерения временных задержек, ТА - период одного оборота антенны РЛС.
В соответствии с геометрической интерпретацией задачи определения координат РЛС на фиг. 3 обозначены:
направления трех лучей пеленгатора;
О - антенна пеленгатора;
С - точка нахождения РЛС;
αki - угол поворота антенны РЛС относительно направления на пеленгатор;
a, b, е - точки пересечения направления оси антенны РЛС с границами первого, второго и третьего лучей, причем с границами наиболее удаленными от РЛС;
βk1 - угол между направлением на РЛС и наиболее удаленной от РЛС границей первого луча пеленгатора.
Распространяясь по лучу антенны РЛС, зондирующий импульс облучает подстилающую поверхность земли или моря, возникающий при этом рассеянный сигнал представляет собой узкополосный нормальный процесс. При пересечении зондирующим импульсом соответствующего луча ПМП рассеянный сигнал принимается приемником этого луча в виде импульсного эхо-сигнала. Длительность этого импульсного эхосигнала равна времени движения зондирующего импульса в пределах соответствующего луча, а момент появления этого импульса (т.е. передний фронт импульса) определяется расстоянием от РЛС до границы луча, наиболее близкой к РЛС. Момент окончания импульсного эхо-сигнала (т.е. задний фронт импульса) соответствует моменту достижения зондирующим импульсом границы луча ПМП, наиболее удаленной от РЛС. Следовательно, рассеянный поверхностью эхо-сигнал, приходит в приемники первого, второго и третьего лучей ПМП в виде импульсов, последовательно во времени, с задержками τ. Эхосигнал, рассеянный поверхностью в районе точки а, на приемник ПМП (точку О) придет через интервал времени t a а/с, а эхосигнал, рассеянный поверхностью в районе точки b придет на антенну пеленгатора через интервал времени tb=(ab+Ob)/с. Следовательно, задержка τ21 эхосигнала, принятого вторым лучом, относительно сигнала, пришедшего по первому лучу, запишется как:
Figure 00000023
Аналогично, задержка τ31 эхосигнала, принятого третьим лучом, относительно сигнала, пришедшего по первому лучу определится как:
Figure 00000024
Рассмотрим ΔOab и, применив теорему синусов, выразим стороны ab и Ob этого треугольника через сторону Оа.
Figure 00000025
Подставим эти выражения в (10):
Figure 00000026
Откуда
Figure 00000027
Рассмотрев аналогичным образом ΔОае, получим выражения:
Figure 00000028
Подставим эти выражения в (11):
Figure 00000029
Откуда
Figure 00000030
Приравняем правые части уравнений
Figure 00000031
Воспользуемся формулами из тригонометрии
Figure 00000032
;
Figure 00000033
Figure 00000034
;
Figure 00000035
и проведем упрощение обеих частей уравнения (12).
Левая часть уравнения (12) примет вид:
Figure 00000036
.
Представим разность косинусов в знаменателе как произведение:
Figure 00000037
И тогда левая часть уравнения (12) примет вид:
Figure 00000038
Выполнив аналогичные преобразования правой части уравнения (12), получим
Figure 00000039
Приравняем эти выражения
Figure 00000040
Умножив обе части уравнения на произведение
Figure 00000041
, и, сократив одинаковые константы, получим:
Figure 00000042
Заметив, что
Figure 00000043
, придадим уравнению вид:
Figure 00000044
Перепишем формулу (13), перегруппировав аргументы косинусов:
Figure 00000045
Воспользуемся тригонометрической формулой косинуса суммы двух углов:
Figure 00000046
Косинус в левой стороне уравнения (5'') преобразуется к виду:
Figure 00000047
Косинус в правой стороне уравнения (5'') преобразуется к виду:
Figure 00000048
Тогда уравнение (13) примет вид:
Figure 00000049
Перенесем члены, содержащие
Figure 00000050
, в левую часть уравнения, а члены, содержащие
Figure 00000051
, в правую часть уравнения:
Figure 00000052
Сгруппируем члены, содержащие
Figure 00000053
и
Figure 00000054
:
Figure 00000055
Откуда
Figure 00000056
Тогда
Figure 00000057
И окончательно
Figure 00000058
Уравнение 15 позволяет определить направление βk1 на РЛС относительно направления границы первого луча ПМП, наиболее удаленной от РЛС.
Найдем расстояние Rk до РЛС по теореме синусов:
Figure 00000059
Измерения времени задержки τ21 и τ31 сигналов следует выполнять по задним фронтам принимаемых импульсов. Эта необходимость вызвана тем, что когда РЛС окажется в пределах диаграммы направленности первого луча, длительность импульса, принятого ПМП по этому лучу, будет меньше из-за уменьшения расстояния от РЛС до противоположной границы луча, т.е. импульс станет короче за счет уменьшения общей длительности пути прохождения зондирующего импульса в пределах луча. Временное положение заднего фронта импульса, соответствующее моменту выхода зондирующего импульса из луча, при этом не изменится.
Из формул, аналогичных (15) и (16), при различных положениях луча антенны РЛС αki можно получить значительное число М статистически независимых отсчетов величин βC1 и RK. Причем М определяется числом импульсов, появляющихся на выходах приемников при вращении антенны РЛС, для которых величина отношения сигнал/шум будет достаточной для выполнения дальномерных измерений. Применение рассмотренной методики возможно только до тех дальностей, где интенсивность рассеянного поверхностью сигнала достаточна для обеспечения приемлемой величины отношения сигнал/шум импульсов на выходах, как минимум, трех смежных лучей пеленгатора. В случае пеленгации судовых РЛС при взволнованной поверхности моря это дальность порядка 10 км.
Как следует из вышесказанного в предложенном способе определение местоположения РЛС возможно и при нахождении РЛС в пределах лучей ПМП, и при нахождении вне их, что расширяет функциональные возможности способа по сравнению с прототипом. Кроме того, определение местоположения РЛС выполняется по детерминированным соотношениям, что исключает вероятностную оценку местоположения и тем самым повышает достоверность результатов измерений.
На фиг. 4 приведен пример структурной схемы устройства для реализации предлагаемого способа, на которой показано:
15 - антенна первого луча;
16 - антенна второго луча;
17 - антенна третьего луча;
18 - приемник первого луча;
19 - приемник второго луча;
20 - приемник третьего луча;
21 - обнаружитель сигнала первого луча;
22 - обнаружитель сигнала второго луча;
23 - обнаружитель сигнала третьего луча;
24 - селектор прямого сигнала;
25 - счетчик времени;
26 - измеритель задержки τ21;
27 - измеритель задержки τ31;
28 - вычислитель.
При этом выходы антенны 15 первого луча, антенны 16 второго луча и антенны 17 третьего луча соединены с входами соответствующего приемника 18, 19, 20, выходы которых соединены со входами соответствующих обнаружителей 21, 22, 23 эхо-сигналов, выходы всех обнаружителей подключены к соответствующим входам селектора 24 прямого сигнала, выход которого соединен с первыми входами вычислителя 28 и счетчика 25 времени, выход которого соединен со вторым входом вычислителя 28, второй вход счетчика 25 времени связан с выходом обнаружителя 21 эхо-сигнала первого луча и первыми входами измерителей 26 и 27 задержки τ21 и τ31 соответственно, вторые входы которых подключены к выходам обнаружителей 22 и 23 эхо-сигналов, а выходы - к третьему и четвертому входам вычислителя 28, выходы которого являются выходами устройства.
Предлагаемый способ осуществляется в приведенном устройстве следующим образом.
Пусть РЛС находится вне лучей ПМП. Поскольку прямые зондирующие сигналы имеют большую мощность то при направлении антенны РЛС на ПМП они принимаются боковыми лепестками всех трех лучей одновременно независимо от нахождения РЛС в луче или вне лучей ПМП. Прямые зондирующие сигналы по первому, второму и третьим лучам поступают в соответствующие приемники 18, 19, 20, где осуществляется процедура фильтрации и усиления сигналов до требуемого уровня и последующее их обнаружение в обнаружителях 21, 22, 23. С выходов обнаружителей 21, 22, 23 прямые зондирующие сигналы поступают на входы селектора 24 прямого сигнала. В селекторе 24 выделяются передние фронты импульсов, принятых каждым лучом и при совпадении во времени всех трех фронтов импульсов вырабатывается выходной сигнал селектора 24 прямого сигнала, который поступает на первый вход счетчика 25 времени и запускает начало отсчета времени TB, начиная с момента прохождения антенной РЛС направления на ПМП. Поскольку мощность прямого зондирующего сигнала значительно больше мощности рассеянного поверхностью сигнала, то в течение ряда оборотов антенны РЛС на приемники ПМП будут приходить только прямые зондирующие сигналы. Принимаемые в это время лучами рассеянные поверхностью эхосигналы будут иметь слишком маленькую мощность и не смогут проходить через обнаружители 21, 22, 23.
К моменту прихода следующего выходного сигнала селектора 24 прямого сигнала на счетчике 25 времени установится интервал времени TB, равный длительности ТА периода оборота антенны РЛС, т.е. TBА. Этот интервал записывается в вычислитель 28 по переднему фронту выходного сигнала селектора 24 прямого сигнала. По заднему фронту этого же сигнала счетчик 25 времени обнуляется и подготавливается к началу счета в следующем обороте антенны РЛС.
С уменьшением расстояния между РЛС и лучами ПМП амплитуда эхо-сигнала, рассеянного поверхностью и принимаемого лучами ПМП, будет возрастать. В момент прихода по первому лучу эхосигнала достаточной мощности, появляется импульс на выходе приемника 18 первого луча и обнаружителя 21 эхо-сигнала первого луча, который поступает на второй вход счетчика 25 времени, вызывая считывание времени TB, записанного к этому моменту в счетчик 25 времени, и запись его в вычислитель 28 по второму входу вычислителя 28. Вычислитель 28 рассчитывает угол поворота антенны αki относительно направления на ПМП по формуле
Figure 00000060
. Этот угол соответствует положению антенны РЛС, при котором лучами ПМП принимаются в данный момент эхо-сигналы рассеянные поверхностью в данном цикле зондирования РЛС.
Через интервал времени τ21 после прихода импульса по первому лучу появляется импульс на выходе приемника 19 второго луча и обнаружителя 22 второго луча. Импульсы с выходов обнаружителей 21 и 22 поступают на входы измерителя 26 задержки τ21. Измеренная величина τ21 поступает на третий вход вычислителя 28.
Аналогично, с появлением импульса на выходе обнаружителя 23 третьего луча измеряется время задержки τ31 и вводится в вычислитель 28 на четвертый вход.
Используя введенный заранее параметр пеленгатора ψ, вычислитель 28 рассчитывает угол βk1 между направлением наиболее удаленной от РЛС границы первого луча ПМП и направлением на РЛС (Фиг. 3) по формуле (15)
Figure 00000061
где αki - угол поворота антенны РЛС относительно направления на ПМП;
ψ - угол между осями диаграмм направленности смежных лучей пеленгатора;
с - скорость света.
Расстояние Rk до РЛС рассчитывается по формуле (16):
Figure 00000062
Рассмотрим пример выполнения блоков предлагаемого устройства.
В качестве антенн 15, 16, 17 первого, второго и третьего лучей соответственно могут быть использована ФАР с электронным сканированием по азимуту (см. 5. Справочник по радиолокации под ред. М. Сколника, т. 2, М., «Сов. радио», 1977, стр. 132-138).
Приемники 18, 19, 20, входящие в состав пеленгатора, - супергетеродинного типа и могут быть выполнены как в (см. 6. Справочник по основам радиолокационной техники, М., 1967, стр. 343-344).
Обнаружители 21, 22, 23 могут быть выполнены как в (7. Поиск, обнаружение и измерение параметров сигналов в радионавигационных системах. Под ред. Ю.М. Казаринова. М.: Сов. радио. 1975).
Измерители задержки 26, 27 могут быть выполнены как в (7. Поиск, обнаружение и измерение параметров сигналов в радионавигационных системах. Под ред. Ю.М. Казаринова. М.: Сов. радио. 1975).
Вычислитель 28 представляет собой устройство, реализующие вычислительные процедуры в соответствии с блок-схемой алгоритма, представленной на фиг. 5. и может быть выполнен на соответствующих ПЛИС, используемых, например в (см. 8. Патент на полезную модель РФ №72339 МПК G06F 15/16 опубл. 10.04.2008).
Счетчик 25 времени можно использовать почти любой из множества выпускаемых, как в (9. Потехин В.А. Схемотехника цифровых устройств. Томск, В-Спектр 2012).
Селектор 24 прямого сигнала может быть выполнен из последовательно соединенных дифференцирующего устройства и схемы совпадений на три входа как в (9. Потехин В.А. Схемотехника цифровых устройств. Томск, В-Спектр 2012).

Claims (4)

  1. Способ определения местоположения сканирующей РЛС пассивным многолучевым пеленгатором (ПМП), по меньшей мере трехлучевым пеленгатором, заключающийся в приеме и выделении ПМП прямых импульсных сигналов РЛС, обнаружении импульсных сигналов, переотраженных подстилающей поверхностью земли или моря, и измерении временных задержек между сигналами, отличающийся тем, что осуществляют прием ПМП в моменты
    Figure 00000063
    ,
    Figure 00000064
    прямых импульсных сигналов при первом обороте сканирующей антенны РЛС и в моменты приема
    Figure 00000065
    ,
    Figure 00000066
    прямых импульсных сигналов при втором обороте сканирующей антенны РЛС, определяют период TA вращения антенны РЛС по формуле
    Figure 00000067
    , после чего начинают измерение интервала времени TB поворота антенны РЛС относительно направления на ПМП, затем обнаруживают сигналы, принятые по первому, второму и третьему лучам ПМП, и определяют угол поворота антенны РЛС относительно направления на ПМП по формуле:
    Figure 00000068
    , далее измеряют времена задержки τ21 и τ31 сигналов, принятых соответственно по второму и третьему лучам относительно сигнала, принятого по первому лучу, после чего определяют угол βk1 между направлением на РЛС и границей первого луча ПМП, наиболее удаленной от РЛС, по формуле:
  2. Figure 00000069
    ,
  3. где τ21=tn2-tn1 - временная задержка между моментами приема рассеянного сигнала по второму лучу tn2 по отношению к первому лучу tn1, τ31=tn3-tn1 - временная задержка между приемами сигнала tn3 по третьему лучу по отношению к первому лучу tn1, ψ - угол между диаграммами направленности смежных лучей ПМП, а расстояние Rk до РЛС определяют по формуле:
  4. Figure 00000070
    .
RU2016128913A 2016-07-14 2016-07-14 Способ определения местоположения сканирующей РЛС пассивным многолучевым пеленгатором RU2633962C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016128913A RU2633962C1 (ru) 2016-07-14 2016-07-14 Способ определения местоположения сканирующей РЛС пассивным многолучевым пеленгатором

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016128913A RU2633962C1 (ru) 2016-07-14 2016-07-14 Способ определения местоположения сканирующей РЛС пассивным многолучевым пеленгатором

Publications (1)

Publication Number Publication Date
RU2633962C1 true RU2633962C1 (ru) 2017-10-20

Family

ID=60129652

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016128913A RU2633962C1 (ru) 2016-07-14 2016-07-14 Способ определения местоположения сканирующей РЛС пассивным многолучевым пеленгатором

Country Status (1)

Country Link
RU (1) RU2633962C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2716145C1 (ru) * 2019-04-24 2020-03-06 Акционерное общество "Всероссийский научно-исследовательский институт "Градиент" (АО "ВНИИ "Градиент") Способ пространственной локализации радиоизлучающих объектов
RU2741331C2 (ru) * 2018-12-24 2021-01-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича" Способ определения местоположения обзорной РЛС пассивным пеленгатором
RU2741333C1 (ru) * 2019-10-28 2021-01-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича" Способ определения местоположения работающей РЛС пассивным многолучевым пеленгатором
RU2758832C1 (ru) * 2020-12-10 2021-11-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича" Способ определения местоположения сканирующей РЛС пассивным многолучевым пеленгатором
US20220123464A1 (en) * 2019-02-06 2022-04-21 Sony Group Corporation Systems and devices for mutual directive beam switch array

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882590A (en) * 1988-05-18 1989-11-21 Hughes Aircraft Company Method for locating a radio frequency emitter
RU2282871C1 (ru) * 2005-02-11 2006-08-27 Иркутский военный авиационный инженерный институт Вертолетный пассивный пеленгатор кругового обзора
WO2009065943A1 (fr) * 2007-11-23 2009-05-28 Thales Procède de localisation aoa-tdoa multi-emetteurs et multi-trajets comprenant un sous-procede de synchronisation et d'egalisation des stations de receptions
EP2105760A1 (fr) * 2008-03-28 2009-09-30 Thales Procédé et système de pistage et de suivi d'emetteurs
RU2457505C2 (ru) * 2010-09-30 2012-07-27 Государственное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники (ТУСУР) Устройство для определения местоположения работающей радиолокационной станции
RU2510516C2 (ru) * 2012-04-19 2014-03-27 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации Способ функционального поражения радиоэлектронных средств
RU2562613C2 (ru) * 2013-08-20 2015-09-10 Юрий Иванович Логинов Дихотомический мультипликативный разностно-относительный способ определения координат местоположения источника импульсного радиоизлучения

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882590A (en) * 1988-05-18 1989-11-21 Hughes Aircraft Company Method for locating a radio frequency emitter
RU2282871C1 (ru) * 2005-02-11 2006-08-27 Иркутский военный авиационный инженерный институт Вертолетный пассивный пеленгатор кругового обзора
WO2009065943A1 (fr) * 2007-11-23 2009-05-28 Thales Procède de localisation aoa-tdoa multi-emetteurs et multi-trajets comprenant un sous-procede de synchronisation et d'egalisation des stations de receptions
EP2105760A1 (fr) * 2008-03-28 2009-09-30 Thales Procédé et système de pistage et de suivi d'emetteurs
RU2457505C2 (ru) * 2010-09-30 2012-07-27 Государственное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники (ТУСУР) Устройство для определения местоположения работающей радиолокационной станции
RU2510516C2 (ru) * 2012-04-19 2014-03-27 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации Способ функционального поражения радиоэлектронных средств
RU2562613C2 (ru) * 2013-08-20 2015-09-10 Юрий Иванович Логинов Дихотомический мультипликативный разностно-относительный способ определения координат местоположения источника импульсного радиоизлучения

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2741331C2 (ru) * 2018-12-24 2021-01-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича" Способ определения местоположения обзорной РЛС пассивным пеленгатором
US20220123464A1 (en) * 2019-02-06 2022-04-21 Sony Group Corporation Systems and devices for mutual directive beam switch array
RU2716145C1 (ru) * 2019-04-24 2020-03-06 Акционерное общество "Всероссийский научно-исследовательский институт "Градиент" (АО "ВНИИ "Градиент") Способ пространственной локализации радиоизлучающих объектов
RU2741333C1 (ru) * 2019-10-28 2021-01-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича" Способ определения местоположения работающей РЛС пассивным многолучевым пеленгатором
RU2758832C1 (ru) * 2020-12-10 2021-11-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича" Способ определения местоположения сканирующей РЛС пассивным многолучевым пеленгатором

Similar Documents

Publication Publication Date Title
RU2633962C1 (ru) Способ определения местоположения сканирующей РЛС пассивным многолучевым пеленгатором
US7295150B2 (en) Methods and systems for identifying high-quality phase angle measurements in an interferometric radar system
RU2641727C1 (ru) Способ первичной импульсно-доплеровской дальнометрии целей на фоне узкополосных пассивных помех
RU2704029C1 (ru) Временной способ определения дальности до сканирующего источника радиоизлучения без измерения пеленга
RU2457505C2 (ru) Устройство для определения местоположения работающей радиолокационной станции
RU2557808C1 (ru) Способ определения наклонной дальности до движущейся цели пассивным моностатическим пеленгатором
US10914812B2 (en) Method for locating sources emitting electromagnetic pulses
RU2669702C2 (ru) Радиолокационный способ обнаружения и определения параметров движения маловысотных малозаметных объектов в декаметровом диапазоне радиоволн
RU2307375C1 (ru) Способ измерения угла места низколетящей цели и радиолокационная станция для его реализации
RU2298805C2 (ru) Способ определения координат источника радиоизлучения (варианты) и радиолокационная станция для его реализации
RU2317566C1 (ru) Способ измерения угла места радиолокационных целей двухкоординатной рлс метрового диапазона
RU2741331C2 (ru) Способ определения местоположения обзорной РЛС пассивным пеленгатором
RU2538105C2 (ru) Способ определения координат целей и комплекс для его реализации
RU2379707C1 (ru) Способ наблюдения за объектами на поверхности бортовой радиотеплолокационной станцией, совмещенной с радиолокационной станцией
RU2545068C1 (ru) Способ измерения изменения курсового угла движения источника зондирующих сигналов
RU2660159C1 (ru) Способ определения угла сноса летательного аппарата бортовой радиолокационной станцией
RU2741333C1 (ru) Способ определения местоположения работающей РЛС пассивным многолучевым пеленгатором
JP2008304329A (ja) 測定装置
RU2515419C1 (ru) Способ измерения изменения курсового угла движения источника зондирующих сигналов
RU2516594C1 (ru) Способ определения ошибки оценки дистанции гидролокатором
RU2362182C1 (ru) Способ измерения радиальной скорости объекта и радиолокационная станция для его реализации
RU2667517C1 (ru) Способ радиолокационного обзора пространства (варианты).
RU2758832C1 (ru) Способ определения местоположения сканирующей РЛС пассивным многолучевым пеленгатором
RU2657005C1 (ru) Способ сопровождения цели обзорной радиолокационной станцией (варианты)
RU2807301C1 (ru) Способ определения местоположения радиолокационной станции со сканирующей диаграммой направленности

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180715

NF4A Reinstatement of patent

Effective date: 20210715