RU2632746C1 - Концентратор солнечной энергии и система для его использования - Google Patents

Концентратор солнечной энергии и система для его использования Download PDF

Info

Publication number
RU2632746C1
RU2632746C1 RU2016113762A RU2016113762A RU2632746C1 RU 2632746 C1 RU2632746 C1 RU 2632746C1 RU 2016113762 A RU2016113762 A RU 2016113762A RU 2016113762 A RU2016113762 A RU 2016113762A RU 2632746 C1 RU2632746 C1 RU 2632746C1
Authority
RU
Russia
Prior art keywords
component
solar energy
cavity
tubular component
longitudinal axis
Prior art date
Application number
RU2016113762A
Other languages
English (en)
Inventor
До Сун ИМ
Original Assignee
До Сун ИМ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by До Сун ИМ filed Critical До Сун ИМ
Application granted granted Critical
Publication of RU2632746C1 publication Critical patent/RU2632746C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • F24S10/45Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors the enclosure being cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/50Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/50Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
    • F24S80/52Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/50Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
    • F24S80/56Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings characterised by means for preventing heat loss
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/86Arrangements for concentrating solar-rays for solar heat collectors with reflectors in the form of reflective coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/79Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

Изобретение направлено на использование солнечной энергии. Концентратор солнечной энергии, который содержит первый компонент с круглым поперечным сечением, имеющий первый конец, второй конец, полость и продольную ось, в котором выполнена полость, и который имеет продольную ось. Первый компонент имеет продольное окно, которое является его частью, и корпус, который тоже является его частью. Продольное окно первого компонента выполнено из материала, пропускающего солнечное излучение. Корпус первого компонента имеет поглощающую наружную поверхность и отражающую внутреннюю поверхность. Концентратор солнечной энергии содержит также второй компонент, который расположен в полости первого компонента и ориентирован по существу параллельно продольной оси первого компонента. Второй компонент выполнен с возможностью пропускать через себя текучую среду, поглощающую энергию. Пространство полости между первым компонентом и вторым компонентом заполнено изолирующим материалом. Система концентрации солнечной энергии содержит вышеописанный концентратор солнечной энергии и устройство передачи солнечной энергии для ее направления через продольное окно концентратора. Изобретение направлено на повышение эффективности улавливания солнечной энергии. 2 н. и 11 з.п. ф-лы, 3 ил.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ПРЕДЛАГАЕМОЕ ИЗОБРЕТЕНИЕ
Предлагаемое изобретение направлено на концентратор солнечной энергии и системе для концентрации солнечной энергии с его использованием.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ПРЕДЛАГАЕМОГО ИЗОБРЕТЕНИЯ
Солнечную энергию относят к возобновляемым энергетическим ресурсам. В настоящее время постоянно предпринимаются попытки сделать солнечную энергию рыночным товаром, повышая эффективность ее превращения в потребляемые виды энергии.
Солнечная энергия является лучистой энергией (тепло и свет), производимой Солнцем и принимаемой, например, на Земле. Величину солнечной энергии, поглощаемой Землей в течение года, оценивают в 3,8×106 эДж (эксаджоулей). Если бы удалось обуздать некоторую долю этой энергии для полезного применения, то это оказало бы значительное воздействие на спрос и предложение на рынке энергии.
Технологии улавливания солнечной энергии разделяют на пассивные и активные. К активным относят, например, технологии, связанные с использованием фотоэлементных панелей или солнечных тепловых коллекторов. Пассивные технологии улавливания солнечной энергии с целью максимизации использования солнечной энергии предусматривают, например, надлежащую ориентацию зданий, выбор материалов, и(или) обеспечение достаточного пространства.
Уловленная термальная солнечная энергия может находить различные применения, в частности (но не только) она может быть использована для нагревания воды, для обогрева помещений, для охлаждения помещений, для генерирования тепла для технических нужд. При улавливании термальной солнечной энергии важно, чтобы концентратор был как можно более эффективным, так чтобы была обеспечена максимизация отдачи от капитальных вложений.
Таким образом, существует потребность в концентраторе солнечной энергии, который был бы эффективен в улавливании солнечной энергии.
КРАТКОЕ ОПИСАНИЕ ПРЕДЛАГАЕМОГО ИЗОБРЕТЕНИЯ
Предложен концентратор солнечной энергии, содержащий первый компонент, в котором выполнена полость, и который имеет продольную ось. Упомянутый первый компонент имеет продольное окно, которое является его частью, и корпус, который тоже является его частью. Упомянутое продольное окно первого компонента выполнено из материала, пропускающего солнечное излучение. Упомянутый корпус первого компонента имеет поглощающую наружную поверхность и отражающую внутреннюю поверхность. В составе концентратора солнечной энергии предусмотрен также второй компонент, который расположен в упомянутой полости первого компонента и ориентирован по существу параллельно продольной оси первого компонента. Упомянутый второй компонент выполнен с возможностью пропускать через себя текучую среду, поглощающую энергию. Пространство полости между первым компонентом и вторым компонентом заполнено изолирующим материалом. Система концентрации солнечной энергии содержит вышеописанный концентратор солнечной энергии и устройство передачи солнечной энергии для направления солнечной энергии через упомянутое продольное окно концентратора.
КРАТКОЕ ОПИСАНИЕ ПРИЛАГАЕМЫХ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
На прилагаемых чертежах с целью иллюстрации предлагаемого изобретения показан вариант его осуществления, считающийся сейчас предпочтительным. Должно быть понятно, однако, что предлагаемое изобретение не ограничено элементами и их пространственными связями, в точности повторяющими изображенные на чертежах.
На фиг. 1 схематично изображен общий вид предлагаемого концентратора солнечной энергии.
На фиг. 2 схематично показана, в одном из вариантов ее осуществления, система для использования предлагаемого концентратора солнечной энергии.
На фиг. 3 система для использования предлагаемого концентратора солнечной энергии схематично изображена в другом варианте ее осуществления.
На разных чертежах идентичным элементам присвоены идентичные ссылочные обозначения.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДЛАГАЕМОГО ИЗОБРЕТЕНИЯ
На фиг. 1 показан концентратор 10 солнечной энергии. В целом концентратор 10 содержит первый компонент 12 и второй компонент 26, пространство между которыми заполнено изолирующим материалом.
Упомянутый первый компонент 12 является в целом удлиненным телом, имеющим продольную ось 16. Форма поперечного сечения первого компонента 12 может быть любой, в одном из вариантов осуществления это поперечное сечение является круговым (то есть первый компонент 12 по форме является трубкой). Первый компонент 12 имеет полость 14. Первый компонент 12 включает продольное окно 18, являющееся частью первого компонента 12, и корпус 20, тоже являющийся частью первого компонента 12.
Продольное окно 18 ориентировано по существу параллельно продольной оси 16 первого компонента 12. Продольное окно 18 представляет собой часть стенки первого компонента 12. Продольное окно 18 выполнено с возможностью пропускать солнечную энергию внутрь полости 14. Должна быть исключена возможность пропускания продольным окном 18 солнечной энергии из полости 14 вовне. Для этого продольное окно 18 может быть выполнено в виде одностороннего зеркала, которое пропускает излучение внутрь полости 14, но не допускает его выхода вовне, как это может быть обеспечено с помощью поляризованной пленки. Продольное окно 18 может быть выполнено из стекла или из пластика.
Остальная часть первого компонента 12 целиком приходится на корпус 20. Корпус 20 имеет наружную поверхность 22 и внутреннюю поверхность 24. Выбор материала для корпуса 20 может зависеть от нескольких факторов, в числе которых (перечень не исчерпывающий) прочность при предположительно максимальной рабочей температуре, изоляционные свойства, стойкость по отношению к коррозии, а также стоимость.
Упомянутая наружная поверхность 22 корпуса выполнена с возможностью поглощения солнечного излучения. Наружная поверхность 22 на корпусе 20 может быть образована покрытием или отдельным слоем, но может быть образована и самим цельным материалом корпуса 20. Согласно одному из вариантов осуществления предлагаемого изобретения, для имитации абсолютно черного тела наружная поверхность 22 может быть сделана черной. Абсолютно черное тело характеризуется в физике как тело, которое поглощает все попадающее на него электромагнитное излучение (в том числе солнечное излучение) независимо от частоты этого излучения и угла падения.
Упомянутая внутренняя поверхность 24 корпуса выполнена с возможностью отражать солнечное излучение. Внутренняя поверхность 22 корпуса 20 может быть образована покрытием или отдельным слоем, но может быть образована и самим цельным материалом корпуса 20. Согласно одному из вариантов осуществления предлагаемого изобретения, внутренняя поверхность 24 является зеркальной, чем обеспечено отражение всего падающего на нее излучения без какого-либо поглощения этого излучения.
Второй компонент 26 в целом является удлиненным и имеет продольную ось. Второй компонент 26 может быть расположен в любом месте внутри полости 14 первого компонента 12. Поперечное сечение второго компонента 26 может иметь любую форму, в одном из вариантов осуществления это поперечное сечение является круговым (то есть второй компонент 26 по форме является трубкой). Согласно одному из вариантов осуществления предлагаемого изобретения, второй компонент 26 расположен соосно, то есть имеет продольную ось 16, общую с первым компонентом 12. С одной стороны, второй компонент 26 выполнен с возможностью проведения через него текучей среды, поглощающей энергию. С другой стороны, второй компонент 26 выполнен с возможностью улавливать солнечную энергию или эффективно пропускать солнечную энергию к упомянутой текучей среде, поглощающей энергию. С целью обеспечения этой второй возможности второму компоненту 26 для имитации абсолютно черного тела (о котором говорилось выше) может быть придан черный цвет. Второй компонент 26 может быть выполнен из стекла (например, из пирексного стекла), кварца, керамики, пластика, металла, или из комбинаций этих материалов. Выбор материала для второго компонента 26 может зависеть от нескольких факторов, в числе которых (перечень не исчерпывающий) прочность при предположительно максимальной рабочей температуре, изоляционные свойства, стойкость по отношению к коррозии, а также стоимость.
Зазор между корпусом 20 и вторым компонентом 26 может быть любой величины. При подборе величины этого зазора следует принимать в расчет несколько соображений. А именно, следует учитывать фокальное расстояние и размеры устройства, придающего солнечной энергии направление, что будет обсуждено далее. Чем больше диаметр корпуса 20, тем лучше для концентрации солнечного излучения, но тем хуже для термического изолирования.
В качестве текучей среды, поглощающей солнечную энергию, может быть использована любая текучая среда. Например, эта текучая среда может представлять собой жидкость или же газ. Выбор жидкости не является ограничивающим и может быть продиктован тем, как поглощенная энергия будет использована в дальнейшем. Согласно одному из вариантов осуществления предлагаемого изобретения в качестве текучей среды, поглощающей энергию, использована смесь воды и этиленгликоля. Согласно другому варианту осуществления предлагаемого изобретения в качестве текучей среды, поглощающей энергию, использована вода.
Пространство между первым компонентом 12 и вторым компонентом 26 заполнено изолирующим материалом 28. В качестве этого изолирующего материала 28 может быть использован любой материал, способный с как можно большей эффективностью пропускать (то есть как можно меньше поглощать) входящую через продольное окно 18 солнечную энергию. В качестве изолирующего материала 28 может быть использована текучая среда, или же его функцию может выполнять вакуум. Упомянутая текучая среда может быть газом.
На фиг. 2 и фиг. 3 схематично показана система 30 для использования концентратора 10 солнечной энергии. В общем случае система 30 содержит концентратор 10 солнечной энергии, направляющее устройство 32 для солнечной энергии, циркуляционное устройство 34 для текучей среды и потребитель 36 тепловой энергии.
Упомянутое направляющее устройство 32 выполнено с возможностью придавать направление солнечному излучению. В качестве такого направляющего устройства может быть использована линза (см. фиг. 2) или отражатель (см. фиг. 3). Направляющее устройство 32 может быть выполнено удлиненным и иметь продольную ось, по существу параллельную продольной оси 16 первого компонента 12. Фокус направляющего устройства 32 может быть расположен таким образом, чтобы направлять сфокусированное излучение на второй компонент 26 концентратора 10. В качестве линзы как направляющего устройства 32 может быть использована линза любого типа, согласно одному из вариантов осуществления использована выпуклая линза. Может быть использована также линза Френеля. В качестве отражателя как направляющего устройства 32 может быть использован отражатель или зеркало любого типа. Согласно одному из вариантов осуществления в качестве отражателя использован параболический отражатель.
В качестве упомянутого циркуляционного устройства 34 для текучей среды может быть использовано устройство, выполненное с возможностью приводить текучую среду в контуре системы 30. Согласно одному из вариантов осуществления в качестве циркуляционного устройства 34 для текучей среды использован насос (в этом варианте текучая среда является жидкостью). Согласно другому варианту осуществления в качестве циркуляционного устройства 34 для текучей среды использован компрессор (в этом варианте текучая среда является газом).
Потребителем 36 тепловой энергии может быть любое устройство, выполненное с возможностью потреблять энергию, поглощенную текучей средой, проходящей через концентратор 10 солнечной энергии. Потребитель 36 тепловой энергии может быть использован, например, для нагревания воды, для обогревания помещений, для охлаждения помещений и для генерирования тепла для технических нужд, или же для предварительного нагревания текучих сред, используемых в любом из этих применений.
ПРИМЕРЫ
В рассматриваемом ниже примере концентратор солнечной энергии согласно предлагаемому изобретению сравнивается с известным концентратором солнечной энергии, чтобы продемонстрировать эффективность концентратора солнечной энергии. Испытания проводили в солнечный день при температуре окружающей среды приблизительно 32,2°С (90°F); и все испытуемые устройства выставляли под действие солнечного излучения на 5 минут (одновременно). В каждый испытуемый концентратор солнечной энергии помещали 5 см3 водопроводной воды в пробирке (имитация второго компонента) с термометром для измерения температуры воды. Испытуемые устройства №1-№3 представляли собой концентраторы солнечной энергии известных типов, а в качестве испытуемого устройства №4 был взят концентратор солнечной энергии согласно предлагаемому изобретению. В испытуемом устройстве №1 воду в пробирке подвергали нагреванию без направляющего устройства для солнечной энергии и первого компонента, при этом температура воды достигла величины приблизительно 43,3°С (в оригинале 110°F). В испытуемом устройстве №2 воду в пробирке подвергали нагреванию с использованием параболического зеркала с размерами 5,08 см × 10,16 см (2×4 дюйма), фокальная линия которого была направлена на пробирку с водой, при этом температура воды достигла величины приблизительно 48,9°С (120°F). В испытуемом устройстве №3 воду в пробирке подвергали нагреванию с использованием линзы, фокальная линия которой была направлена на пробирку с водой, при этом температура воды достигла величины приблизительно 48,9°С (120°F). В испытуемом устройстве №4, имеющем первый компонент, воду в пробирке подвергали нагреванию с использованием цилиндрической выпуклой линзы с размерами 5,08 см × 10,16 см (2×4 дюйма), фокальная линия которой через продольное окно в первом компоненте была направлена на пробирку с водой, при этом температура воды достигла величины приблизительно 59,4°С (139°F).
Предлагаемое изобретение может быть осуществлено без отступления от его духа и существенных признаков, и, соответственно, объем предлагаемого изобретения определяется в большей степени прилагаемой формулой изобретения, чем приведенным выше описанием.

Claims (20)

1. Концентратор солнечной энергии, содержащий
первый трубчатый компонент с круглым поперечным сечением, имеющий первый конец, второй конец, полость и продольную ось, при этом упомянутый первый трубчатый компонент состоит из выполненного в виде одностороннего зеркала продольного окна, простирающегося по всей длине этого первого трубчатого компонента от его первого конца до его второго конца и являющегося частью этого первого компонента, и корпуса, составляющего остальную часть этого первого компонента, при этом упомянутое выполненное в виде одностороннего зеркала продольное окно выполнено из материала, пропускающего солнечное излучение, а упомянутый корпус имеет поглощающую наружную поверхность и отражающую внутреннюю поверхность, покрывающую всю внутреннюю поверхность корпуса,
второй трубчатый компонент с круглым поперечным сечением, расположенный в упомянутой полости первого компонента, ориентированный по существу параллельно упомянутой продольной оси и окруженный отражающей внутренней поверхностью первого трубчатого компонента, при этом упомянутый второй трубчатый компонент выполнен с возможностью пропускать через себя текучую среду, поглощающую энергию, и
изолирующий материал, заполняющий полость между первым компонентом и вторым компонентом, при этом упомянутый изолирующий материал является текучей средой или вакуумом.
2. Концентратор солнечной энергии по п. 1, в котором упомянутый материал, пропускающий солнечное излучение, выбран из группы, состоящей из стекла, пластика или их комбинаций.
3. Концентратор солнечной энергии по п. 1, в котором упомянутая поглощающая наружная поверхность выполнена черной.
4. Концентратор солнечной энергии по п. 1, в котором упомянутая отражающая внутренняя поверхность выполнена зеркальной.
5. Концентратор солнечной энергии по п. 1, в котором упомянутой текучей средой является газ.
6. Система для концентрации солнечной энергии, включающая концентратор солнечной энергии, содержащий первый трубчатый
компонент с круглым поперечным сечением, имеющий первый конец, второй конец, полость и продольную ось, при этом упомянутый первый трубчатый компонент состоит из выполненного в виде одностороннего зеркала продольного окна, простирающегося по всей длине этого первого трубчатого компонента от его первого конца до его второго конца и являющегося частью этого первого компонента, и корпуса, составляющего остальную часть этого первого компонента, при этом упомянутое выполненное в виде одностороннего зеркала продольное окно выполнено из материала, пропускающего солнечное излучение, а упомянутый корпус имеет поглощающую наружную поверхность и отражающую внутреннюю поверхность, покрывающую всю внутреннюю поверхность корпуса,
второй трубчатый компонент с круглым поперечным сечением, расположенный в упомянутой полости первого компонента, ориентированный по существу параллельно упомянутой продольной оси и окруженный отражающей внутренней поверхностью первого трубчатого компонента, при этом упомянутый второй трубчатый компонент выполнен с возможностью пропускать через себя текучую среду, поглощающую энергию, и
изолирующий материал, заполняющий полость между первым компонентом и вторым компонентом, при этом упомянутый изолирующий материал является текучей средой или вакуумом, и
устройство для передачи солнечной энергии, выполненное с возможностью направлять солнечную энергию через упомянутое продольное окно.
7. Система концентрации солнечной энергии по п. 6, в которой упомянутое устройство для передачи солнечной энергии - это линза или зеркало.
8. Система концентрации солнечной энергии по п. 6, в которой упомянутый материал, пропускающий солнечное излучение, выбран из группы, состоящей из стекла, пластика или их комбинаций.
9. Система концентрации солнечной энергии по п. 6, в которой упомянутая поглощающая наружная поверхность выполнена черной.
10. Система концентрации солнечной энергии по п. 6, в которой упомянутая отражающая внутренняя поверхность выполнена зеркальной.
11. Система концентрации солнечной энергии по п. 6, в которой упомянутой текучей средой является газ.
12. Концентратор солнечной энергии по п. 1, в котором упомянутый второй трубчатый компонент по существу коаксиален упомянутой продольной оси.
13. Система концентрации солнечной энергии по п. 6, в которой упомянутый второй трубчатый компонент по существу коаксиален с упомянутой продольной осью.
RU2016113762A 2013-09-30 2014-05-20 Концентратор солнечной энергии и система для его использования RU2632746C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/041,337 2013-09-30
US14/041,337 US9423155B2 (en) 2013-09-30 2013-09-30 Solar energy collector and system for using same
PCT/US2014/038685 WO2015047456A1 (en) 2013-09-30 2014-05-20 Solar energy collector and system for using same

Publications (1)

Publication Number Publication Date
RU2632746C1 true RU2632746C1 (ru) 2017-10-09

Family

ID=52738875

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016113762A RU2632746C1 (ru) 2013-09-30 2014-05-20 Концентратор солнечной энергии и система для его использования

Country Status (10)

Country Link
US (1) US9423155B2 (ru)
EP (1) EP3052868B1 (ru)
JP (1) JP6421997B2 (ru)
KR (2) KR20180030939A (ru)
CN (1) CN105593609B (ru)
CA (1) CA2925706C (ru)
ES (1) ES2717936T3 (ru)
RU (1) RU2632746C1 (ru)
WO (1) WO2015047456A1 (ru)
ZA (1) ZA201602039B (ru)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170146262A1 (en) * 2015-02-06 2017-05-25 The Regents Of The University Of Colorado, A Body Corporate Hybrid solar reactor and heat storage system
US20190048859A1 (en) * 2017-08-11 2019-02-14 Do Sun Im Solar energy power generation system
US20190049150A1 (en) * 2017-08-11 2019-02-14 Do Sun Im Solar energy collector
KR102010416B1 (ko) * 2017-08-11 2019-08-13 도순 임 태양열 수집장치
WO2019211746A1 (en) * 2018-04-30 2019-11-07 University Of The Witwatersrand, Johannesburg Thermal radiation loss reduction in a parabolic trough receiver by the application of a cavity mirror and a hot mirror coating
KR102030850B1 (ko) * 2019-01-14 2019-10-11 김춘동 태양 에너지를 이용한 복합 발전 시스템 및 이를 포함하는 수소생산 시스템
US11605747B2 (en) * 2019-09-18 2023-03-14 Do Sun Im Solar energy collector adaptable to variable focal point

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987781A (en) * 1973-02-12 1976-10-26 American Cyanamid Company Greenhouse window for solar heat absorbing systems derived from Cd2 SnO4
SU1758359A1 (ru) * 1990-04-02 1992-08-30 Государственный Научно-Исследовательский Энергетический Институт Им.Г.М.Кржижановского Вакуумированный приемник солнечного излучени
WO2011009201A1 (en) * 2009-07-23 2011-01-27 W&E International (Canada) Corp. Solar cooking range and appliances
US20120174582A1 (en) * 2009-08-03 2012-07-12 Areva Hybrid solar energy collector, and solar power plant including at least one such collector

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3203167A (en) * 1962-07-06 1965-08-31 Jr Leon Green Means and method of utilizing solar energy
JPS5320700B2 (ru) * 1974-06-24 1978-06-28
FR2291506A1 (fr) * 1974-11-13 1976-06-11 Northrup Inc Capteur d'energie solaire
DE2523965C3 (de) * 1975-05-30 1980-06-19 Philips Patentverwaltung Gmbh, 2000 Hamburg Sonnenkollektor mit U-förmigem Absorber
JPS5213955A (en) * 1975-07-19 1977-02-02 Obayashi Gumi Kk Heat collecting curtain
US4051834A (en) * 1976-04-28 1977-10-04 Nasa Portable, linear-focused solar thermal energy collecting system
FR2349802A1 (fr) * 1976-04-30 1977-11-25 Thomson Csf Collecteur d'energie solaire
GB1558977A (en) * 1977-10-28 1980-01-09 Cobham N G A Solar energy receiving apparatus
JPS5512322A (en) * 1978-07-10 1980-01-28 Hitachi Ltd Solar heat collector
US4236506A (en) 1978-12-29 1980-12-02 Roark Charles F Solar energy collector
JPS5646758U (ru) * 1979-09-13 1981-04-25
JPS56101556U (ru) * 1980-01-07 1981-08-10
US4333447A (en) * 1980-06-04 1982-06-08 Corning Glass Works Solar receiver tube support
US4566433A (en) * 1984-08-09 1986-01-28 Amundsen Robert F Solar collector
JPS6396447A (ja) * 1986-10-07 1988-04-27 Fuji Electric Co Ltd 太陽エネルギ−コレクタ
DE68925367T2 (de) 1988-10-03 1996-08-14 John B Lasich Flüssigkeitsheizungssystem in einer sonnenenergievorrichtung
DE4422755A1 (de) * 1994-06-29 1996-01-04 Heinrich Bauer Vorrichtung zur Gewinnung von Energie aus Sonnenlicht mit mindestens einem Solarkollektor
CN2374818Y (zh) * 1999-04-19 2000-04-19 祁成宽 真空镀膜内反射式太阳能管
IL140212A0 (en) 2000-12-11 2002-02-10 Yeda Res & Dev Solar system with a direct absorption boiler
DE10351474B3 (de) 2003-11-04 2005-05-12 Deutsches Zentrum für Luft- und Raumfahrt e.V. Parabolrinnenkollektor
US6899097B1 (en) 2004-05-26 2005-05-31 Travis W. Mecham Solar blackbody waveguide for efficient and effective conversion of solar flux to heat energy
DE102004038233A1 (de) 2004-08-05 2006-03-16 Schott Ag Solarabsorber
US7863517B1 (en) 2005-08-30 2011-01-04 Xtreme Energetics, Inc. Electric power generator based on photon-phonon interactions in a photonic crystal
US8479515B2 (en) 2005-12-28 2013-07-09 Joseph Bertrand Coffey Solar power generator
CN2861887Y (zh) * 2005-12-31 2007-01-24 连云港市太阳雨热水器制造有限公司 一种真空集热管
US20070289622A1 (en) 2006-06-19 2007-12-20 Lockheed Martin Corporation Integrated solar energy conversion system, method, and apparatus
CA2562615C (en) 2006-10-05 2009-05-05 Lunenburg Foundry & Engineering Limited Two-stage solar concentrating system
US8378280B2 (en) 2007-06-06 2013-02-19 Areva Solar, Inc. Integrated solar energy receiver-storage unit
BE1017638A3 (nl) * 2007-06-11 2009-02-03 Cvo Consult Bv Inrichting voor het capteren van lichtenergie.
US8695341B2 (en) 2007-09-17 2014-04-15 Pulsar Energy, Inc. Systems and methods for collecting solar energy for conversion to electrical energy
DE102008010316A1 (de) * 2008-02-21 2009-08-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solarkollektor
US8513515B1 (en) 2008-09-04 2013-08-20 Bingwu Gu Generating alternating current from concentrated sunlight
KR100895972B1 (ko) * 2008-11-13 2009-05-07 주식회사 티.엠.테크 태양열 집열기
AT507782B1 (de) * 2009-01-26 2010-08-15 4Elementsoe Invent Gmbh Portable, solarthermische vorrichtung zur herstellung von frischwasser aus abwässern oder salzwasser
JP2010181045A (ja) * 2009-02-03 2010-08-19 Mitaka Koki Co Ltd 太陽集光装置用の受光管
TR200902537A2 (tr) * 2009-04-01 2010-03-22 Günay Mustafa Güneş enerjisini yoğunlaştırarak soğuran sistem.
US8276379B2 (en) 2009-11-16 2012-10-02 General Electric Company Systems and apparatus relating to solar-thermal power generation
DE202010010239U1 (de) * 2010-07-14 2011-11-24 Flagsol Gmbh Hochtemperatur-Solarthermie-Vorrichtung für Kraftwerke
JP4705997B1 (ja) * 2010-12-10 2011-06-22 株式会社ニシヤマ ベランダ下部壁面設置用太陽熱集熱器、建築物および太陽熱利用システム
MA35047B1 (fr) 2011-03-29 2014-04-03 Siemens Concentrated Solar Power Ltd Tube récepteur de chaleur, procédé de fabrication de tube récepteur de chaleur, collecteur solaire à miroir cylindro-parabolique doté du tube récepteur, et utilisation du collecteur solaire à miroir cylindro-parabolique
JP2014534940A (ja) * 2011-09-30 2014-12-25 シーメンス コンセントレイテッド ソーラー パワー リミテッドSiemens ConcentratedSolar Power Ltd. 赤外光反射コーティングを備えたガラス管、ガラス管を製造する方法、ガラス管を備えたヒートレシーバ管、ヒートレシーバ管を備えた放物面トラフコレクタ、及び放物面トラフコレクタの使用
US9404675B2 (en) * 2012-01-05 2016-08-02 Joel Stettenheim Cavity receivers for parabolic solar troughs
CN202532754U (zh) * 2012-04-10 2012-11-14 海宁全家乐新能源有限公司 高透射太阳能热水器集热管
US8471142B1 (en) 2012-08-16 2013-06-25 Pu Ni Tai Yang Neng (Hangzhou) Co., Limited Solar energy systems using external reflectors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987781A (en) * 1973-02-12 1976-10-26 American Cyanamid Company Greenhouse window for solar heat absorbing systems derived from Cd2 SnO4
SU1758359A1 (ru) * 1990-04-02 1992-08-30 Государственный Научно-Исследовательский Энергетический Институт Им.Г.М.Кржижановского Вакуумированный приемник солнечного излучени
WO2011009201A1 (en) * 2009-07-23 2011-01-27 W&E International (Canada) Corp. Solar cooking range and appliances
US20120174582A1 (en) * 2009-08-03 2012-07-12 Areva Hybrid solar energy collector, and solar power plant including at least one such collector

Also Published As

Publication number Publication date
KR20160078970A (ko) 2016-07-05
KR20180030939A (ko) 2018-03-26
JP2016532842A (ja) 2016-10-20
CA2925706A1 (en) 2015-04-02
JP6421997B2 (ja) 2018-11-14
EP3052868A1 (en) 2016-08-10
ES2717936T3 (es) 2019-06-26
EP3052868A4 (en) 2017-03-29
CN105593609B (zh) 2018-12-07
US9423155B2 (en) 2016-08-23
CA2925706C (en) 2017-05-16
CN105593609A (zh) 2016-05-18
WO2015047456A1 (en) 2015-04-02
EP3052868B1 (en) 2019-02-13
KR101841218B1 (ko) 2018-03-22
US20150090250A1 (en) 2015-04-02
ZA201602039B (en) 2017-05-31

Similar Documents

Publication Publication Date Title
RU2632746C1 (ru) Концентратор солнечной энергии и система для его использования
US10345008B2 (en) Solar thermal concentrator apparatus, system, and method
JP2010203624A (ja) トラフ型集光装置
Karwa et al. Receiver shape optimization for maximizing medium temperature CPC collector efficiency
CN105157257A (zh) 一种槽式聚光型太阳能真空集热管
Pandya et al. Experimental study of V-through solar water heater for tilt angle and glass transmissivity
Geete et al. Experimental analysis on fabricated parabolic solar collector with various flowing fluids and pipe materials
JP2010181045A (ja) 太陽集光装置用の受光管
US8933323B1 (en) Two-axis tracking parabolic reflector solar oven and stove
Ali et al. Design and experimental analysis of a static 3-D elliptical hyperboloid concentrator for process heat applications
Xu et al. Compound parabolic concentrators in solar thermal applications: a review
Ratismith et al. A non‐tracking semi‐circular trough solar concentrator
Tahtah et al. Experimental study of heat transfer in parabolic trough solar receiver: Using two different heat transfer fluids
Ochieng et al. Some techniques in configurational geometry as applied to solar collectors and concentrators
Cherian et al. Performance enhancement of solar water heater using compound parabolic reflector and numerical simulation of thermal losses
Zidani et al. Optimization of photothermal system based on the idea of transmission solar energy via optical fibres
Gajic et al. Reflection losses from an evacuated tube in a CPC
Bhakta et al. Influence of Twisted Tape on Thermo-hydraulic Performance of Parabolic Trough Collector
Gajic et al. Beam Splitting with a Luminescent Solar Concentrator in a Hybrid Photovoltaic/Thermal Collector
Ochieng et al. A new type of solar concentrator employing a cone-cylinder combination
Ochieng et al. The importance and effect of configurational geometry in the design and application of solar collectors and concentrators with reference to compound parabolic concentrators (CPCs) and cones
Perveen et al. Comparative Performance Analysis of Solar Thermal Technologies in Delhi Region
Kumar Performance Efficiency Improvement of Parabolic Solar Concentrating Collector (An Experimental Evaluation and Analysis)
Yadav THERMAL PERFORMANCE OF SOLAR PARABOLIC TROUGH AIR HEATER AT DIFFERENT FLOW RATES: AN EXPERIMENTAL INVESTIGATION.
GB2525298A (en) Solar energy collector