RU2632431C2 - Гидрогель для получения композиционных материалов с антибактериальной активностью для замещения костно-хрящевых дефектов методом 3d печати - Google Patents

Гидрогель для получения композиционных материалов с антибактериальной активностью для замещения костно-хрящевых дефектов методом 3d печати Download PDF

Info

Publication number
RU2632431C2
RU2632431C2 RU2016126010A RU2016126010A RU2632431C2 RU 2632431 C2 RU2632431 C2 RU 2632431C2 RU 2016126010 A RU2016126010 A RU 2016126010A RU 2016126010 A RU2016126010 A RU 2016126010A RU 2632431 C2 RU2632431 C2 RU 2632431C2
Authority
RU
Russia
Prior art keywords
hydrogel
sample
antibacterial activity
mass
printing
Prior art date
Application number
RU2016126010A
Other languages
English (en)
Other versions
RU2016126010A (ru
Inventor
Владимир Сергеевич Комлев
Наталья Сергеевна Сергеева
Александр Юрьевич Федотов
Анастасия Юрьевна Тетерина
Сергей Миронович Баринов
Ирина Константиновна Свиридова
Юлия Борисовна Тютькова
Павел Анатольевич Каралкин
Валентина Александровна Кирсанова
Екатерина Алексеевна Кувшинова
Андрей Дмитриевич Каприн
Original Assignee
Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский радиологический центр" Министерства здравоохранения Российской Федерации (ФГБУ "НМИРЦ" Минздрава России)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский радиологический центр" Министерства здравоохранения Российской Федерации (ФГБУ "НМИРЦ" Минздрава России) filed Critical Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский радиологический центр" Министерства здравоохранения Российской Федерации (ФГБУ "НМИРЦ" Минздрава России)
Priority to RU2016126010A priority Critical patent/RU2632431C2/ru
Publication of RU2016126010A publication Critical patent/RU2016126010A/ru
Application granted granted Critical
Publication of RU2632431C2 publication Critical patent/RU2632431C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3608Bone, e.g. demineralised bone matrix [DBM], bone powder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Botany (AREA)
  • Composite Materials (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Cell Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)

Abstract

Изобретение относится к области медицины. Описан гидрогель, содержащий масс. %: альгинат натрия - 40-90; кальцийфосфатные наполнители - 10-60, полученный гидрогель охлаждают до t +37°C и при непрерывном перемешивании на оборотах от 500 до 1000 об/мин добавляют порошок ванкомицина в концентрациях 30, 50 и 70 масс. % по отношению к общей массе образца. При этом размеры частиц порошка или гранул изменяются от 20 до 100 мкм. Изготовленный каркас на основе гидрогеля обладает функциональными свойствами с антибактериальной активностью, что позволит заполнить костно-хрящевые дефекты различной формы и размера и восстановить их структуры и функции, а также снизить или полностью избежать частоту инфекционных осложнений. 4 ил., 5 табл.

Description

Изобретение относится к области медицины, а именно к разработке материалов, пригодных для 3D печати, и может быть использовано для получения персонализированных биомедицинских изделий на основе гидрогелей, содержащих альгинат натрия, фосфаты кальция (ФК) и антибактериальный агент – ванкомицин, для реконструктивно-восстановительной хирургии поврежденных костно-хрящевых тканей с целью снижения вероятности инфекционных осложнений.
Создание персонализированных биомедицинских изделий, предназначенных для регенерации утраченных тканей - восстановления их структуры и функций - является одной из важнейших и актуальных задач практической реконструктивно-восстановительной хирургии. В последние годы наибольших успехов в решении этой проблемы удалось достичь с помощью аддитивных технологий (3D печати), основанных на послойном синтезе твердых копий трехмерных компьютерных образов реальных объектов [Giannatsis J., Dedoussis V. Additive fabrication technologies applied to medicine and healthcare: areview. Int. J. Adv. Manuf. Technol., 2009, V. 40, P. 116-127]. При условии подбора полимера с требуемыми (для 3D печати) характеристиками возможно формирование с его участием пористых композиционных структур с соединениями кальция и антибактериальными агентами для замещения дефектов костно-хрящевой ткани с уменьшением вероятности инфекционных осложнений, частота которых достаточно высока, а сложности в их лечении общеизвестны. В этом аспекте особый интерес представляет биополимер альгинат, который характеризуется биосовместимостью и может выполнять каркасную функцию. В свою очередь материалы на основе ФК являются аналогами минеральной составляющей костной ткани и широко используются для изготовления остеопластических материалов и керамических матриксов для клеточных технологий [Dorozhkin S.V. Calcium orthophosphate - based bioceramics. Materials 2013, V. 6, P. 3840-2942]. Сочетание свойств минерал-полимерных систем на основе подхода 3D печати будет являться основой создания материалов с функциональными свойствами для замещения костно-хрящевых дефектов и как контейнеров для локальной доставки в область операционной раны антибактериального агента, что позволит снизить частоту инфекционных осложнений.
Известен способ формирования биологически совместимых материалов для регенерации тканей (US 20150039097 А1). Способ включает послойное нанесение полимерных слоев, из которых образуется изделие. В качестве полимеров используется полиуретан, полилактид, полигликолид, поли(е-капролактон), полидиоксанон, полиангидрид, триметиленкарбонат, поли(β-гидроксибутират), поли(г-этил глутамат), полицианоакрилат, полифосфазен, или их смеси. Раствор полимера наполняют частицами гидроксиапатита (ГА), трикальцийфосфата (ТКФ), композиционными ФК и карбоната кальция (КК), костными частицами из ксенографтов, костными частицами из аллотрансплантатов, костными частицами из аутотрансплантатов или их смеси. Способ получения биологически совместимых материалов включает формирование заданного количества слоев.
Однако известный способ, в отличие от заявляемого, не подразумевает использование альгината натрия в качестве каркаса, а армирующая составляющая включает в себя костные частицы, наночастицы ГА или полимерные нановолокна.
Наиболее близким по техническому решению является композиционный трехмерный каркас на основе альгината натрия и фосфатов кальция для замещения костно-хрящевых дефектов (RU 2015144535 А). В заявке описан способ получения композиционного трехмерного каркаса для замещения костно-хрящевых дефектов, включающий приготовление текучего гидрогеля, содержащего альгинат натрия и КФ наполнитель, нанесение гидрогеля на платформу, формирование трехмерного каркаса с последующей фиксацией структуры, при этом трехмерный каркас формируют методом 3D инъекционной печати послойным нанесением гидрогеля с фиксацией структуры на платформе, охлажденной до температуры -5±1°C до -30±1°C в процессе нанесения, при этом текучий гидрогель содержит, масс. %: альгината натрия - 40-90; наполнителя - 10-60. В качестве наполнителя в текучий гидрогель вводят порошки или гранулы ТКФ, брушита, монетита, октакальциевого фосфата, тетракальцийфосфата, гидроксиапатита, карбонатгидроксиапатита (КГА), фторгидроксиапатита или их другие модификации, при этом размеры частиц порошка или гранул изменяются от 20 до 500 мкм, а указанные наполнители могут быть смешаны в любом сочетании и в любом количестве между собой. Для получения трехмерного каркаса с пористостью от 40 до 95% по завершении печати каркас помещают в морозильную камеру и выдерживают в течение 1 ч при температуре -50°C, затем подвергают сублимационной сушке в рабочей камере при вакууме 6⋅10-5 атм, при температуре конденсирующей поверхности -50°C в течение 10-12 ч. Высушенный каркас сшивают 10% раствором хлорида кальция в шейкере-инкубаторе на протяжение 2 ч, далее полученный трехмерный каркас отмывают от остатка солей и вновь подвергают сублимационной сушке для сохранения структуры.
Полученный по известному способу композиционный материал - трехмерный каркас, не обладает антибактериальным свойством - при его использовании необходимы дополнительные процедуры и время по доставке антибактериального агента в область операционный раны.
Технический результат предлагаемого изобретения - получение композиционного трехмерного материала методом 3D инъекционной печати, обладающего функциональными свойствами с антибактериальной активностью для регенерации утраченных тканей - восстановления их структуры и функций.
Согласно изобретению, для достижения технического результата используется 3D инъекционная печать композиционных материалов на основе альгината натрия, ФК и ванкомицина по заданной программе, что обеспечивает требуемые геометрические и структурные характеристики композиционного материала.
Указанный технический результат при осуществлении изобретения достигается за счет того, что также как в известных технических решениях US 20150039097 и заявке на патент RU 2015144535, каркас получают из текучего гидрогеля, содержащего масс. %: альгинат натрия - 40-90 и кальцийфосфатные наполнители - 10-60: трикальцийфосфат, брушит, монетит, октакальцийфосфат, тетракальцийфосфат, гидроксиапатит, карбонатгидроксиапатит, фторгидроксиапатит или их смеси в виде порошков или гранул.
Особенность заявляемого изобретения заключается в том, что размеры частиц порошка или гранул изменяются от 20 до 100 мкм, далее полученный гидрогель охлаждают до t +37°С и при непрерывном перемешивании от 500 до 1000 об/мин добавляют порошок ванкомицина в концентрациях 30, 50 и 70 масс. % по отношению к общей массе образца, далее методом 3D печати из композиционных материалов получают образцы, обладающие антибактериальной активностью.
Изобретение поясняется подробным описанием способа, таблицами и иллюстрациями, на которых изображено:
Фиг. 1 - образец композиционного материала без наполнителя - ванкомицина.
Фиг. 2 - образец композиционного материала с ванкомицином; содержание ванкомицина в текучем гидрогеле составляет 30 масс. % по отношению к сухой общей массе образца на этапе его формирования.
Фиг. 3 - образец композиционного материала с ванкомицином; содержание ванкомицина в текучем гидрогели 50 масс. % по отношению к сухой общей массе образца на этапе его формирования.
Фиг. 4 - образец композиционного материала с ванкомицином; содержание ванкомицина в текучем гидрогели 70 масс. % по отношению к сухой общей массе образца на этапе его формирования.
Способ осуществляют следующим образом.
В сухой чистый стакан заливается дистиллированная вода, которая перемешивается стеклянной верхнеприводной мешалкой на высоких оборотах (от 2500 до 3000 об/мин) и нагревается до температуры 40°C, после чего в жидкую среду помещается порошок альгината натрия. После полного растворения альгината натрия при перемешивании добавляют кальцийфосфатный наполнитель в количестве до 60 масс. %. В качестве наполнителя вводят порошки или гранулы трикальцийфосфата, брушита, монетита, октакальцийфосфата, тетракальцийфосфат, гидроксиапатит, карбонатгидроксиапатит, фторгидроксиапатита или их другие модификации, при этом размеры частиц порошка или гранул изменяются от 20 до 100 мкм, а указанные наполнители могут быть смешаны в любом сочетании и в любом количестве между собой. Затем полученный гидрогель охлаждается до t +37°C и при непрерывном перемешивании стеклянной верхнеприводной мешалкой на оборотах от 500 до 1000 об/мин добавляют порошок ванкомицина в концентрациях 30, 50 и 70 масс. % по отношению к общей массе образца.
Методом 3D инъекционной печати из композиционных материалов получают образцы, соответствующие по форме и размерам костно-хрящевому дефекту. С целью получения этих данных о дефекте могут использоваться методы лучевой диагностики, такие как компьютерная томография, рентгенография и др. Полученную компьютерную модель дефекта преобразуют в файлы STL формата, разбивающие ее на слои определенной толщины, соответствующие характеристикам используемых исходных материалов. Программа, содержащая необходимый набор STL файлов, вводится в компьютер, управляющий 3D-принтером. Приготовленный гидрогель загружают в картридж 3D-принтера, и по заданной программе (модели) осуществляется послойное нанесение геля на платформу для печати, ступенчато охлаждаемую для фиксации трехмерного каркаса от -5±1°C до -30±1°C, в зависимости от количества наносимых слоев. После завершения процесса печати полученный трехмерный каркас извлекают из установки и помещают в морозильную камеру с температурой -50°C, время выдержки - 1 час. Далее трехмерный каркас подвергают сублимационной сушке в рабочей камере при вакууме 6⋅10-5 атм, при температуре конденсирующей поверхности -50°C в течение 10-12 часов. Высушенный трехмерный каркас сшивают 10% раствором хлорида кальция в шейкере-инкубаторе на протяжении 2 часов (трехмерный каркас/раствор = 100 г/80 мл). Полученный трехмерный каркас отмывают от остатка солей и вновь подвергают сублимационной сушке для сохранения структуры. В результате получают композиционный трехмерный каркас с пористостью от 40 до 95% в зависимости от состава.
При содержании ФК наполнителя больше 60 масс. % реализация 3D печати невозможна. Снижение содержания наполнителя до 5 масс. % и менее не позволяет получать трехмерный каркас с равномерным распределением компонентов по объему. При температуре заморозки менее -5±1°C фиксации заданной структуры не происходит, а при температуре менее -30°C материал замерзает в сопле принтера, что не дает возможности реализовать процесс печати. Добавка ванкомицина в диапазон 30-70 масс. % по отношению к общей массе образца не влияет на процесс печати.
Пример 1
Изготовление прототипа.
Готовый гидрогель альгината натрия с гранулами трикальцийфосфата 20-100 мкм (соотношение 70/30) поместили в картридж для печати 3D принтера. После чего данным гидрогелем осуществили печать трехмерного каркаса по заданной траектории на платформу для печати, которая охлаждается элементами Пельтье с градиентным изменением температуры послойно -5±1°C до -30±1°C, в зоне (слое) печати температура -5±1°C. За счет охлаждения платформы произошла кристаллизация воды, которая находиться в гидрогеле, таким образом была осуществлена фиксация структуры напечатанного образца трехмерной конструкции. Полученный трехмерный каркас извлекли из установки и поместили в морозильную камеру с температурой -50°C, время выдержки - 1 час. Далее образец подвергали сублимационной сушке при -50°C в течение 10-12 часов. Пористость материала - 90%, прочность - 5,5 МПа (Фиг. 1). В таблице 1 представлены данные по образцу (Фиг. 1) без наполнителя - ванкомицина.
Figure 00000001
Пример 2
В готовом гидрогеле альгината натрия с гранулами ТКФ 20-100 мкм (соотношение 70/30) растворили 30 масс. % порошка ванкомицина (по отношению к общей массе образца) и полученный композиционный материал поместили в картридж для печати 3D принтера. После чего, данным гелем осуществили печать образца по заданной траектории на подложку, которая охлаждается элементами Пельтье с температурой -5±1°C до -30±1°C, в зоне (слое) печати температура -5±1°C. За счет охлаждения подложки, произошла кристаллизация воды, которая находиться в гидрогеле, таким образом осуществлена фиксация структуры напечатанного образца. Далее заготовки подвергали сублимационной сушке -50°C в течение 10-12 часов. Пористость материалов достигает 88% и прочность - 5,3 Мпа (Фиг. 2). В таблице 2 представлены данные по изготовленному образцу, где содержание ванкомицина в текучем гидрогеле составляет 30 масс. % по отношению к сухой общей массе образца на этапе его формирования.
Figure 00000002
Пример 3
В готовом гидрогеле альгината натрия с гранулами ТКФ 20-100 мкм (соотношение 70/30) при 37°C растворили 50 масс. % (по отношению к общей массе образца) порошка ванкомицина и полученный композиционный материал поместили в картридж для печати 3D принтера. После чего данным гелем осуществили печать образца по заданной траектории на подложку, которая охлаждается элементами Пельтье с температурой -5±1°C до -30±1°C, в зоне (слое) печати температура -5±1°C. За счет охлаждения подложки произошла кристаллизация воды, которая находиться в гидрогеле, таким образом осуществлена фиксация структуры напечатанного образца. Далее заготовки подвергали сублимационной сушке -50°C в течение 10-12 часов. Пористость материалов достигает 95% и прочность - 4,4 МПа (Фиг. 3). В таблице 3 представлены данные по изготовленному образцу, где содержание ванкомицина в текучем гидрогеле составляет 50 масс. % по отношению к сухой общей массе образца на этапе его формирования.
Figure 00000003
Пример 4
В готовом гидрогеле альгината натрия с гранулами ТКФ 20-100 мкм (соотношение 70/30) растворили 70 масс. % (по отношению к общей массе образца) порошка ванкомицина и полученный композиционный материал поместили в картридж для печати 3D принтера. После чего данным гелем осуществили печать образца по заданной траектории на подложку, которая охлаждается элементами Пельтье с температурой -5±1°C до -30±1°C, в зоне (слое) печати температура -5±1°C. За счет охлаждения подложки произошла кристаллизация воды, которая находиться в гидрогеле, таким образом осуществлена фиксация структуры напечатанного образца. Далее заготовки подвергали сублимационной сушке -50°C в течение 10-12 часов. Пористость материалов достигает 95% и прочность - 3,7 МПа (Фиг. 4). Диаметр светлого кольца вокруг образца керамики соответствует области, в которой отсутствует (погибла) культура Staphylococcus aureus АТСС 6538-Р: чем больше диаметр светлого кольца, тем больше проявляются антибактериальные свойства. В таблице 4 представлены данные по изготовленному образцу, где содержание ванкомицина в текучем гидрогеле составляет 70 масс. % по отношению к сухой общей массе образца на этапе его формирования.
Figure 00000004
Полученный трехмерный каркас предложенного состава имеет высокую пластичность полимера, а в сочетании с заданной архитектурой и пористостью позволяет заполнять костно-хрящевые дефекты различной формы и размера.
В соответствии с примерами были определены их свойства в сравнении с прототипом (Таблица 5).
Figure 00000005
Изготовленный каркас на основе гидрогеля обладает функциональными свойствами с антибактериальной активностью, что позволит заполнить костно-хрящевые дефекты различной формы и размера и восстановить их структуры и функции, а также снизить или полностью избежать частоту инфекционных осложнений.

Claims (1)

  1. Гидрогель для получения композиционных материалов с антибактериальной активностью для замещения костно-хрящевых дефектов методом 3D печати, содержащий масс. %: альгинат натрия - 40-90 и кальцийфосфатные наполнители - 10-60: трикальцийфосфат, брушит, монетит, октакальцийфосфат, тетракальцийфосфат, гидроксиапатит, карбонатгидроксиапатит, фторгидроксиапатит или их смеси в виде порошков или гранул, отличающийся тем, что размеры частиц порошка или гранул изменяются от 20 до 100 мкм, далее полученный гидрогель охлаждают до t +37°С и при непрерывном перемешивании от 500 до 1000 оборотах в минуту добавляют порошок ванкомицина в концентрациях 30, 50 и 70 масс. % по отношению к общей массе образца, далее методом 3D печати из композиционных материалов получают образцы, обладающие антибактериальной активностью.
RU2016126010A 2016-06-29 2016-06-29 Гидрогель для получения композиционных материалов с антибактериальной активностью для замещения костно-хрящевых дефектов методом 3d печати RU2632431C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016126010A RU2632431C2 (ru) 2016-06-29 2016-06-29 Гидрогель для получения композиционных материалов с антибактериальной активностью для замещения костно-хрящевых дефектов методом 3d печати

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016126010A RU2632431C2 (ru) 2016-06-29 2016-06-29 Гидрогель для получения композиционных материалов с антибактериальной активностью для замещения костно-хрящевых дефектов методом 3d печати

Publications (2)

Publication Number Publication Date
RU2016126010A RU2016126010A (ru) 2016-11-20
RU2632431C2 true RU2632431C2 (ru) 2017-10-04

Family

ID=57759582

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016126010A RU2632431C2 (ru) 2016-06-29 2016-06-29 Гидрогель для получения композиционных материалов с антибактериальной активностью для замещения костно-хрящевых дефектов методом 3d печати

Country Status (1)

Country Link
RU (1) RU2632431C2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2679127C1 (ru) * 2018-06-14 2019-02-06 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Композит для 3d-печати медицинских изделий
RU2725882C1 (ru) * 2019-05-06 2020-07-07 федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный университет им. Ф.М. Достоевского" Композиционный материал, содержащий альгинат натрия и смеси фосфатов кальция, способ получения композиционного материала
RU2765546C1 (ru) * 2020-08-05 2022-02-01 федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный университет им. Ф.М. Достоевского" Композиционный материал для заполнения костных дефектов, содержащий альгинат-хитозановый полиэлектролитный комплекс
RU2815367C1 (ru) * 2023-05-03 2024-03-13 Валентина Владимировна Потапова Биокомпозиционный материал на основе природных полисахаридов

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109821073B (zh) * 2019-03-27 2021-09-21 四川大学 一种原位实时立体交联的骨组织工程支架材料及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2242981C1 (ru) * 2003-10-31 2004-12-27 ЗАО "РеМеТэкс" Биотрансплантат и способ лечения дегенеративных и травматических заболеваний суставного хряща
RU2525392C2 (ru) * 2006-12-28 2014-08-10 Айденикс Фармасьютикалз, Инк. Соединения и фармацевтические композиции для лечения вирусных инфекций
US20150039097A1 (en) * 2005-09-09 2015-02-05 Board Of Trustees Of The University Of Arkansas Bone regeneration using biodegradable polymeric nanocomposite materials and applications of the same
RU2015144535A (ru) * 2015-10-16 2016-03-10 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский радиологический центр" Министерства здравоохранения Российской Федерации (ФГБУ "НМИРЦ" Минздрава России) Способ получения композиционного трехмерного каркаса для замещения костно-хрящевых дефектов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2242981C1 (ru) * 2003-10-31 2004-12-27 ЗАО "РеМеТэкс" Биотрансплантат и способ лечения дегенеративных и травматических заболеваний суставного хряща
US20150039097A1 (en) * 2005-09-09 2015-02-05 Board Of Trustees Of The University Of Arkansas Bone regeneration using biodegradable polymeric nanocomposite materials and applications of the same
RU2525392C2 (ru) * 2006-12-28 2014-08-10 Айденикс Фармасьютикалз, Инк. Соединения и фармацевтические композиции для лечения вирусных инфекций
RU2015144535A (ru) * 2015-10-16 2016-03-10 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский радиологический центр" Министерства здравоохранения Российской Федерации (ФГБУ "НМИРЦ" Минздрава России) Способ получения композиционного трехмерного каркаса для замещения костно-хрящевых дефектов

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2679127C1 (ru) * 2018-06-14 2019-02-06 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Композит для 3d-печати медицинских изделий
RU2725882C1 (ru) * 2019-05-06 2020-07-07 федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный университет им. Ф.М. Достоевского" Композиционный материал, содержащий альгинат натрия и смеси фосфатов кальция, способ получения композиционного материала
RU2765546C1 (ru) * 2020-08-05 2022-02-01 федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный университет им. Ф.М. Достоевского" Композиционный материал для заполнения костных дефектов, содержащий альгинат-хитозановый полиэлектролитный комплекс
RU2815367C1 (ru) * 2023-05-03 2024-03-13 Валентина Владимировна Потапова Биокомпозиционный материал на основе природных полисахаридов

Also Published As

Publication number Publication date
RU2016126010A (ru) 2016-11-20

Similar Documents

Publication Publication Date Title
RU2606041C2 (ru) Способ получения композиционного трехмерного каркаса для замещения костно-хрящевых дефектов
RU2632431C2 (ru) Гидрогель для получения композиционных материалов с антибактериальной активностью для замещения костно-хрящевых дефектов методом 3d печати
Zhang et al. Three-dimensional (3D) printed scaffold and material selection for bone repair
Babaie et al. Fabrication aspects of porous biomaterials in orthopedic applications: A review
Murugan et al. Fabrication techniques involved in developing the composite scaffolds PCL/HA nanoparticles for bone tissue engineering applications
US9889012B2 (en) Biomedical device, method for manufacturing the same and use thereof
Vaezi et al. A novel bioactive PEEK/HA composite with controlled 3D interconnected HA network
EP2749301A1 (en) Composites for osteosynthesis
Khang et al. A manual for biomaterials/scaffold fabrication technology
Oladapo et al. 3D-printed biomimetic bone implant polymeric composite scaffolds
US12005616B2 (en) Implantable medical device with varied composition and porosity, and method for forming same
Dokuz et al. Production of bioactive various lattices as an artificial bone tissue by digital light processing 3D printing
Piaia et al. Chitosan/β-TCP composites scaffolds coated with silk fibroin: A bone tissue engineering approach
Prakasam et al. Chapter Fabrication Methodologies of Biomimetic and Bioactive Scaffolds for Tissue Engineering Applications
Ojo et al. Additive manufacturing of hydroxyapatite-based composites for bioengineering applications
Baino et al. Making foam-like bioactive glass scaffolds by vat photopolymerization
CN113384746A (zh) 骨水泥复合材料及其制备方法
RU2723217C1 (ru) Способ получения индивидуального композиционного имплантата на основе альгината натрия и фосфатов кальция для замещения костно-хрящевых дефектов методом трехмерной гелевой печати
US20240157024A1 (en) Ceramic scaffold
RU2725882C1 (ru) Композиционный материал, содержащий альгинат натрия и смеси фосфатов кальция, способ получения композиционного материала
CA2838218C (en) Composites for osteosynthesis
KR102069847B1 (ko) 3d 프린팅에 의한 골 이식재의 제조방법
Gorshenev et al. New additive technologies for forming complex bone structures for medical and biological applications
RU2785143C1 (ru) Способ получения пористых сферических гранул на основе гидроксиапатита, волластонита и желатина
RU2804689C2 (ru) Способ получения композиционного гидрогеля, формирующегося in situ для замещения костно-хрящевых дефектов