RU2631551C1 - Способ повышения износостойкости изделий из твердых сплавов - Google Patents

Способ повышения износостойкости изделий из твердых сплавов Download PDF

Info

Publication number
RU2631551C1
RU2631551C1 RU2016111751A RU2016111751A RU2631551C1 RU 2631551 C1 RU2631551 C1 RU 2631551C1 RU 2016111751 A RU2016111751 A RU 2016111751A RU 2016111751 A RU2016111751 A RU 2016111751A RU 2631551 C1 RU2631551 C1 RU 2631551C1
Authority
RU
Russia
Prior art keywords
titanium
products
temperature
diffusion
carbide
Prior art date
Application number
RU2016111751A
Other languages
English (en)
Inventor
Александр Григорьевич Соколов
Эдуард Эдуардович Бобылев
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ")
Priority to RU2016111751A priority Critical patent/RU2631551C1/ru
Application granted granted Critical
Publication of RU2631551C1 publication Critical patent/RU2631551C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/18Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions
    • C23C10/20Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions only one element being diffused
    • C23C10/22Metal melt containing the element to be diffused
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

Изобретение относится к технологиям, обеспечивающим повышение износостойкости режущего, штампового инструмента, а также конструкционных изделий из твердого сплава, за счет изменения состава и структуры их поверхностных слоев, и может быть использовано для увеличения стойкости изделий к механическому и коррозионно-механическому износам. Способ диффузионного титанирования изделий из твердых сплавов, содержащих кобальт в количестве более 5%, включает проведение предварительной цементации упомянутых изделий при температуре 1000°С и последующее диффузионное насыщение их поверхности в легкоплавком свинцово-висмутовом расплаве, содержащем в растворенном состоянии титан, при температуре 1150°С в течение 20 минут. После диффузионного насыщения изделия охлаждают в диапазоне температур от 1000°С до 700°С со скоростью 100-200°С в минуту. Обеспечивается повышение износостойкости и эксплуатационного ресурса изделий из твердых сплавов, содержащих кобальт в количестве более 5%, и производительности технологического процесса. 1 табл., 3 пр.

Description

Изобретение относится к технологиям, обеспечивающим повышение износостойкости режущего, штампового инструмента, а также конструкционных изделий из твердого сплава, за счет изменения состава и структуры их поверхностных слоев, и может быть использовано для увеличения стойкости изделий к механическому и коррозионно-механическому износам, что обеспечивает рост их эксплуатационного ресурса, а при использовании изделий из твердых сплавов в качестве инструмента - производительности и качества обработки давлением и резанием.
Известны способы повышения работоспособности инструмента за счет изменения состава и структуры его поверхностных слоев, осуществляемые путем диффузионного насыщения поверхности инструмента в процессе химико-термической обработки элементами внедрения (азотирования, нитроцементации и др.), наплавкой, напылением сплавами заданного состава: плазменно-дуговая наплавка, плазменное напыление, финишное плазменное напыление, а также физические и химические способы осаждения элементов из газовых, паровых, жидких и твердых фаз [Инструментальные материалы. Учебн. пособие / Г.А. Воробьева, Е.Е. Складнова, А.Ф. Леонов, В.К. Ерофеев. - СПб.: Политехника, 2005, 268 с.].
Недостатком технологий химико-термической обработки является то, что они в большинстве случаев повышают хрупкость инструмента. Наплавка и напыление не обеспечивают прочной связи покрытия с основой, а также характеризуются безвозвратными потерями наносимого на поверхность инструмента материала. Общими недостатками физических и химических способов осаждения являются сложность технологического процесса, высокая стоимость технологического оборудования и технологические сложности формирования равномерных покрытий на всех поверхностях изделия.
Известен также способ получения диффузионного покрытия [а.с. №1145051, опубл. 15.03.1985, бюл. №10], включающий титанирование при 1000-1030°С в порошкообразной засыпке при пониженном давлении в течение 0,5-1 ч с последующим карбонитрированием, при этом карбонитрирование проводят в среде четыреххлористого углерода при давлении 270-300 Па и осуществляют в атмосфере азота с добавлением четыреххлористого углерода в количестве 1-2 г на 1 м2 обрабатываемой поверхности.
Недостатками данной технологии является то, что одновременная адсорбция из насыщающей среды титана и углерода приводит к образованию на поверхности изделия слоя карбида титана, диффузионно не связанного с основным материалом покрываемого изделия, что снижает прочность сцепления покрытия с основой. При этом само покрытие обладает очень высокой твердостью и хрупкостью. Кроме этого, использование четыреххлористого углерода в настоящее время запрещено вследствие его негативного влияния на озоновый слой Земли и высокой канцерогенности.
Известен также способ диффузионного насыщения титаном из среды легкоплавких растворов (Артемьев В.П., Чаевский М.И. Диффузионное титанирование в среде жидкометаллических расплавов. - В сб.: Адгезия расплавов и пайка материалов. - К.: Наукова думка, 1986. - С. 3-4). Нанесение покрытий данным способом осуществляется путем выдержки стального изделия в легкоплавком свинцовом или свинцово-висмутовом расплаве, содержащем в растворенном состоянии титан. В результате выдержки стального изделия в расплаве происходит адсорбция титана на его поверхности, диффузия титана вглубь изделия. При этом, так как титан является сильным карбидообразующим элементом, он забирает углерод из цементита стали и образует собственные карбиды, которые выделяются на поверхности изделия. Карбиды титана обладают очень высокой твердостью, что обеспечивает изделию высокую износостойкость.
Недостатком данного способа является то, что при образовании карбидов титана происходит отток углерода из стали, приводящий к образованию под поверхностным, износостойким слоем обезуглероженного слоя, обладающего низкой твердостью и прочностью. В результате этого при наличии механического воздействия на поверхности происходит продавливание карбидного слоя, его деформация, растрескивание и выкрашивание. При этом твердые частицы после выкрашивания из покрытия могут приводить к еще более интенсивному износу трущихся поверхностей.
Наиболее близким к заявляемому изобретению является способ повышения износостойкости твердосплавного инструмента [Соколов А.Г., Бобылев Э.Э. «Оценка влияния процесса диффузионного титанирования твердых сплавов из среды легкоплавких жидкометаллических растворов на работоспособность режущего инструмента» // Технологии упрочнения, нанесения покрытий и ремонта: теория и практика 17 Международная научно-практическая конференция 14-17 апреля 2015 г. - СПБ: Часть 2. - С. 446-451], включающий выдержку инструмента в легкоплавком свинцовом или свинцово-висмутовом расплаве, содержащем в растворенном состоянии титан. При этом, для исключения образования под покрытием обезуглероженного слоя, перед нанесением покрытий изделие подвергают кратковременной цементации длительностью 20-120 минут при температуре 1000-1150°С.
Недостатком данного способа является то, что при титанировании изделий из твердых сплавов типа ВК, ТК, ТТК, содержащих кобальт в количестве более 5%, титановое покрытие, формирующееся на базе карбида титана, имеет пониженную твердость, что снижает эффективность повышения износостойкости титанированного инструмента.
Задачей заявляемого изобретения является исключение снижения твердости титановых покрытий, формирующихся на базе карбида титана, на твердых сплавах, содержащих кобальт в количестве более 5%.
Технический результат - повышение износостойкости и эксплуатационного ресурса изделий из твердых сплавов ВК, ТК, ТТК, содержащих кобальт в количестве более 5%, а также производительности технологического процесса.
Технический результат достигается тем, что способ диффузионного титанирования изделий из твердых сплавов, содержащих кобальт в количестве более 5%, включает проведение предварительной цементации упомянутых изделий при температуре 1000°С и последующее диффузионное насыщение их поверхности в легкоплавком свинцово-висмутовом расплаве, содержащем в растворенном состоянии титан, при температуре 1150°С в течение 20 минут, при этом после диффузионного насыщения изделия охлаждают в диапазоне температур от 1000°С до 700°С со скоростью 100-200°С в минуту.
Благодаря введению в технологический процесс повышения износостойкости изделий из твердых сплавов ВК, ТК, ТТК, содержащих кобальт в количестве более 5%, после диффузионного насыщения стадии интенсивного охлаждения, обеспечивается исключение явления снижения твердости титанового покрытия, формирующегося на базе карбида. Явление снижение твердости титанового покрытия связано с образованием в покрытии карбидов, имеющих пониженную концентрацию углерода и, как следствие, пониженную твердость. В твердых сплавах, содержащих кобальт в количестве более 5%, вследствие повышенного содержания кобальта в сплаве после предварительной цементации и последующего диффузионного насыщения в приповерхностных слоях сплава содержится избыточное количество углерода, растворенного в кобальте. При этом, чем больше концентрация кобальта в твердом сплаве, тем больше концентрация избыточного углерода в нем. При медленном охлаждении изделия после диффузионного насыщения при температурах ниже 1000°С избыточный углерод вследствие пониженной диффузионной подвижности будет образовывать с титаном карбиды с пониженным содержанием углерода - нестехиометрический карбид титана, который имеет пониженную твердость. Например, карбид TiC0,62 имеет микротвердость Н50=19300 МПа, а карбид TiC, на базе которого формируется покрытие, имеет микротвердость Н50=32000 МПа. Таким образом, наличие нестехиометрических карбидов титана в покрытии приводит к снижению его твердости. Исключить образование нестехиометрических карбидов титана в покрытии позволяет введение в технологический процесс стадии интенсивного охлаждения покрытых изделий в диапазоне температур от 1000°С до 700°С со скоростью 100-200°С в минуту, обеспечивающей блокирование диффузионной подвижности углерода.
Пластины обрабатывались по двум технологическим вариантам:
1-й вариант - пластины из сплавов ВК8 и Т5К10 подвергались диффузионному насыщению после цементации, выполненной по режимам прототипа, в легкоплавком расплаве (Pb+Bi+Ti);
2-й вариант - пластины из сплавов ВК8 и Т5К10 подвергались диффузионному насыщению в легкоплавком свинцово-висмутовом расплаве по технологии заявляемого способа. При этом выбирались предельные значения диапазона скорости охлаждения сплавов после диффузионного насыщения.
Прототип. Проводилось диффузионное насыщение изделия по технологии прототипа: после цементации при температуре 1000°С в легкоплавком расплаве, содержащем 43% свинца, 52,5% висмута, 3% титана, производилось нанесение титановых покрытий, формирующихся на базе карбида титана, на твердосплавные пятигранные пластины PNUM-110408 марок ВК8 и Т5К10 при температуре 1150°С длительностью 20 минут.
Пример 1. Проводилось диффузионное насыщение изделия по технологии заявляемого способа: после цементации при температуре 1000°С в легкоплавком расплаве, содержащем 43% свинца, 52,5% висмута, 3% титана, производилось нанесение титановых покрытий, формирующихся на базе карбида титана, на твердосплавные пятигранные пластины PNUM-110408 марок ВК8 и Т5К10 при температуре 1150°С длительностью 20 минут, с последующим их охлаждением со скоростью 100°С в минуту в диапазоне температур от 1000°С до 700°С.
Пример 2. Проводилось диффузионное насыщение изделия по технологии заявляемого способа: после цементации при температуре 1000°С в легкоплавком расплаве, содержащем 43% свинца, 52,5% висмута, 3% титана, производилось нанесение титановых покрытий, формирующихся на базе карбида титана, на твердосплавные пятигранные пластины PNUM-110408 марок ВК8 и Т5К10 при температуре 1150°С длительностью 20 минут, с последующим их охлаждением со скоростью 150°С в минуту в диапазоне температур от 1000°С до 700°С.
Пример 3. Проводилось диффузионное насыщение изделия по технологии заявляемого способа: после цементации при температуре 1000°С в легкоплавком расплаве, содержащем 43% свинца, 52,5% висмута, 3% титана, производилось нанесение титановых покрытий, формирующихся на базе карбида титана, на твердосплавные пятигранные пластины PNUM-110408 марок ВК8 и Т5К10 при температуре 1150°С длительностью 20 минут, с последующим их охлаждением со скоростью 200°С в минуту в диапазоне температур от 1000°С до 700°С.
Сравнительная оценка эффективности заявляемого способа повышения износостойкости изделий из твердых сплавов проводилась на основании анализа изменения твердости пластин по Роквеллу HRA и микротвердости их поверхности Н50, а также периода стойкости. Период стойкости определялся путем точения прутков из стали Х12МФ твердостью 40-42 HRC3, при скорости резания 100 м/мин, глубине резания 2,5 мм, подаче 0,2 мм/об. Результаты испытаний приведены в таблице 1.
Как следует из результатов исследований, представленных в таблице 1, введение в технологический процесс стадии интенсивного охлаждения изделий, изготовленных из твердых сплавов, содержащих в своем составе более 5% кобальта, после диффузионного титанирования обеспечивает значительное повышение их твердости и, как следствие, их износостойкости. Так, период стойкости пластин, изготовленных из сплава ВК8, подвергнутого титанированию по технологии заявляемого способа, увеличился в 1,8 раза, а пластин, изготовленных из сплава Т5К10, - в 1,7 раза.
Figure 00000001
Таким образом, предложенный способ, включающий проведение после предварительной высокотемпературной цементации и диффузионного титанирования изделий из твердых сплавов ВК, ТК, ТТК, содержащих кобальт в количестве более 5%, в легкоплавком расплаве стадии интенсивного охлаждения в диапазоне температур от 1000°С до 700°С со скоростью 100-200°С в минуту, позволяет значительно повысить износостойкость этих изделий, в частности инструмента, за счет увеличения твердости покрытий, а также повысить производительность технологического процесса.

Claims (1)

  1. Способ диффузионного титанирования изделий из твердых сплавов, содержащих кобальт в количестве более 5%, включающий проведение предварительной цементации упомянутых изделий при температуре 1000°С и последующее диффузионное насыщение их поверхности в легкоплавком свинцово-висмутовом расплаве, содержащем в растворенном состоянии титан, при температуре 1150°С в течение 20 минут, отличающийся тем, что после диффузионного насыщения изделия охлаждают в диапазоне температур от 1000°С до 700°С со скоростью 100-200°С в минуту.
RU2016111751A 2016-03-29 2016-03-29 Способ повышения износостойкости изделий из твердых сплавов RU2631551C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016111751A RU2631551C1 (ru) 2016-03-29 2016-03-29 Способ повышения износостойкости изделий из твердых сплавов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016111751A RU2631551C1 (ru) 2016-03-29 2016-03-29 Способ повышения износостойкости изделий из твердых сплавов

Publications (1)

Publication Number Publication Date
RU2631551C1 true RU2631551C1 (ru) 2017-09-25

Family

ID=59931312

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016111751A RU2631551C1 (ru) 2016-03-29 2016-03-29 Способ повышения износостойкости изделий из твердых сплавов

Country Status (1)

Country Link
RU (1) RU2631551C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2789642C1 (ru) * 2022-08-29 2023-02-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Способ химико-термической обработки твердосплавных пластин

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524895A (en) * 1979-07-27 1980-02-22 Seiko Epson Corp Hard alloy for cutting tool
SU1501533A1 (ru) * 1987-11-11 1996-05-10 Днепродзержинский Индустриальный Институт Им.М.И.Арсеничева Способ химико-термической обработки твердосплавных прецизионных деталей
RU2509173C1 (ru) * 2013-02-12 2014-03-10 ООО "Биметалл Плюс" Способ обработки твердосплавного инструмента

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524895A (en) * 1979-07-27 1980-02-22 Seiko Epson Corp Hard alloy for cutting tool
SU1501533A1 (ru) * 1987-11-11 1996-05-10 Днепродзержинский Индустриальный Институт Им.М.И.Арсеничева Способ химико-термической обработки твердосплавных прецизионных деталей
RU2509173C1 (ru) * 2013-02-12 2014-03-10 ООО "Биметалл Плюс" Способ обработки твердосплавного инструмента

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Соколов А.Г. и др. Оценка диффузионного титанирования твердых сплавов из среды легкоплавких жидкометаллических растворов на работоспособность режущего инструмента. Технологии упрочнения, нанесения покрытий и ремонта: теория и практика 17 Международная научно-практическая конференция 14-17 апреля 2015, Санкт-Петербург, часть 2, с.446-451. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2789642C1 (ru) * 2022-08-29 2023-02-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Способ химико-термической обработки твердосплавных пластин

Similar Documents

Publication Publication Date Title
US7438769B2 (en) Process for diffusing titanium and nitride into a material having a coating thereon
JP2005090680A (ja) 転がり軸受部品およびその製造方法
RU2590433C1 (ru) Способ повышения износостойкости изделий из твердых сплавов
WO2004031434A1 (ja) 耐摩耗性にすぐれた表面炭窒化ステンレス鋼部品およびその製造方法
Hassan Comparative of wear resistance of low carbon steel pack carburizing using different media
Muhammad Boriding of high carbon high chromium cold work tool steel
RU2631551C1 (ru) Способ повышения износостойкости изделий из твердых сплавов
RU2629139C1 (ru) Способ формирования покрытия на поверхности детали
RU2679318C1 (ru) Способ диффузионного насыщения изделий из аустенитных сталей
RU2293792C1 (ru) Способ повышения износостойкости стальных изделий
RU2618289C1 (ru) Способ повышения износостойкости изделий из твердых сплавов
RU2789642C1 (ru) Способ химико-термической обработки твердосплавных пластин
Triwiyanto et al. Low temperature thermochemical treatments of austenitic stainless steel without impairing its corrosion resistance
JPS58153774A (ja) 硬質被覆部材の製造法
Lee et al. Duplex plasma surface treatment process on mild steel and high alloyed tool steel
RU2339704C1 (ru) Способ комбинированной магнитно-импульсной обработки поверхностей инструментов и деталей машин
JP2005272978A (ja) オーステナイトステンレス鋼の表面構造
RU2599950C1 (ru) Способ ионно-плазменного азотирования деталей из инструментальных сталей
RU2439171C2 (ru) Способ обработки чугунных изделий
JP2009534533A (ja) 全体としてコンパクトな粒状ミクロ構造をもつ材料にチタンおよび窒化物を拡散する方法、およびこの方法によって製造した製品
RU2451108C1 (ru) Способ обработки инструмента из стали или твердосплавного инструмента
JP2009108411A (ja) ステンレス鋼製の加工品の表面硬化方法及び該方法の実施のための溶融塩
Krioni et al. Islet Nitriding of Product Surfaces Made from Alloy Steel
KR100641064B1 (ko) 블래이드의 표면처리방법 및 그 블래이드
RU2379376C2 (ru) Способ обработки поверхности стальных изделий

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210330