RU2630435C1 - Кондиционер с трехроторной системой осушительного и испарительного охлаждения - Google Patents

Кондиционер с трехроторной системой осушительного и испарительного охлаждения Download PDF

Info

Publication number
RU2630435C1
RU2630435C1 RU2016133366A RU2016133366A RU2630435C1 RU 2630435 C1 RU2630435 C1 RU 2630435C1 RU 2016133366 A RU2016133366 A RU 2016133366A RU 2016133366 A RU2016133366 A RU 2016133366A RU 2630435 C1 RU2630435 C1 RU 2630435C1
Authority
RU
Russia
Prior art keywords
air
recuperator
chamber
exhaust
cooler
Prior art date
Application number
RU2016133366A
Other languages
English (en)
Inventor
Владимир Евгеньевич Воскресенский
Александр Моисеевич Гримитлин
Original Assignee
Владимир Евгеньевич Воскресенский
Александр Моисеевич Гримитлин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Владимир Евгеньевич Воскресенский, Александр Моисеевич Гримитлин filed Critical Владимир Евгеньевич Воскресенский
Priority to RU2016133366A priority Critical patent/RU2630435C1/ru
Application granted granted Critical
Publication of RU2630435C1 publication Critical patent/RU2630435C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)

Abstract

Изобретение относится к области кондиционеров. Кондиционер содержит приточную камеру и вытяжную камеру удаляемого из помещения воздуха, разделенные между собой горизонтальной перегородкой с основным и дополнительным окнами, охладитель приточного воздуха, который выполнен в виде системы осушительного и испарительного охлаждения, состоящей из двух роторных рекуператоров - рекуператора-осушителя и рекуператора-охладителя, и двух адиабатических увлажнителей приточного и вытяжного воздуха с подводящими водопроводами деминерализованной воды, один из которых размещен в приточной камере на выходе из рекуператора-охладителя, а другой в вытяжной камере на входе в рекуператор-охладитель. Рекуператор-осушитель выполнен в виде роторного регенератора адсорбционного типа, который встроен в основное окно перегородки, а рекуператор-охладитель - в виде роторного теплообменника, который встроен в дополнительное окно перегородки, выполнен с инвертором и контроллером и совместно с рекуператором-осушителем имеют противоположно направленные линии притока и вытяжки. Приточная камера содержит входной и выпускной патрубки, воздухоочиститель, установленный на входе в камеру, и вентиляторный блок. Вытяжная камера содержит верхнюю панель, входной и выпускной патрубки, воздухоочиститель, установленный на входе в камеру, и вентиляторный блок, установленный на выходе из камеры. Кондиционер снабжен дополнительной вытяжной камерой и окном, размещенным в верхней панели основной вытяжной камеры между рекуператором-осушителем и рекуператором-охладителем. Дополнительная вытяжная камера размещена над верхней панелью основной вытяжной камеры и содержит верхнюю панель, входной и выпускной патрубки, воздухоочиститель, размещенный на входе в камеру, роторный рекуператор-теплообменник с инвертором и вентиляторный блок, размещенный на выходе из камеры. Роторный рекуператор-теплообменник встроен в окно верхней панели основной вытяжной камеры, герметично установлен между горизонтальной перегородкой кондиционера и верхней панелью дополнительной вытяжной камеры и имеет противоположно направленные линии вытяжки горячего воздуха, полученного с использованием отходящих дымовых газов и вытяжки удаляемого из помещения воздуха. Роторный рекуператор-теплообменник обеспечивает нагревание вытяжного воздуха, удаляемого из производственного помещения, на перепад температур, образуемый при работе кондиционера, между температурой вытяжного воздуха на входе в рекуператор-осушитель и температурой вытяжного воздуха на выходе из рекуператора-охладителя. Технический результат - обеспечение нулевого энергопотребления на охлаждение и нагревание приточного воздуха. 2 табл., 4 ил.

Description

Заявляемое решение относится к области кондиционеров, обслуживающих производственные помещения как металлургических комбинатов и литейных заводов, так и заводов, которые имеют заводскую котельную и агрегаты для сушки различных материалов, выбрасывающих в атмосферу отходящие дымовые газы. В кондиционерах используется горячий воздух с температурой
Figure 00000001
необходимой при нагревании и охлаждении приточного воздуха, и получаемый с использованием отходящих дымовых газов.
Кондиционеры предназначены для обслуживания производственных помещений с высокой относительной влажностью воздуха в рабочей зоне (ϕр.з.>75%), а также производственных помещений с «нормальной» относительной влажностью (ϕр.з.=50%), в случае смешения кондиционированного воздуха, имеющего высокую относительную влажность (ϕк>75%) с более сухим очищенным в рукавном фильтре рециркулируемым воздухом (ϕр.з.=50%), при работе как в теплый период года в диапазоне изменения температуры наружного воздуха t1=11÷32°C, так и в холодный период года при изменении температуры наружного воздуха в диапазоне t1=10÷(-30)°C.
Кондиционеры используют вытяжной воздух, забираемый из рабочей зоны производственного помещения:
- с температурой
Figure 00000002
относительной влажностью
Figure 00000003
и влагосодержанием
Figure 00000004
сух. возд. в холодный период года;
- с температурой
Figure 00000005
относительной влажностью
Figure 00000003
и влагосодержанием
Figure 00000006
сух. возд. в теплый период года.
Кондиционеры используют горячий воздух с температурой tг=90÷80°C:
- в холодный период года для нагревания приточного воздуха с последующим его адиабатическим увлажнением, обеспечивающим косвенное охлаждение приточного воздуха до заданной конечной температуры;
- в теплый период года для нагревания приточного воздуха, обеспечивающего увеличенный перепад температур воздушных потоков на входах в рекуператор-охладитель и, как следствие, охлаждение приточного воздуха до заданного значения температуры, необходимой для последующего адиабатического увлажнения и дополнительного косвенного охлаждения приточного воздуха до заданной конечной температуры.
Заявляемое решение может быть использовано в различных отраслях промышленности (металлургической, литейной, мусоросжигающей, мукомольной, текстильной, табачной, целлюлозно-бумажной, фанерной, спичечной, деревообрабатывающей, химической, производства древесностружечных плит и лекарственных препаратов).
Из источников научно-технической и патентной информации известно большое количество модификаций кондиционеров. Среди них выбраны кондиционеры с осушительным и испарительным охлаждением воздуха, которые не обеспечивают нулевое энергопотребление при нагревании приточного воздуха в холодный период года, и нулевое энергопотребление при охлаждении приточного воздуха в теплый период года, что обеспечивает возможность их усовершенствования в направлении, указанном в формуле изобретения заявляемого решения.
Известна принципиальная схема кондиционера, реализующего технологию охлаждения DEC, описанная в статье Н.В. Шилкина «Климатический центр Klimahaus в Бремерхафене», которая опубликована в журнале «АВОК» №2, 2012 г., с. 84-93, и в Интернет на сайте http://www.abok.ru/for_spec/articles.php?nid=5181, принятая за прототип.
Кондиционер-прототип состоит из приточной и вытяжной камер, разделенных между собой горизонтальной промежуточной перегородкой с двумя окнами, охладителя приточного воздуха, выполненного в виде системы осушительного и испарительного охлаждения - Desiccative and Evaporative Cooling (DEC), состоящей из двух роторных рекуператоров (рекуператора-осушителя и рекуператора-охладителя приточного воздуха), встроенных в окна горизонтальной промежуточной перегородки, и имеющих противоположно направленные линии вытяжки и притока, регенеративного нагревателя вытяжного воздуха, размещенного между роторными рекуператорами, и двух адиабатических увлажнителей вытяжного и приточного воздуха с подводящим водопроводом, приточная и вытяжная камеры содержат воздухоочистители, установленные на входе в камеры, и вентиляторные блоки, установленные на выходе из камер. Подводящие водопроводы деминерализованной воды к адиабатическим увлажнителям на принципиальной схеме кондиционера не показаны. При этом рекуператор-осушитель приточного воздуха выполнен роторным регенератором адсорбционного типа, а рекуператор-охладитель приточного воздуха - роторным теплообменником. Инвертор и контроллер к электроприводу роторного рекуператора-охладителя на принципиальной схеме кондиционера не показаны. Адиабатический увлажнитель вытяжного воздуха установлен на входе в роторный теплообменник, а адиабатический увлажнитель приточного воздуха - на выходе из роторного теплообменника. Роторный регенератор адсорбционного типа имеет ячейки аккумулирующей матрицы ротора, покрытые композитным материалом, в который внедрен активный Selicagel, являющийся сорбентом влаги, содержащейся в наружном воздухе. При этом аккумулирующая матрица адсорбционного ротора нагревается потоком вытяжного воздуха. Приточный воздух, проходя через нагретые ячейки адсорбционного ротора нагревается в них и одновременно осушивается за счет адсорбции содержащейся в нем влаги. При повороте адсорбционного ротора, ячейки аккумулирующей матрицы, сорбирующая поверхность которых наполнена влагой, поступают в зону вытяжки. При этом нагретый поток вытяжного воздуха, проходя через ячейки аккумулирующей матрицы ротора, осуществляет десорбцию содержащейся в них влаги, а по отношению к сорбенту - его регенерацию, одновременно увлажняясь, после чего выбрасывается в атмосферу вытяжным вентиляторным блоком. Процесс нагревания и осушки приточного воздуха осуществляется при сухой эффективности рекуперации теплоты роторного рекуператора-осушителя, равной
Figure 00000007
(в долях ед.).
Роторный рекуператор-охладитель охлаждает приточный воздух при постоянном влагосодержании. Теплота, снятая аккумулирующей матрицей роторного теплообменника с приточного воздуха передается при повороте ротора вытяжному воздуху. Адиабатический увлажнитель вытяжного воздуха обеспечивает косвенное адиабатическое охлаждение вытяжного воздуха ~ на 6°C, и предназначен для увеличения перепада температур на входах в роторный рекуператор
Figure 00000008
что обеспечивает увеличение фактического перепада температур на выходах из роторного рекуператора-теплообменника:
- на охлаждение приточного воздуха
Figure 00000009
°C;
- на нагревание вытяжного воздуха
Figure 00000010
°C.
При этом в теплый период года
Figure 00000011
где -
Figure 00000012
- сухая эффективность рекуперации теплоты роторного теплообменника,
Figure 00000013
(в долях ед.),
Figure 00000014
- температура вытяжного (удаляемого) воздуха на выходе из адиабатического увлажнителя, т.е. на входе в рекуператор-охладитель, °C,
Figure 00000015
tвх - температура приточного воздуха на входе в рекуператор-охладитель, °C, tвх=t2.
В статье рассматривается режим охлаждения приточного воздуха, который в соответствии с приведенным графиком процесса на i-d-диаграмме осуществляется при постоянных значениях температуры наружного воздуха t1=31°C и вытяжного воздуха t5=25°C, имеющих влагосодержание d1=11,9 г/кг сух. возд. и d5=10,3 г/кг сух. возд.
Система охлаждения DEC, используемая в кондиционере-прототипе, обеспечивает при t1=31°C и t5=25°C получение заданных значений температуры приточного воздуха t4=19°C и относительной влажности ϕ4=60% на выходе из адиабатического увлажнителя (нагревание приточного воздуха в вентиляторе не учитывается).
Указанные параметры приточного воздуха (t4=19°C и ϕ4=60%) при заданных температурах наружного воздуха t1=31°C и t5=25°C вытяжного воздуха, имеющих влагосодержания d1=11,9 и d5=10,3 г/кг сух. возд. в статье предлагается осуществлять:
1) при косвенном охлаждении приточного и вытяжного воздуха адиабатическими увлажнителями на перепад температур Δtохл=6°C, который обеспечивает получение температур:
- вытяжного воздуха на входе в рекуператор-охладитель приточного воздуха
Figure 00000016
- приточного воздуха на выходе из рекуператора-охладителя
Figure 00000017
2) при значениях сухой эффективности рекуперации теплоты рекуператора-осушителя приточного воздуха
Figure 00000018
и рекуператора-охладителя приточного воздуха
Figure 00000019
которые обеспечивают получение температур:
- приточного воздуха на выходе из рекуператора-осушителя:
Figure 00000020
- вытяжного воздуха на выходе из рекуператора-охладителя приточного воздуха, который одновременно нагревает вытяжной воздух с температуры t6 до t7
Figure 00000021
- вытяжного воздуха на выходе из регенеративного воздухонагревателя
Figure 00000022
- вытяжного воздуха на выходе из рекуператора-осушителя приточного воздуха
Figure 00000023
Несмотря на большое количество совпадающих признаков прототипа и заявляемого решения, отсутствие в прототипе отличительных признаков последнего не обеспечивает получение технического результата - обеспечение нулевого энергопотребления на нагревание и охлаждение приточного воздуха по следующим причинам.
1. Кондиционер-прототип имеет одну линию вытяжки с температурой вытяжного воздуха производственного помещения в холодный период года t5=18°C и влагосодержанием d5=6,42 г/кг сух. возд., которая требует для нагревания приточного воздуха в DEC-системе до конечной температуры t4=15°C и его относительной влажности ϕ4=0,868÷0,832 при изменении температуры наружного воздуха в диапазоне t1=10÷(-30)°C наличия регенеративного воздухонагревателя вытяжного воздуха, т.е. не обеспечивает нулевое энергопотребление на нагревание приточного воздуха в холодный период года.
2. Кондиционер-прототип имеет одну линию вытяжки с температурой вытяжного воздуха производственного помещения в теплый период года t5=18÷24°C и влагосодержанием d5=6,42÷9,33 г/кг сух. возд., которая требует для охлаждения приточного воздуха в DEC-системе до конечной температуры t4=21°C и его относительной влажности ϕ4=0,784÷0,932 при изменении температуры наружного воздуха в диапазоне t1=11÷32°C наличия регенеративного воздухонагревателя вытяжного воздуха, т.е. не обеспечивает нулевое энергопотребление на охлаждение приточного воздуха в теплый период года.
По п. 1 недостатков кондиционера-прототипа.
Необходимость наличия регенеративного воздухонагревателя в линии вытяжки кондиционера-прототипа в холодный период года обусловлена тем, что конечная температура нагретого приточного воздуха t4=15°C, получаемая в кондиционере при температуре вытяжного воздуха t5=18°C и наружного воздуха t1=10÷(-30)°C обеспечивается за счет дополнительного нагревания вытяжного воздуха в регенеративном нагревателе до температуры t8=70°C, т.е. на перепад температур
Figure 00000024
При t8=70°C расчетная мощность регенеративного воздухонагревателя Np, кВт прямо пропорциональна перепаду температур на нагревание вытяжного воздуха
Figure 00000025
и массовому потоку сухого вытяжного воздуха
Figure 00000026
кг/ч.
Наличие только одной линии вытяжки в кондиционере-прототипе с ее последовательным проходом через рекуператор-охладитель и рекуператор-осушитель не позволяет при подаче в рекуператор-осушитель вытяжного воздуха с температурой t8=70°C и влагосодержанием d8=6,42 г/кг сух. возд. обеспечить получение конечной температуры приточного воздуха t4=15°C и относительной влажности ϕ4=0,868÷0,832% при изменении температуры наружного воздуха в диапазоне t1=10÷(-30)°C без применения воздухонагревателя вытяжного воздуха.
По п. 2 недостатков кондиционера-прототипа.
Необходимость наличия регенеративного воздухонагревателя в линии вытяжки кондиционера-прототипа в теплый период года обусловлена тем, что конечная температура охлажденного приточного воздуха t4=21°C, получаемая в кондиционере при температуре вытяжного воздуха t5=18÷24°C и наружного воздуха t1=11÷32°C обеспечивается за счет дополнительного нагревания вытяжного воздуха в регенеративном нагревателе до температуры t8=70°C, т.е. на перепад температур
Figure 00000027
Наличие только одной линии вытяжки в кондиционере-прототипе с ее последовательным проходом через рекуператор-охладитель и рекуператор-осушитель не позволяет при подаче в рекуператор-осушитель вытяжного воздуха с температурой t8=70°C и влагосодержанием d8=6,42÷9,33 г/кг сух. возд. обеспечить получение конечной температуры приточного воздуха t4=21°C и относительной влажности ϕ4=0,784÷0,932% при изменении температуры наружного воздуха в диапазоне t1=11÷32°C без применения воздухонагревателя вытяжного воздуха.
Задача создания кондиционера с трехроторной системой осушительного и испарительного охлаждения - Desiccative and Evaporative Cooling (DEC), обеспечивающей энергосберегающие режимы нагревания и охлаждения приточного воздуха до заданных значений температуры и относительной влажности в производственных помещениях заводов, на осуществление которой направлено заявляемое решение, состояла в дальнейшем усовершенствовании известной конструкции кондиционера с DEC-системой охлаждения приточного воздуха, и получении технического результата - обеспечение нулевого энергопотребления на нагревание и охлаждение приточного воздуха:
- на нагревание приточного воздуха в холодный период года до конечной температуры t5=15°C и его относительной влажности ϕ5=0,868÷0,832 при температуре вытяжного воздуха, удаляемого из производственного помещения t6=18°C, влагосодержании d6=6,42 г/кг сух. возд. и изменении температуры наружного воздуха в диапазоне t1=10÷(-30)°C без адиабатического увлажнения вытяжного воздуха;
- на охлаждение приточного воздуха в теплый период года до конечной температуры t5=21°C и его относительной влажности ϕ5=0,784÷0,801 при температуре вытяжного воздуха, удаляемого из производственного помещения t6=18°C, влагосодержании d6=6,42 г/кг сух. возд. и изменении температуры наружного воздуха в диапазоне t1=11÷25°C без адиабатического увлажнения вытяжного воздуха;
- на охлаждение приточного воздуха в теплый период года до конечной температуры t5=21°C и его относительной влажности ϕ5=0,848÷0,932 при температуре вытяжного воздуха, удаляемого из производственного помещения t13=19÷24°C, влагосодержании d13=6,84÷9,33 г/кг сух. возд. и изменении температуры наружного воздуха в диапазоне t1=26÷32°C.
Достижение вышеуказанного технического результата обеспечивается тем, что кондиционер с трехроторной системой осушительного и испарительного охлаждения, содержащий приточную камеру и основную вытяжную камеру удаляемого из производственного помещения воздуха, разделенные между собой горизонтальной промежуточной перегородкой с основным и дополнительным окнами, охладитель приточного воздуха, выполненный в виде системы осушительного и испарительного охлаждения, состоящей из двух роторных рекуператоров - рекуператора-осушителя и рекуператора-охладителя, и двух адиабатических увлажнителей приточного и вытяжного воздуха с подводящими водопроводами деминерализованной воды, один из которых размещен в приточной камере на выходе из рекуператора-охладителя, а другой - в основной вытяжной камере на входе в рекуператор-охладитель, при этом рекуператор-осушитель выполнен в виде роторного регенератора адсорбционного типа, который встроен в основное окно горизонтальной промежуточной перегородки, а рекуператор-охладитель - в виде роторного теплообменника с инвертором и контроллером, который встроен в дополнительное окно горизонтальной промежуточной перегородки и совместно с рекуператором-осушителем имеют противоположно направленные линии притока наружного воздуха и вытяжки удаляемого из производственного помещения воздуха, приточная камера содержит входной и выпускной патрубки, воздухоочиститель, установленный на входе в камеру, и вентиляторный блок, основная вытяжная камера содержит верхнюю панель, входной и выпускной патрубки, воздухоочиститель, установленный на входе в камеру, и вентиляторный блок, установленный на выходе из камеры, отличающийся тем, что кондиционер снабжен дополнительной вытяжной камерой и окном, размещенным в верхней панели основной вытяжной камеры между рекуператором-осушителем и рекуператором-охладителем, дополнительная вытяжная камера размещена над верхней панелью основной вытяжной камеры и содержит верхнюю панель, входной и выпускной патрубки, воздухоочиститель, размещенный на входе в камеру, роторный рекуператор-теплообменник с инвертором и вентиляторный блок, размещенный на выходе из камеры, при этом роторный рекуператор-теплообменник встроен в окно верхней панели основной вытяжной камеры, герметично установлен между горизонтальной промежуточной перегородкой кондиционера и верхней панелью дополнительной вытяжной камеры, имеет противоположно направленные линии вытяжки горячего воздуха, и вытяжки удаляемого из производственного помещения воздуха и обеспечивает нагревание вытяжного воздуха, удаляемого из производственного помещения, на перепад температур, образуемый при работе кондиционера, между требуемой температурой вытяжного воздуха на входе в рекуператор-осушитель и температурой вытяжного воздуха на выходе из рекуператора-охладителя.
Доказательство существенности отличий заявляемого кондиционера и связь отличительных признаков с достигаемым техническим результатом раскрывается в следующем порядке.
1. Обеспечение нулевого энергопотребления на нагревание приточного воздуха в холодный период года до конечной температуры приточного воздуха t5=15°C и его относительной влажности ϕ5=0,868÷0,832 при температуре вытяжного воздуха, удаляемого из производственного помещения t6=18°C, его влагосодержании d6=6,42 г/кг сух. возд. и изменении температуры наружного воздуха в диапазоне t1=10÷(-30)°C без адиабатического увлажнения вытяжного воздуха.
2. Обеспечение нулевого энергопотребления на охлаждение приточного воздуха в теплый период года до конечной температуры приточного воздуха t5=21°C и его относительной влажности ϕ5=0,784÷0,801 при температуре вытяжного воздуха, удаляемого из производственного помещения t6=18°C, его влагосодержании d6=6,42 г/кг сух. возд. и изменении температуры наружного воздуха в диапазоне t1=11÷25°C без адиабатического увлажнения вытяжного воздуха.
3. Обеспечение нулевого энергопотребления на охлаждение приточного воздуха в теплый период года до конечной температуры приточного воздуха t5=21°C и его относительной влажности ϕ5=0,848÷0,932 при температуре вытяжного воздуха, удаляемого из производственного помещения t13=19÷24°C, его влагосодержании d13=6,84÷9,33 г/кг сух. возд. и изменении температуры наружного воздуха в диапазоне t1=26-32°C.
Для обоснования нулевого энергопотребления в заявляемом кондиционере на нагревание и охлаждение приточного воздуха разработаны алгоритмы расчета параметров воздушных потоков с формулами для их расчета и результатами расчетов, представленных в табл. 1 и табл. 2. Расчеты, приведенные в табл. 1 и 2, выполнены с применением температур вытяжного воздуха производственного помещения в холодный и теплый период года, характерных для деревообрабатывающих цехов металлургических комбинатов.
В табл. 1 представлены расчеты для холодного периода года (режим 1), а в табл. 2 - расчеты для теплого периода года (режимы 2, 3, 4).
В заявляемом кондиционере в качестве рекуператора-осушителя (рекуператора №1) применен адсорбционный роторный регенератор Fläkt Woods, работающий без инвертора и имеющий значения эффективности рекуперации:
а) по передаваемой теплоте
Figure 00000028
б) по передаваемой влаге
Figure 00000029
Приведенные значения
Figure 00000030
и
Figure 00000031
приняты по данным статьи: С.А. Панфилов. Fläkt Woods «Два колеса - Twin Wheel лучше, чем одно», опубликованной в журнале АВОК №5, 2014 г., с. 52-54 и на сайте http:/www.abok.ru/for_spec/articles.php?nid=5896.
На рис. 2 указанной статьи приведена принципиальная схема действующей Twin Wheel System, на которой представлены параметры приточного и вытяжного воздуха в различных зонах вентиляционной установки (температура ti, °C, влагосодержание di, г/кг сух. возд.; относительная влажность ϕi, %) при охлаждении приточного воздуха до конечной температуры t4=15°C при температуре наружного воздуха t1=32°C. При этом приточный и вытяжной воздух на входе и выходе из адсорбционного ротора имели следующие параметры:
а) приточный воздух на входе в адсорбционный ротор: t1=32°C, d1=15 г/кг сух. возд., ϕ1=50%;
б) вытяжной воздух на входе в адсорбционный ротор: t6=19,8°C, d6=9,3 г/кг сух. возд., ϕ6=64,7%;
в) приточный воздух на выходе из адсорбционного ротора: t2=22,7°C, d2=10,6 г/кг сух. возд., ϕ2=61,6%.
На основании приведенных в статье С.А. Панфилова значений параметров приточного воздуха на входе и выходе из адсорбционного ротора и входе вытяжного воздуха в адсорбционный ротор были рассчитаны значения эффективностей рекуперации по передаваемой теплоте
Figure 00000032
и передаваемой влаге
Figure 00000033
адсорбционного ротора Fläkt Woods по известным формулам.
Эффективность рекуперации адсорбционного ротора Fläkt Woods по передаваемой теплоте составила
Figure 00000034
Эффективность рекуперации адсорбционного ротора Fläkt Woods по передаваемой влаге составила
Figure 00000035
Полученные значения
Figure 00000036
и
Figure 00000037
для адсорбционного ротора были приняты для расчета параметров воздушных потоков по зонам заявляемого кондиционера, приведенных в табл. 1 и 2.
Нулевое энергопотребление на нагревание приточного воздуха в холодный период года до конечной температуры t5=15°C и его относительной влажности ϕ5=0,868÷0,832 при температуре вытяжного воздуха t6=18°C, его влагосодержании d6=6,42 г/кг сух. возд., и изменении температуры наружного воздуха в диапазоне t1=10÷(-30)°C без адиабатического увлажнения вытяжного воздуха обеспечивается следующими преимуществами заявляемого решения перед прототипом.
1. Заявляемый кондиционер снабжен дополнительной вытяжной камерой с роторным рекуператором-теплообменником (рекуператор №3), который встроен в основную вытяжную камеру вытяжного воздуха производственного помещения и имеет электропривод с инвертором, позволяющий вести процесс кондиционирования приточного воздуха в холодный период года при постоянном значении эффективности рекуперации холода рекуператором-охладителем (рекуператор №2), равном
Figure 00000038
т.е. без применения инвертора в электроприводе роторного рекуператора №2.
Применение инвертора в электроприводе рекуператора-охладителя при температуре вытяжного воздуха на входе рекуператор-охладитель (рекуператор №1), равной t9=70°C=const приводит к получению значений эффективности рекуперации холода рекуператором-охладителем
Figure 00000039
находящимися за пределами технически достижимых значений для роторных рекуператоров-теплообменников, что видно из следующих расчетов.
Температура приточного воздуха на выходе из рекуператора-осушителя (рекуператор №1)
Figure 00000040
которая составляет:
- для t1=10°C t2=10+0,762(70-10)=55,7°C
- для t1=0°C t2=0+0,762(70-0)=53,3°C
- для t1=-30°C t2=-30+0,762(70+30)=46,2°C.
Эффективность рекуперации холода рекуператором №2
Figure 00000041
которая составляет:
- для t1=10°C и t3=21°C
Figure 00000042
- для t1=0°C и t3=22,4°C
Figure 00000043
- для t1=-30°C и t3=23,6°C
Figure 00000044
2. Рекуператор №3 выполняет функцию регенеративного воздухонагревателя вытяжного воздуха кондиционера-прототипа, но без энергозатрат на нагревание вытяжного воздуха.
Рекуператор №3 рекуперирует теплоту горячего воздуха, поступающего в дополнительную вытяжную камеру, и имеющего температуру
Figure 00000045
и передает ее вытяжному воздуху производственного помещения, нагревая его на перепад температур Δt9,8=t9-t8, °C, образуемый при работе кондиционера между требуемой температурой вытяжного воздуха на входе в рекуператор-осушитель t9, изменяющейся в диапазоне t9=40,8÷69,7°C, и температурой вытяжного воздуха на выходе из рекуператора-охладителя t8, изменяющейся в диапазоне t8=30,4÷40,4°C при эффективности рекуперации холода рекуператора-охладителя (рекуператор №2)
Figure 00000046
и изменении температуры наружного воздуха в холодный период года в диапазоне t1=10÷(-30)°C.
Значения эффективности рекуперации теплоты рекуператора №3
Figure 00000047
определяемые по формуле
Figure 00000048
для температуры горячего воздуха, поступающего в дополнительную вытяжную камеру, и изменяющейся в диапазоне
Figure 00000049
температуры вытяжного воздуха производственного помещения на входе в роторный рекуператор №3 t8=30,4÷40,4°C и на его выходе t9=40,8÷69,7°C, составляют:
Figure 00000050
Полученные значения эффективности рекуператора №3
Figure 00000051
обеспечиваются инвертором рекуператора №3 и являются технически достижимыми для роторного рекуператора-теплообменника.
3. Наличие в заявляемом кондиционере линии дополнительной вытяжки горячего воздуха, подаваемого на рекуператор №3, и имеющего температуру, изменяющуюся в диапазоне t12=90÷80°C, обеспечивает при температуре наружного воздуха, изменяющейся в диапазоне t1=11÷25°C требуемое охлаждение приточного воздуха одним рекуператором-охладителем (рекуператор №2) без применения адиабатического увлажнения вытяжного воздуха, обеспечивающего дополнительное косвенное охлаждение вытяжного воздуха.
При использовании заявляемого кондиционера только в холодный период года заявляемый кондиционер выполняется без адиабатического увлажнителя вытяжного воздуха и без инвертора в электроприводе роторного рекуператора-охладителя, что снижает начальную стоимость кондиционера и эксплуатационные затраты на адиабатическое увлажнение.
Движение воздушных потоков в заявляемом кондиционере в холодный период года (режим №1) проиллюстрировано на фиг. 4.
Отсутствие в основной вытяжной камере заявляемого кондиционера регенеративного воздухонагревателя, вызывающего энергозатраты, обеспечение нагрева вытяжного воздуха рекуператором №3 с температуры t8=30÷40,4°C до температуры t9=40,8÷69,7°C при изменении температуры наружного воздуха в диапазоне t1=10÷(-30)°C, за счет подачи в рекуператор №3 горячего воздуха, имеющего температуру t12=90÷80°C, и полученного с использованием отходящих дымовых газов, ранее выбрасывавшихся в атмосферу, а также работа рекуператоров №1, 2, 3 в технически достижимом диапазоне эффективностей рекуперации теплоты обеспечивают нулевое энергопотребление на нагревание приточного воздуха в холодный период года без адиабатического увлажнения вытяжного воздуха.
Figure 00000052
Figure 00000053
Figure 00000054
Figure 00000055
Figure 00000056
Figure 00000057
Figure 00000058
Figure 00000059
Figure 00000060
Figure 00000061
Получение указанных преимуществ в заявляемом кондиционере обеспечивается всей совокупностью признаков заявляемого решения.
Нулевое энергопотребление на охлаждение приточного воздуха в теплый период года до конечной температуры t5=21°C и его относительной влажности ϕ5=0,784÷0,801 при температуре вытяжного воздуха, удаляемого из производственного помещения t6=18°C, его влагосодержании d6=6,34 г/кг сух. возд., и изменении температуры наружного воздуха в диапазоне t1=11÷25°C без адиабатического увлажнения вытяжного воздуха обеспечивается следующими преимуществами заявляемого решения перед прототипом.
1. Заявляемый кондиционер снабжен дополнительной вытяжной камерой с роторным рекуператором-теплообменником (рекуператор №3), который встроен в основную вытяжную камеру вытяжного воздуха производственного помещения и имеет электропривод с инвертором, позволяющий вести процесс кондиционирования приточного воздуха при температуре наружного воздуха, изменяющейся в диапазоне t1=11÷25°C, при постоянном значении температуры вытяжного воздуха на входе в рекуператор-осушитель (рекуператор №1), равной t9=70°C, которая при эффективности рекуперации теплоты рекуператора №1
Figure 00000062
обеспечивает на выходе из рекуператора №1 получение температуры приточного воздуха (п. 39, табл. 2) t2=(55,9÷59,3)°C, которая в сочетании с температурой приточного воздуха на выходе из рекуператора-охладителя (рекуператор №2) (п. 38, табл. 2) t3=(34,9÷33,2)°C и температурой вытяжного воздуха на входе в рекуператор №2 t7=18°C обеспечивает требуемое охлаждение приточного воздуха только в рекуператоре-охладителе без адиабатического увлажнения вытяжного воздуха, обеспечивающего дополнительное косвенное охлаждение вытяжного воздуха. При этом эффективность рекуперации холода рекуператором №2, определяемая по формуле
Figure 00000063
Figure 00000064
Figure 00000065
Figure 00000066
Figure 00000067
Figure 00000068
Figure 00000069
Figure 00000070
Figure 00000071
Figure 00000072
Figure 00000073
Figure 00000074
Figure 00000075
Figure 00000076
составит (п. 40, табл. 2)
- для t1=11°C
Figure 00000077
- для t1=25°C
Figure 00000078
Полученные значения
Figure 00000079
обеспечиваются инвертором электропривода роторного рекуператора №2 и являются технически достижимыми значениями для роторных теплообменников.
2. Рекуператор №3 выполняет функцию регенеративного воздухонагревателя вытяжного воздуха кондиционера-прототипа, но без энергозатрат на нагревание вытяжного воздуха.
Рекуператор №3 рекуперирует теплоту горячего воздуха, поступающего в дополнительную вытяжную камеру и имеющего температуру
Figure 00000080
и передает ее вытяжному воздуху производственного помещения, нагревая его на перепад температур Δt9,8=t9-t8, °C, образуемый при работе кондиционера между требуемой температурой вытяжного воздуха на входе в рекуператор-осушитель t9=70°C и температурой вытяжного воздуха на выходе из рекуператора-охладителя t8, изменяющейся в диапазоне t8=39÷44,1°C при изменении температуры наружного воздуха в теплый период года в диапазоне t1=11-25°C.
Значения эффективности рекуперации теплоты рекуператора №3
Figure 00000081
определяемые по формуле
Figure 00000082
для температуры горячего воздуха, поступающего в дополнительную вытяжную камеру, и изменяющейся в диапазоне
Figure 00000083
температуры вытяжного воздуха на входе в роторный рекуператор №3 t8=39÷44,1°C и на его выходе t9=70°C составляют:
Figure 00000084
Полученные значения эффективности рекуперации теплоты рекуператора №3
Figure 00000085
обеспечиваются инвертором рекуператора №3 и являются технически достижимыми для роторного рекуператора-теплообменника.
Движение воздушных потоков в заявляемом кондиционере в теплый период года (режим №2) проиллюстрировано на фиг. 4.
Отсутствие в основной вытяжной камере заявляемого кондиционера регенеративного воздухонагревателя, вызывающего энергозатраты, обеспечение нагрева вытяжного воздуха рекуператором №3 с температуры t8=39÷44,1°C до температуры t9=70°C при изменении температуры наружного воздуха в диапазоне t1=11÷25°C, за счет горячего воздуха, имеющего температуру, изменяющуюся в диапазоне t12=90÷80°C, и полученного с использованием отходящих дымовых газов, ранее выбрасывавшихся в атмосферу, а также работа рекуператоров №1, 2, 3 в технически достижимом диапазоне эффективностей рекуперации теплоты обеспечивают нулевое энергопотребление на охлаждение приточного воздуха в теплый период года при температуре наружного воздуха, изменяющейся в диапазоне t1=11÷25°C без адиабатического увлажнения вытяжного воздуха.
Получение указанных преимуществ в заявляемом кондиционере обеспечивается всей совокупностью признаков заявляемого решения.
Нулевое энергопотребление на охлаждение приточного воздуха в теплый период до конечной температуры t5=21°C и его относительной влажности ϕ5=0,848÷0,932 при температуре вытяжного воздуха, удаляемого из производственного помещения t13=19÷24°C, его влагосодержании d13=6,84÷9,33 г/кг сух. возд., и изменении температуры наружного воздуха в диапазоне t1=26÷32°C обеспечивается следующими преимуществами заявляемого решения перед прототипом.
1. Заявляемый кондиционер снабжен дополнительной вытяжной камерой. Конструкция дополнительной вытяжной камеры, имеющей линию горячего воздуха, с температурой
Figure 00000086
позволяет роторному рекуператору-теплообменнику (рекуператор №3), входящему в ее состав, и встроенному в основную камеру вытяжного воздуха, осуществлять рекуперацию теплоты горячего воздуха и передавать ее вытяжному воздуху, поступающему из производственного помещения, в основную вытяжную камеру, нагревая вытяжной воздух до требуемой температуры t9, °C на входе в рекуператор-осушитель (рекуператор №1) без применения регенеративного воздухонагревателя при технически достижимых значениях эффективности рекуперации теплоты
Figure 00000087
рекуператором №3, равных:
Figure 00000088
2. Наличие в заявляемом кондиционере линии дополнительной вытяжки горячего воздуха, подаваемого на рекуператор №3, и имеющего температуру изменяющуюся в диапазоне t12=90÷80°C, обеспечивает при температуре наружного воздуха, изменяющейся в диапазоне t1=(26÷32)°C и температуре вытяжного воздуха производственного помещения t6=19÷24°C требуемое охлаждение приточного воздуха с применением адиабатического увлажнения вытяжного воздуха, которое вызывает дополнительное косвенное охлаждение вытяжного воздуха до температуры t7=13,8÷18,5°C (п. 10, табл. 2). Полученный холодный вытяжной воздух с температурой t7, °C при совместной работе с рекуператором-охладителем (рекуператор №2) обеспечивает форсированное охлаждение приточного воздуха при технически достижимых значениях эффективности рекуперации холода вытяжного воздуха рекуператором №2, равных
Figure 00000089
реализуемое двумя режимами заявляемого кондиционера (режимы №3 и №4).
Режим 3 назначается при температуре наружного воздуха, изменяющейся в диапазоне t1=26÷29°C.
Режим 4 назначается при температуре наружного воздуха, изменяющейся в диапазоне t1=30÷32°C.
3. В режиме №3. Вытяжной воздух производственного помещения с температурой t6=19÷23°C и влагосодержанием d6=6,84÷8,77 г/кг сух. возд. поступает через входной патрубок в основную вытяжную камеру, проходит адиабатическое увлажнение, косвенно охлаждаясь при этом до температуры t7=13,8÷17,2°C и поступает в рекуператор-охладитель (рекуператор №2).
При этом обеспечивается форсированное охлаждение приточного воздуха на необходимую величину при технически достижимых значениях эффективности рекуперации холода вытяжного воздуха рекуператора-охладителя (рекуператор №2), равных
Figure 00000090
(п. 40, табл. 2).
В рекуператоре №2 вытяжной воздух нагревается с температуры t7=13,8÷17,2°C до температуры t8 на его выходе, определяемой по формуле
Figure 00000091
которая в соответствии с п. 39 табл. 2 составляет:
- для t1=26°C при
Figure 00000092
t2=59,5°C и t7=13,8°C
t8=13,8-0,648(13,8-59,5)=43,4°C
- для t1=29°C при
Figure 00000093
t2=60,2°C и t7=17,2°C
t8=17,2-0,784(17,2-60,2)=50,9°C.
После прохода через рекуператор №2 вытяжной воздух с температурой t8=43,4÷50,9°C и влагосодержанием d8=d7=8,92÷11,1 г/кг сух. возд. поступает на вход в рекуператор №3 (зона 8 на фиг. 4).
В режиме 4 вытяжной воздух производственного помещения с температурой t6=24°C и влагосодержанием d6=9,33 г/кг сух. возд. поступает через входной патрубок в основную вытяжную камеру, проходит адиабатическое увлажнение, косвенно охлаждаясь при этом до температуры t7=18,4°C, и поступает в рекуператор-охладитель (рекуператор №2).
Режим №4 реализуется при максимальном значении эффективности рекуперации холода вытяжного воздуха рекуператором-охладителем, равным
Figure 00000094
при котором обеспечивается охлаждение приточного воздуха на максимальную величину.
В рекуператоре-охладителе вытяжной воздух нагревается с температуры t7=18,4°C до температуры определяемой по формуле
Figure 00000095
где t2 - температура приточного воздуха перед рекуператором-охладителем, °C. Определяется из выражения
Figure 00000096
которая в соответствии с п. 39 табл. 2 составляет:
- для t1=30°C при t3=25°C; t7=18,4 и
Figure 00000097
Figure 00000098
- для t1=32°C при t3=24,8°C; t7=18,4 и
Figure 00000099
Figure 00000100
При этом температура вытяжного воздуха t8, °C на выходе из рекуператора-охладителя в соответствии с п. 41 табл. 2 составит:
- для t1=30°C при t2=51,4°C; t7=18,4°C и
Figure 00000101
t8=18,4-0,8(18,4-51,4)=44,8°C
- для t1=32°C при t2=50,4°C; t7=18,4°C и
Figure 00000102
t8=18,4-0,8(18,4-501,4)=44°C
После прохода через рекуператор-охладитель вытяжной воздух с температурой t8=44,8÷44,0°C и влагосодержанием d8=12,0 г/кг сух. возд. перемещается на вход в рекуператор №3 (зона 8 на фиг. 4).
Режим 4 реализуется в заявляемом кондиционере при эффективности рекуперации теплоты рекуператором №3, которая определяется из выражения
Figure 00000103
где t9 - температура вытяжного воздуха на выходе из рекуператора №3, °C. Определяется из выражения
Figure 00000104
которая при
Figure 00000105
в соответствии с п. 42 табл. 2 составляет:
- для t1=30°C и t2=51,4°C
Figure 00000106
- для t1=32°C и t2=50,4°C
Figure 00000107
При полученных значениях температур t9 и t8 значения
Figure 00000108
согласно п. 47 табл. 2 составляет:
- при t12=80°C
Figure 00000109
- при t12=90°C
Figure 00000110
Переход в режиме №4 с температуры t9=70°C на входе в рекуператор-осушитель, применяемой в режимах №2 и №3, на более низкую температуру t9=58,1÷56,1°C, при температуре наружного воздуха, изменяющейся в диапазоне t1=30÷32°C, обусловлен необходимостью получения технически допустимых значений эффективности рекуперации холода рекуператором-охладителем
Figure 00000111
которые невозможно получить при температуре t9=70°C.
Отсутствие в основной вытяжной камере заявляемого кондиционера при работе в режимах 3 и 4 регенеративного воздухонагревателя, вызывающего энергозатраты, обеспечение нагревания вытяжного воздуха рекуператором №3 до необходимой температуры t9, °C на входе в рекуператор-осушитель за счет подачи в него горячего воздуха, полученного с использованием отходящих дымовых газов, ранее выбрасывавшихся в атмосферу, и имеющего температуру, изменяющуюся в диапазоне
Figure 00000112
а также работа рекуператоров №1, 2, 3 в технически достижимом диапазоне эффективностей рекуперации теплоты и холода обеспечивают нулевое энергопотребление на охлаждение приточного воздуха в теплый период года при температуре наружного воздуха, изменяющейся в диапазоне t1=26÷32°C.
Получение указанных преимуществ в заявляемом кондиционере обеспечивается всей совокупностью существенных признаков заявляемого решения.
Получение технического результата заявляемым кондиционером - обеспечение нулевого энергопотребления на нагревание и охлаждение приточного воздуха, - приводит к повышению его энергоэффективности по сравнению с кондиционером-прототипом за счет снижения в нем энергозатрат и, как следствие, обеспечивает сокращение выбросов диоксида углерода CO2 в атмосферу, вызывающих образование парниковых газов.
Конструкция заявляемого кондиционера с трехроторной системой осушительного и испарительного охлаждения проиллюстрирована чертежами на фиг. 1-4. На фиг. 1 представлена вертикальная проекция кондиционера; на фиг. 2 - вид А (на фиг. 1); на фиг. 3 - разрез А-А (на фиг. 2); на фиг. 4 - принципиальная схема кондиционера с нумерацией зон воздушных потоков линии притока, основной и дополнительной линий вытяжки в режимах №1, 2, 3, 4.
На фиг. 4 зоны 1-5 принадлежат к линии притока, зоны 6-11 - к основной линии вытяжки; зоны 12-14 - к дополнительной линии вытяжки.
На фиг. 4 линии притока и вытяжки обозначены: линия притока - ЛПр, линия основной вытяжки - ЛОВ; линия дополнительной вытяжки - ЛДВ.
Кондиционер (фиг. 3) содержит приточную 1 и основную вытяжную 2 камеры, разделенные между собой горизонтальной промежуточной перегородкой 3 с основным 4 и дополнительным 5 окнами, охладитель приточного воздуха 6, выполненный в виде системы осушительного и испарительного охлаждения, состоящей из двух роторных рекуператоров - рекуператора-осушителя 7 и рекуператора-охладителя 8, и двух адиабатических увлажнителей воздуха 9, 10 с подводящими водопроводами деминерализованной воды 11, 12, один из которых размещен в приточной камере 1 на выходе из рекуператора-охладителя 8, а другой - в основной вытяжной камере 2 на входе в рекуператор-охладитель 8. При этом рекуператор-осушитель 7 выполнен в виде роторного регенератора адсорбционного типа, который встроен в основное окно 4 горизонтальной промежуточной перегородки 3, а рекуператор-охладитель 8 - в виде роторного теплообменника с инвертором и контроллером (на фиг. не обозначен), который встроен в дополнительное окно 5 горизонтальной промежуточной перегородки 3 и совместно с рекуператором-осушителем имеет противоположно направленные линии притока наружного воздуха и вытяжки удаляемого из производственного помещения воздуха. Приточная камера 1 содержит входной 13 и выпускной 14 патрубки, воздухоочиститель 15, установленный на входе в камеру, и вентиляторный блок 16. Вытяжная камера 2 удаляемого из производственного помещения воздуха (далее основная вытяжная камера) имеет верхнюю панель 17, входной 18 и выпускной 19 патрубки, воздухоочиститель 20, установленный на входе в камеру, и вентиляторный блок 21, установленный на выходе из камеры.
Кондиционер снабжен дополнительной вытяжной камерой 22 и окном 23, размещенным в верхней панели 17 основной вытяжной камеры 2. Дополнительная вытяжная камера 22 размещена над верхней панелью 17 основной вытяжной камеры 2 и содержит верхнюю панель 24, входной 25 и выпускной 26 патрубки, воздухоочиститель 27, размещенный на входе в камеру, роторный рекуператор-теплообменник 28 с инвертором (на фиг. 1-4 не показан) и вентиляторный блок 29, размещенный на выходе из камеры. При этом роторный рекуператор-теплообменник 28 встроен в окно 23 верхней панели 17 основной вытяжной камеры 2, герметично установлен между горизонтальной промежуточной перегородкой 3 кондиционера и верхней панелью 24 дополнительной вытяжной камеры 22, имеет противоположно направленные линии вытяжки горячего воздуха с температурой
Figure 00000113
и вытяжки удаляемого из производственного помещения воздуха и обеспечивает нагревание вытяжного воздуха, удаляемого из производственного помещения на перепад температур Δt9,8=t9-t8, °C, образуемый при работе кондиционера между требуемой температурой вытяжного воздуха t9 на входе в рекуператор-осушитель 7 и температурой t8 на выходе из рекуператора-охладителя 8.
Для обслуживания кондиционера в процессе его эксплуатации кондиционер снабжен одиннадцатью сервисными дверями: сервисной дверью 30 для рекуператора-осушителя, сервисной дверью 31 для рекуператора-охладителя, сервисной дверью 32 для воздухоочистителя основной вытяжной камеры, сервисной дверью 33 для вентиляторного блока основной вытяжной камеры; сервисной дверью 34 для воздухоочистителя приточной камеры, сервисной дверью 35 для вентиляторного блока приточной камеры, сервисной дверью 36 для адиабатического увлажнителя приточной камеры, сервисной дверью 37 для воздухоочистителя дополнительной вытяжной камеры, сервисной дверью 38 для роторного рекуператора-теплообменника основной вытяжной и дополнительной вытяжной камер, сервисной дверью 39 для вентиляторного блока дополнительной вытяжной камеры 22, сервисной дверью 40 для адиабатического увлажнителя основной вытяжной камеры.
Заявляемый кондиционер может работать в пяти режимах.
Режим 1. Режим кондиционирования в холодный период года с нагреванием приточного воздуха в трехроторной системе осушительного и испарительного охлаждения кондиционера до конечной температуры приточного воздуха t5=15°C и относительной влажности ϕ5=0,868÷0,832 в диапазоне изменения температуры наружного воздуха t1=10÷(-30)°C при температуре вытяжного воздуха производственного помещения t6=18°C, его влагосодержания d6=6,42 г/кг сух. возд. и температуре вытяжного горячего воздуха, изменяющейся в диапазоне
Figure 00000114
Режим 2. Режим кондиционирования в теплый период года с охлаждением приточного воздуха в трехроторной системе осушительного и испарительного охлаждения кондиционера до конечной температуры приточного воздуха t5=21°C и относительной влажности ϕ5=0,784÷0,801 в диапазоне изменения температуры наружного воздуха t1=11÷25°C при температуре вытяжного воздуха производственного помещения t6=18°C и его влагосодержании d6=6,42 г/кг сух. возд., и температуре вытяжного горячего воздуха, изменяющейся в диапазоне
Figure 00000115
Режим 3. Режим кондиционирования в теплый период года с охлаждением приточного воздуха в трехроторной системе осушительного и испарительного охлаждения кондиционера до конечной температуры приточного воздуха t5=21°C и относительной влажности ϕ5=0,848÷0,897 в диапазоне изменения температуры наружного воздуха t1=26÷29°C при температуре вытяжного воздуха производственного помещения t13=19÷23°C, его влагосодержания d6=6,84÷8,77 г/кг сух. возд. и температуре вытяжного горячего воздуха, изменяющейся в диапазоне
Figure 00000116
Режим 4. Режим кондиционирования в теплый период года с охлаждением приточного воздуха в трехроторной системе осушительного и испарительного охлаждения кондиционера до конечной температуры приточного воздуха t5=21°C и относительной влажности ϕ5=0,914÷0,932 в диапазоне изменения температуры наружного воздуха t1=30÷32°C при температуре вытяжного воздуха производственного помещения t13=24°C его влагосодержания d13=9,33 г/кг сух. возд. и температуре вытяжного горячего воздуха, изменяющейся в диапазоне
Figure 00000117
Режим 5. Режим ожидания.
Кондиционер в режимах 1-2 работает следующим образом. Работают три вентиляторных блока 16, 21, 29, приточной камеры 1, основной вытяжной 2, и дополнительной 22 вытяжной камеры, электропривод роторного рекуператора-осушителя 7 при постоянной частоте вращения адсорбционного ротора, электропривод роторного рекуператора-теплообменника 28 с инвертором (на фиг. 1-4 не показан) и адиабатический увлажнитель приточного воздуха 9 с инвертором (на фиг. 1-4 не показан), а адиабатический увлажнитель 10 вытяжного воздуха производственного помещения, установленный в основной вытяжной камере 2, выключен.
Электропривод роторного рекуператора-охладителя работает:
- в режиме 1 при постоянной частоте вращения ротора;
- в режиме 2 с инвертором.
Вентиляторные блоки 16, 21, 29 работают со 100%-ной производительностью. Контроллер кондиционера управляет работой инверторов электроприводов роторного рекуператора-охладителя 8 (только в режиме 2) и роторного рекуператора-теплообменника 28, которые обеспечивают расчетные значения эффективности рекуперации теплоты
Figure 00000118
и
Figure 00000119
при изменении температуры наружного воздуха t1 в соответствии с номером режима в диапазоне:
- t1=10÷(-30)°C в режиме 1;
- t1=11÷25°C в режиме 2.
Контроллер также управляет работой инвертора адиабатического увлажнителя 9 приточной камеры 1, обеспечивающего изменение частоты вращения и производительности водяного насоса высокого давления (на фиг. 1-4 не показан) для подачи деминерализованной воды в распылительные форсунки адиабатического увлажнителя 9 при изменении температуры наружного воздуха в диапазоне:
- t1=10÷(-30)°C в режиме 1;
- t1=11÷25°C в режиме 2.
В соответствии с формулой
Figure 00000120
где
Figure 00000121
- массовый поток сухого приточного воздуха, кг/ч;
Figure 00000122
- перепад влагосодержания приточного воздуха, обеспечиваемый адиабатическим увлажнителем 9 с шагом в один °C при изменении температуры наружного воздуха в диапазонах t1=10÷(-30)°C в режиме 1 (п. 33 табл. 1) и t1=11÷25°C в режиме 2 (п. 50, табл. 2); d4, d5 - влагосодержания приточного воздуха соответственно на входе и выходе из адиабатического увлажнителя, г/кг сух. возд.
Рассмотрим работу линии основной вытяжки (ЛОВ) заявляемого кондиционера в режимах 1-2 (фиг. 3 и 4).
Удаляемый из производственного помещения воздух с температурой t6=18°C и влагосодержанием d6=6,42 г/кг сух. возд. поступает через входной патрубок 18 основной вытяжной камеры 2 в камеру, протягивается вентиляторным блоком 21 через воздухоочиститель 20, роторный рекуператор-теплообменник 28 и рекуператор-осушитель 7, после чего через выпускной патрубок 19 выбрасывается в атмосферу. Линия основной вытяжки (ЛОВ) с зонами 6-11 в режимах 1-2 представлена на фиг. 4, а значения показателей вытяжного воздуха производственного помещения по зонам 6-11 приведены в табл. 1 для режима 1, и в табл. 2 для режима 2.
Рассмотрим работу линии дополнительной вытяжки горячего воздуха (ЛДВ) в режимах 1-2 (фиг. 3 и фиг. 4).
Горячий воздух с температурой t12=90÷80°C поступает во входной патрубок 25 дополнительной вытяжной камеры 22 кондиционера и протягивается вентиляторным блоком 29 через воздухоочиститель 27 и роторный рекуператор-теплообменник 28, после чего выбрасывается в атмосферу.
Роторный рекуператор-теплообменник 28 рекуперирует теплоту вытяжного горячего воздуха и передает ее вытяжному воздуху производственного помещения, нагревая его с температуры t8 до температуры t9 на выходе. Линия дополнительной вытяжки (ЛДВ) представлена на фиг. 4, а значение эффективности рекуперации теплоты роторного рекуператора-теплообменника 28 (рекуператор №3)
Figure 00000123
приведены в табл. 1 для режима 1 и в табл. 2 для режима 2.
Рассмотрим работу линии притока (ЛПр) в режимах 1-2 (фиг. 3 и фиг. 4).
Наружный воздух с температурой t1=10÷(-30)°C в режиме 1 и температурой t1=11÷25°C в режиме 2 поступает во входной патрубок 13 приточной камеры 1 и протягивается вентиляторным блоком 16 через воздухоочиститель 15, рекуператор-осушитель 7, рекуператор-охладитель 8, адиабатический увлажнитель 9 и подается в увлажненном виде через выпускной патрубок 14 в воздухораспределитель (на фиг. 1-4 не показан), установленный в производственном помещении.
Линия притока (ЛПр) с зонами 1-5 в режимах 1-2 представлена на фиг. 4, а значения показателей приточного воздуха по зонам 1-5 приведены в табл. 1 для режима 1, и в табл. 2 для режима 2.
Кондиционер в режиме 3-4 работает следующим образом. Работают три вентиляторных блока 16, 21, 29 приточной камеры 1, основной вытяжной 2 и дополнительной 22 вытяжной камер. Работают также электропривод роторного рекуператора-осушителя 7 при постоянной частоте вращения адсорбционного ротора, электроприводы роторного рекуператора-охладителя 8 и роторного рекуператора-теплообменника 28 с инверторами (на фиг. 1-4 не показаны), адиабатические увлажнители приточного 9 и вытяжного 10 воздуха с инверторами (на фиг. 1-4 не показаны).
Вентиляторные блоки 16, 21, 29 работают со 100%-ной производительностью. Контроллер кондиционера управляет работой инверторов электроприводов роторного рекуператора-охладителя 8 и роторного рекуператора-теплообменника 28, которые обеспечивают расчетные значения эффективности рекуперации теплоты
Figure 00000124
и
Figure 00000125
при изменении температуры наружного воздуха t1 в соответствии с номером режима в диапазоне:
- t1=26÷29°C в режиме 3;
- t1=30÷32°C в режиме 4.
Контроллер также управляет работой инверторов адиабатических увлажнителей приточного 9 и вытяжного 10 воздуха производственного помещения, обеспечивающих изменение частоты вращения и производительности водяных насосов высокого давления (на фиг. 1-4 не показаны) для подачи деминерализованной воды в распылительные форсунки адиабатических увлажнителей 9 и 10 при изменении температуры наружного воздуха в диапазоне:
- t1=26÷29°C в режиме 3;
- t1=30÷32°C в режиме 4
в соответствии с формулой:
- для адиабатического увлажнителя приточного воздуха 9:
Figure 00000126
кг/ч,
- для адиабатического увлажнителя вытяжного воздуха 10:
Figure 00000127
кг/ч,
где
Figure 00000128
Figure 00000129
- массовые потоки сухого приточного и сухого вытяжного воздуха, кг/ч;
Figure 00000130
Figure 00000131
- перепады влагосодержания в приточной 1 и дополнительной вытяжной 22 камерах, г/кг сух. возд., обеспечиваемые адиабатическими увлажнителями 9 и 10, с шагом в 1°C при изменении температуры наружного воздуха в диапазонах t1=26÷29°C в режиме 3 и t1=30÷32°C в режиме 4 для:
- Δd5,4 (табл. 2, п. 50);
- Δd7,6 (табл. 2, п. 15);
d4, d5 - влагосодержания соответственно на входе и выходе адиабатического увлажнителя приточного воздуха 9, г/кг сух. возд.; d6, d7 - влагосодержания соответственно на входе и выходе адиабатического увлажнителя вытяжного воздуха 10 основной вытяжной камеры 2, г/кг сух. возд.
Рассмотрим работу линии основной вытяжки (ЛОВ) заявляемого кондиционера в режимах 3-4 (фиг. 3 и 4).
Удаляемый из производственного помещения воздух с температурой t6=19÷23°C в режиме 3 и t6=24°C в режиме 4 поступает через входной патрубок 18 основной вытяжной камеры 2 в камеру, протягивается вентиляторным блоком 21 основной вытяжной камеры 2 через воздухоочиститель 20, адиабатический увлажнитель 10, увлажняясь в нем, рекуператор-охладитель 8 и поступает в зону 8 основной вытяжной камеры 2. Затем вытяжной воздух проходит через роторный рекуператор-теплообменник 28 и рекуператор-осушитель 7, после которого выбрасывается в атмосферу.
В роторном рекуператоре-теплообменнике 28 вытяжной воздух производственного помещения нагревается с температуры t8=43,4÷50,9°C в режиме 3 до температуры t9=70°C, а в режиме 4 нагревается с температуры t8=44,8÷44,0°C до температуры t9=58,1÷56,1°C.
Линия основной вытяжки (ЛОВ) в режимах 3 и 4 представлена на фиг. 4.
Работа линии дополнительной вытяжки (ЛДВ) и линии притока (ЛПр) в режимах 3-4 осуществляется аналогично режимам 1 и 2. Линия дополнительной вытяжки (ЛДВ) и линия притока (ЛПр) при работе в режимах 3 и 4 представлены на фиг. 4.
Кондиционер в режиме 5 (режим ожидания) не работает. При этом выключены электроприводы роторных рекуператоров 7, 8 и 28, и вентиляторные блоки 16, 21, 29, электроприводы водяных насосов высокого давления адиабатических увлажнителей 9 и 10.
Все изложенное, включая описание работы заявляемого кондиционера, подтверждает возможность его использования в промышленности с получением высоких технических показателей по сравнению с известными конструкциями кондиционеров. Кроме того, как в источниках патентной и научно-технической информации, так и в промышленности такая конструкция не встречалась, что свидетельствует о соответствии заявляемого изобретения всем критериям патентоспособности.
Перечень последовательностей (состав кондиционера с трехроторной системой осушительного и испарительного охлаждения)
1. Приточная камера наружного воздуха
2. Основная вытяжная камера удаляемого из производственного помещения воздуха
3. Горизонтальная промежуточная перегородка
4. Основное окно горизонтальной промежуточной перегородки
5. Дополнительное окно горизонтальной промежуточной перегородки
6. Охладитель приточного воздуха, выполненный в виде системы осушительного и испарительного охлаждения
7. Рекуператор-осушитель
8. Рекуператор-охладитель
9. Адиабатический увлажнитель приточного воздуха
10. Адиабатический увлажнитель вытяжного воздуха
11. Подводящий водопровод деминерализованной воды для адиабатического увлажнителя приточного воздуха
12. Подводящий водопровод деминерализованной воды для адиабатического увлажнителя вытяжного воздуха
13. Входной патрубок приточной камеры
14. Выпускной патрубок приточной камеры
15. Воздухоочиститель приточной камеры
16. Вентиляторный блок приточной камеры
17. Верхняя панель основной вытяжной камеры
18. Входной патрубок основной вытяжной камеры
19. Выпускной патрубок основной вытяжной камеры
20. Воздухоочиститель основной вытяжной камеры
21. Вентиляторный блок основной вытяжной камеры
22. Дополнительная вытяжная камера
23. Окно, размещенное в верхней панели основной вытяжной камеры
24. Верхняя панель первой дополнительной вытяжной камеры
25. Входной патрубок дополнительной вытяжной камеры
26. Выпускной патрубок дополнительной вытяжной камеры
27. Воздухоочиститель дополнительной вытяжной камеры
28. Роторный рекуператор-теплообменник дополнительной вытяжной и основной вытяжной камер
29. Вентиляторный блок дополнительной вытяжной камеры
30. Сервисная дверь для рекуператора-осушителя
31. Сервисная дверь для рекуператора-охладителя
32. Сервисная дверь для воздухоочистителя основной вытяжной камеры
33. Сервисная дверь для вентиляторного блока основной вытяжной камеры
34. Сервисная дверь для воздухоочистителя приточной камеры
35. Сервисная дверь для вентиляторного блока приточной камеры
36. Сервисная дверь для адиабатического увлажнителя приточной камеры
37. Сервисная дверь для воздухоочистителя дополнительной вытяжной камеры
38. Сервисная дверь для роторного рекуператора-теплообменника основной вытяжной и дополнительной вытяжной камеры
39. Сервисная дверь для вентиляторного блока дополнительной вытяжной камеры
40. Сервисная дверь для адиабатического увлажнителя основной вытяжной камеры.

Claims (1)

  1. Кондиционер с трехроторной системой осушительного и испарительного охлаждения, содержащий приточную камеру и основную вытяжную камеру удаляемого из производственного помещения воздуха, разделенные между собой горизонтальной промежуточной перегородкой с основным и дополнительным окнами, охладитель приточного воздуха, выполненный в виде системы осушительного и испарительного охлаждения, состоящей из двух роторных рекуператоров - рекуператора-осушителя и рекуператора-охладителя, и двух адиабатических увлажнителей приточного и вытяжного воздуха с подводящими водопроводами деминерализованной воды, один из которых размещен в приточной камере на выходе из рекуператора-охладителя, а другой - в основной вытяжной камере на входе в рекуператор-охладитель, при этом рекуператор-осушитель выполнен в виде роторного регенератора адсорбционного типа, который встроен в основное окно горизонтальной промежуточной перегородки, а рекуператор-охладитель - в виде роторного теплообменника с инвертором и контроллером, который встроен в дополнительное окно горизонтальной промежуточной перегородки и совместно с рекуператором-осушителем имеют противоположно направленные линии притока наружного воздуха и вытяжки удаляемого из производственного помещения воздуха, приточная камера содержит входной и выпускной патрубки, воздухоочиститель, установленный на входе в камеру, и вентиляторный блок, основная вытяжная камера содержит верхнюю панель, входной и выпускной патрубки, воздухоочиститель, установленный на входе в камеру, и вентиляторный блок, установленный на выходе из камеры, отличающийся тем, что кондиционер снабжен дополнительной вытяжной камерой и окном, размещенным в верхней панели основной вытяжной камеры между рекуператором-осушителем и рекуператором-охладителем, дополнительная вытяжная камера размещена над верхней панелью основной вытяжной камеры и содержит верхнюю панель, входной и выпускной патрубки, воздухоочиститель, размещенный на входе в камеру, роторный рекуператор-теплообменник с инвертором и вентиляторный блок, размещенный на выходе из камеры, при этом роторный рекуператор-теплообменник встроен в окно верхней панели основной вытяжной камеры, герметично установлен между горизонтальной промежуточной перегородкой кондиционера и верхней панелью дополнительной вытяжной камеры, имеет противоположно направленные линии вытяжки горячего воздуха, и вытяжки удаляемого из производственного помещения воздуха и обеспечивает нагревание вытяжного воздуха, удаляемого из производственного помещения, на перепад температур, образуемый при работе кондиционера, между требуемой температурой вытяжного воздуха на входе в рекуператор-осушитель и температурой вытяжного воздуха на выходе из рекуператора-охладителя.
RU2016133366A 2016-08-12 2016-08-12 Кондиционер с трехроторной системой осушительного и испарительного охлаждения RU2630435C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016133366A RU2630435C1 (ru) 2016-08-12 2016-08-12 Кондиционер с трехроторной системой осушительного и испарительного охлаждения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016133366A RU2630435C1 (ru) 2016-08-12 2016-08-12 Кондиционер с трехроторной системой осушительного и испарительного охлаждения

Publications (1)

Publication Number Publication Date
RU2630435C1 true RU2630435C1 (ru) 2017-09-07

Family

ID=59797505

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016133366A RU2630435C1 (ru) 2016-08-12 2016-08-12 Кондиционер с трехроторной системой осушительного и испарительного охлаждения

Country Status (1)

Country Link
RU (1) RU2630435C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2707241C1 (ru) * 2019-02-11 2019-11-25 Владимир Евгеньевич Воскресенский Кондиционер приточного воздуха с безжидкостным роторным нагреванием и гибридным охлаждением
CN114110884A (zh) * 2021-11-24 2022-03-01 美的集团武汉制冷设备有限公司 新风机及其控制方法、计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2723837A (en) * 1951-07-02 1955-11-15 Robert H Henley Universal air-conditioner
US3828528A (en) * 1971-02-23 1974-08-13 Gas Dev Corp Adiabatic saturation cooling machine
SU624069A1 (ru) * 1976-12-29 1978-09-15 Военный Инженерный Краснознаменный Институт Им.А.Ф.Можайского Установка дл тепловлажностной обработки воздуха
SU859770A1 (ru) * 1979-12-17 1981-08-30 Рижский Ордена Трудового Красного Знамени Политехнический Институт Устройство дл утилизации тепловой энергии в системах кондиционировани воздуха
SU1442793A2 (ru) * 1987-04-24 1988-12-07 Рижское Отделение Всесоюзного Государственного Научно-Исследовательского И Проектно-Изыскательского Института "Теплоэлектропроект" Устройство дл утилизации тепловой энергии в системах кондиционировани
RU2292518C2 (ru) * 2005-02-16 2007-01-27 Александр Григорьевич Аверкин Устройство для тепловлажностной обработки воздуха и способ его монтажа

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2723837A (en) * 1951-07-02 1955-11-15 Robert H Henley Universal air-conditioner
US3828528A (en) * 1971-02-23 1974-08-13 Gas Dev Corp Adiabatic saturation cooling machine
SU624069A1 (ru) * 1976-12-29 1978-09-15 Военный Инженерный Краснознаменный Институт Им.А.Ф.Можайского Установка дл тепловлажностной обработки воздуха
SU859770A1 (ru) * 1979-12-17 1981-08-30 Рижский Ордена Трудового Красного Знамени Политехнический Институт Устройство дл утилизации тепловой энергии в системах кондиционировани воздуха
SU1442793A2 (ru) * 1987-04-24 1988-12-07 Рижское Отделение Всесоюзного Государственного Научно-Исследовательского И Проектно-Изыскательского Института "Теплоэлектропроект" Устройство дл утилизации тепловой энергии в системах кондиционировани
RU2292518C2 (ru) * 2005-02-16 2007-01-27 Александр Григорьевич Аверкин Устройство для тепловлажностной обработки воздуха и способ его монтажа

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
статья "Климатический центр Klimahaus в Бремерхафене", Н.В.Шилкина, в журнале "АВОК" N2, 2012 г., с. 84-93. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2707241C1 (ru) * 2019-02-11 2019-11-25 Владимир Евгеньевич Воскресенский Кондиционер приточного воздуха с безжидкостным роторным нагреванием и гибридным охлаждением
CN114110884A (zh) * 2021-11-24 2022-03-01 美的集团武汉制冷设备有限公司 新风机及其控制方法、计算机可读存储介质
CN114110884B (zh) * 2021-11-24 2023-06-30 美的集团武汉制冷设备有限公司 新风机及其控制方法、计算机可读存储介质

Similar Documents

Publication Publication Date Title
RU2595583C1 (ru) Вентиляционная установка с форсированной системой осушительного и испарительного охлаждения
US5003961A (en) Apparatus for ultra high energy efficient heating, cooling and dehumidifying of air
CN100510558C (zh) 太阳能驱动的单个转轮两级除湿空调器
CN100494793C (zh) 可利用低品位热源的两级转轮除湿空调装置
CN109813064B (zh) 智能空气能烘干系统及其烘干方法
CN206333267U (zh) 一种具有回热利用的热泵挂面干燥装置
CN102444941A (zh) 一种极低冷热损失的洁净新风除湿系统
WO2003054455A1 (fr) Conditionneur d'air fournissant un air neuf capable d'economiser l'energie
RU2630435C1 (ru) Кондиционер с трехроторной системой осушительного и испарительного охлаждения
CN106288053A (zh) 一种空气品质处理机组
JP2011033302A (ja) 調湿換気装置
RU2671909C1 (ru) Система кондиционирования приточного воздуха с гибридной линией вытяжки горячего воздуха
CN102128477A (zh) 溶液除湿空气处理机组
CN206959551U (zh) 一种热泵烘干除湿一体机
RU2641496C1 (ru) Кондиционер с двухроторной системой осушительного и испарительного охлаждения
RU2630437C1 (ru) Кондиционер с форсированной системой осушительного и испарительного охлаждения
KR101420595B1 (ko) 데시칸트 에어컨
RU2660520C1 (ru) Система кондиционирования приточного воздуха с линией вытяжки горячего воздуха
EP3133352B1 (en) Dehumidifying and cooling apparatus
CN201314652Y (zh) 节能环保供热全新风空调器
CN104406254A (zh) 一种全过程节能蒸发冷凝空调机系统及其控制方法
RU2615685C1 (ru) Кондиционер с самонастраивающейся системой осушительного и испарительного охлаждения
CN204301237U (zh) 一种全过程节能蒸发冷凝空调机系统
CN104819536B (zh) 蒸发冷却与热管、热泵相结合的热回收空调机组
CN104677067B (zh) 一种冷热两用型干燥箱

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180813