RU2629703C1 - Люминесцентный способ определения количественного содержания неоднородно распределенной дополнительной кристаллической фазы в сильнорассеивающих дисперсных двухфазных средах с примесными ионами-люминогенами - Google Patents

Люминесцентный способ определения количественного содержания неоднородно распределенной дополнительной кристаллической фазы в сильнорассеивающих дисперсных двухфазных средах с примесными ионами-люминогенами Download PDF

Info

Publication number
RU2629703C1
RU2629703C1 RU2016118906A RU2016118906A RU2629703C1 RU 2629703 C1 RU2629703 C1 RU 2629703C1 RU 2016118906 A RU2016118906 A RU 2016118906A RU 2016118906 A RU2016118906 A RU 2016118906A RU 2629703 C1 RU2629703 C1 RU 2629703C1
Authority
RU
Russia
Prior art keywords
phase
luminescence
content
scattering
determining
Prior art date
Application number
RU2016118906A
Other languages
English (en)
Inventor
Владимир Иванович Соломонов
Альфия Виликовна Спирина
Полина Викторовна Торопова
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт электрофизики Уральского отделения Российской академии наук (ИЭФ УрО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт электрофизики Уральского отделения Российской академии наук (ИЭФ УрО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт электрофизики Уральского отделения Российской академии наук (ИЭФ УрО РАН)
Priority to RU2016118906A priority Critical patent/RU2629703C1/ru
Application granted granted Critical
Publication of RU2629703C1 publication Critical patent/RU2629703C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Изобретение относится к люминесцентным методам определения структуры вещества и может быть использовано для количественного определения содержания неоднородно распределенной дополнительной кристаллической фазы в сильнорассеивающих дисперсных веществах с примесными ионами-люминогенами, таких как нанопорошки, спрессованные нанопорошки (компакты) и т.д., использующихся для производства различных лазерных сред, люминофоров, сцинтилляторов. Способ определения количественного содержания дополнительной кристаллической фазы в двухфазном веществе с примесными ионами-люминогенами, включающий в себя регистрацию спектров люминесценции, построение гиперболической градуировочной кривой, отражающей зависимость содержания дополнительной фазы в эталонных образцах с ее известным содержанием от люминесцентного аналитического параметра, и последующее использование этой кривой для определения неизвестного содержания дополнительной фазы в исследуемом образце подобного фазового состава, как и в эталонных образцах, подстановкой измеренного для него люминесцентного аналитического параметра в градуировочную кривую, при этом для определения фазового состава сильнорассеивающей дисперсной среды с неоднородно распределенными по объему фазами, для которой выполняется условие рассеяния Рэлея, используют люминесцентный аналитический параметр, рассчитанный по формуле
Figure 00000017
где λ - длина волны люминесценции,
I(λ)reg - регистрируемый спектр люминесценции,
(D1-D2) и (L1-L2)- диапазоны спектра,
причем диапазоны (D1-D2) и (L1-L2) выбираются таким образом, чтобы хотя бы один из них включал полосы люминесценции иона-люминогена, расположенного в позициях как одной, так и другой кристаллической фазы. Техническим результатом является учет рассеяния люминесценции на частицах сильнорассеивающих неоднородных сред и неоднородности распределения фаз по объему среды, что дает снижение существенной ошибки при определении содержания количества фазы. 2 ил.

Description

Изобретение относится к люминесцентным методам определения структуры вещества и может быть использовано для количественного определения содержания неоднородно распределенной дополнительной кристаллической фазы в сильнорассеивающих дисперсных веществах с примесными ионами-люминогенами, таких как нанопорошки, спрессованные нанопорошки (компакты) и т.д., использующихся для производства различных лазерных сред, люминофоров, сцинтилляторов.
Уровень техники
Известен традиционный способ количественного определения содержания различных кристаллических фаз в веществе - рентгенофазовый анализ (РФА), где идентификация их содержания в смеси происходит путем анализа дифракционной картины, создаваемой исследуемым образцом. К настоящему времени существует множество усовершенствованных методик РФА и конструкций рентгеновских установок, позволяющих исследовать более неоднородные и мелкодисперсные смеси. Недостатком методов РФА является их относительная дороговизна и сравнительно долгое время анализа. Кроме рентгенодифракционных, универсальных разработанных методов определения количественного содержания кристаллических фаз в веществе нет, в то время как существуют различные оптические, дифракционные и радиоспектроскопические методы, которые позволяют качественно идентифицировать кристаллические фазы.
Альтернативные оптические методы являются более экспрессными и менее дорогостоящими. Известен оптический способ количественного фазового анализа в шеелит-молибдошеелитовых рудах [С.М. Ключарева, О.В. Кононов. Фазовый анализ шеелит-молибдошеелитовых руд и концентратов по спектрам возбуждения люминесценции. // Заводская лаборатория, 1970, №6, С. 687-688], в котором регистрируют спектры возбуждения люминесценции в приготовленных механических смесях зерен (по весу и по количеству зерен) и строят градуировочный график процентного содержания одной из двух фаз (шеелита) в зависимости от отношения интенсивностей двух полос возбуждения с максимумами 282 и 250 нм. Далее определяют процентное содержание фаз в образце, где оно не известно, накладывая полученное значение отношения интенсивностей тех же полос на построенный градуировочный график.
Наиболее близким к изобретению является способ определения дополнительной кристаллической фазы в алюминатах иттрия, допированных неодимом [В.В. Осипов, В.И. Соломонов, А.В. Спирина. Люминесцентное исследование алюминатов иттрия, легированных неодимом. // Оптический журнал, 2011, Т. 78, №6, С. 85], где в оптических керамиках и монокристаллах иттрий-алюминиевого граната, допированных ионами Nd3+ (Nd3+ : ИАГ), определяют малое количество примесного иттрий-алюминиевого перовскита, допированного ионами Nd3+ (Nd3+ : ИАП). Для этого в каждом эталонном образце с различным известным соотношением фаз Nd3+ : ИАГ и Nd3+ : ИАП, определенных из РФА, измеряют светосуммы
Figure 00000001
и
Figure 00000002
спектра импульсной катодолюминесценции (ИКЛ) I(λ), где λ - длина волны, измеряемая в нм, затем подсчитывают отношение S1 к S2 (параметр S1/S2) и строят точечный график, отражающий зависимость содержания Nd3+ : ИАГ от S1/S2. Затем полученные точки аппроксимируют и получают градуировочную кривую гиперболического вида с ее уравнением (градуировочное уравнение), которое в дальнейшем используют для образцов с неизвестным соотношением Nd3+ : ИАГ и Nd3+ : ИАП, подсчитывая параметр S1/S2 спектра и подставляя его в градуировочное уравнение (прототип). Данный метод универсален для любых двухфазных веществ, содержащих примесные ионы-люминогены, люминесцирующих в обеих фазах: для каждого такого вещества возможно построить свою индивидуальную градуировочную кривую. Для этого необходимо знать принадлежность полос спектра люминесценции к той или иной фазе для этого вещества и выбрать соответствующие уже данному веществу диапазоны интегрирования для светосумм так, чтобы хотя бы в один из них попадали полосы сразу обеих фаз. Возможность выбирать самостоятельно диапазоны интегрирования является крайне удобным свойством такого метода, так как спектральные диапазоны люминесценции примесного иона могут отличаться в различных веществах, а также выбор того или иного диапазона может ограничиваться возможностью спектральных приборов. Недостатками метода является то, что при применении его к сильнорассеивающим неоднородным средам (нанопорошкам, компактам нанопорошков) не учитывается рассеяние люминесценции на частицах и, таким образом, зависимость этого рассеяния от длины волны и размеров рассеивающих частиц, а также не учитывается неоднородность распределения фаз по объему среды, что дает существенную ошибку при определении содержания количества фазы.
Раскрытие изобретения
Целью заявляемого изобретения является люминесцентный способ определения количественного фазового состава в двухфазной сильнорассеивающей неоднородной среде (например, нанопорошок, компакт нанопорошка) с допированными примесными ионами-люминогенами, в котором учитывается влияние на спектр люминесценции рассеивания возбужденного излучения на частицах вещества, а также неоднородность распределения фаз в веществе. Под кристаллическими фазами, согласно установившейся терминологии РФА, подразумеваются различные кристаллические системы.
Измеренная интенсивность в объемных рассеивающих средах определяется как
Figure 00000003
где λ - длина волны люминесценции, I(λ)ph - физическая интенсивность люминесценции, αr - показатель рассеяния среды,
Figure 00000004
- толщина излучающего слоя [Фриш С.Э. Оптические спектры атомов / С.Э. Фриш. М.; Л., Государственное издательство физико-математической литературы, 1963. 640 с.]. Под сильнорассеивающей средой понимается среда, для которой
Figure 00000005
Поставленная цель достигается тем, что в отличие от прототипа, где в качестве аналитического параметра используется отношение светосумм люминесцентного спектра, в нашем решении используется параметр S/S, где
Figure 00000006
и
Figure 00000007
, где I(λ) - измеренный спектр люминесценции, D1-D2 и L1-L2 диапазоны люминесцентного спектра I(λ). Для обоснования выбора параметров S и S воспользуемся теорией рассеяния Рэлея, где средний размер частиц должен быть меньше λ/20 для монохроматического излучения. Воспользуемся допущением, что нанопорошок является сильнорассеивающей средой, т.е. выражение ехр(-αrl)<<0.1, и, таким образом, его вкладом в (1) можно пренебречь. В свою очередь показатель рассеяния среды αr можно выразить как
Figure 00000008
где σ - эффективное сечение рэлеевского рассеяния, Nr - концентрация рассеивающих частиц, n - показатель преломления среды (n=np/n0, np и n0 - показатели преломления рассеивающей частицы и воздуха соответственно), d - диаметр частиц, ρb и ρp - насыпная плотность и плотности частицы. Коэффициент a(n, d, ρb, ρр) выделен для удобства дальнейших преобразований. Отсюда измеренная интенсивность I(λ)reg объемной сильнорассеивающей среды при подстановке (2) в (1) определяется выражением:
Figure 00000009
В прототипе использовались нерассеивающие среды, а аналитический параметр S1/S2 определялся, по существу, выражением
Figure 00000010
Таким образом, для случая рассеивающих сред согласно выражению (3) мы вводим поправку, которая учитывает несоответствие зарегистрированной интенсивности люминесценции и физической интенсивности:
Figure 00000011
Как видно из (5), при сокращении в дроби коэффициента a(n, d, ρb, ρp) параметр S/S перестает зависеть от неоднородности вещества по размеру частиц d, а также после интегрирования S и S перестает зависеть от длины волны λ. Эти два параметра являются определяющими для рассеяния Рэлея, как наиболее сильно искажающие физическую интенсивность люминесценции в рассеивающих средах.
Регистрация люминесценции со всего объема, а также усреднение спектра люминесценции или получившегося аналитического параметра S/S позволяют определить среднее значение содержания различных кристаллических фаз неоднородно распределенных по объему вещества. Для этого каждое однократное возбуждение люминесценции в пробах осуществляется с различных участков равного объема, а количество зарегистрированных спектров и их усреднение для одной пробы определяют исходя из соотношения полного объема вещества и объема под площадкой сбора люминесценции таким образом, чтобы просканировать весь имеющийся объем.
В итоге, получаем следующую последовательность создания градуировочной кривой:
1. Для двухфазного сильнорассеивающего вещества с примесными ионами, люминесцирующими в обеих фазах (нанопорошок или компакт нанопорошка), необходимо подобрать эталонные образцы с различным известным соотношением двух фаз.
2. Для каждого эталонного образца необходимо зарегистрировать спектры люминесценции, при этом необходимо просканировать весь имеющийся объем, причем каждое однократное возбуждение должно происходить с равного объема. Объем и масса всей эталонной пробы не имеют значения. От их значений будет зависеть лишь количество зарегистрированных спектров (чем больше объем пробы, тем больше зарегистрированных спектров получится при сканировании с одной пробы).
3. Для каждого спектра рассчитать параметр S/S согласно (4). Диапазоны интегрирования D1-D2 и L1-L2 выбираются так, чтобы хотя бы в одном из них присутствовали полосы люминесценции примесного иона в обеих фазах. Далее S/S усреднить для каждой эталонной пробы.
4. По полученным усредненным значениям параметра S/S построить точечный график C2=f(S/S), где C2 - известные содержания примесной (или основной) фазы в эталонном образце.
5. Аппроксимировать полученный точечный график гиперболической градуировочной кривой и получить ее уравнение.
Далее полученное уравнение используется непосредственно для определения процентного содержания фаз в образцах того же вещества с неизвестным соотношением фаз. Для этого необходимо зарегистрировать спектры люминесценции тем же способом возбуждения, как в эталонах. При этом необходимо просканировать весь образец, чтобы каждое однократное возбуждение происходило с того же объема, как у эталонных образцов (объем всего образца не имеет значения). Далее посчитать параметр S/S и его среднее в диапазонах спектра люминесценции, которые были определены для эталонных образцов. Получившееся усредненное значение S/S подставить в уравнение (или наложить точку на градуировочную кривую) и получить искомое значение фазы C2 и соответственно второй фазы вычитанием значения C2 из 100%. Такие градуировочные гиперболические кривые будут индивидуальны для каждой двухфазной среды.
Осуществление изобретения
Для примера осуществления данного люминесцентного способа рассмотрим построение градуировочной зависимости и ее использование для нанопорошка оксида иттрия, допированного ионами неодима (Nd3+ : Y2O3), где основной фазой будем считать кубическую, а дополнительной - моноклинную. Для приготовления эталонных образцов с различным содержанием фаз использовались механические смеси (замесы) моноклинного и кубического нанопорошков Nd3+ : Y2O3. Масса одной пробы замеса составляла 0.5 г. Взвешивание производилось на весах с четвертым значащим знаком после запятой, и максимальная ошибка взвешивания одной пробы составляла 0.0005 г или 0.1% в переводе на процентное содержание фазы. Пробы были замешаны со следующим содержанием моноклинной фазы: 0%, 12%, 20%, 36%, 48%, 60%, 72%, 92%, 100% и все перемешивались в течение суток. Для возбуждения фотолюминесценции использовался лазерный диод с длиной волны излучения 808 нм, выходной мощностью 4 Вт. В качестве фотоприемника ИК-спектрографа выступала полупроводниковая InGaAs линейка, содержащая 512 элементов с дискретностью 0.5 нм на единичный элемент линейки. Регистрация производилась в диапазоне 890-1150 нм. Спектры ФЛ регистрировались на воздухе при комнатной температуре. Погрешность определения длины волны не превышала 0.5 нм. В качестве диапазонов для подсчета S и S взяты диапазоны от 1088 до 1150 нм и от 1088 до 1113 нм соответственно (Фиг. 1). Данные области спектра выбраны таким образом, чтобы исключить попадание в измеряемый диапазон длинноволнового крыла возбуждающего диода. Для получения люминесцентной информации со всего объема исследуемых проб было зарегистрировано по 20 спектров фотолюминесценции (сканирование лазерным диодом). Далее подсчитывался параметр S/S согласно (6) и его среднее значение для каждой пробы.
Figure 00000012
где λ - длина волны, измеряемая в нм.
На Фиг. 2 представлена градуировочная гиперболическая зависимость
Figure 00000013
построенная по усредненным значениям параметра S/S каждого эталонного образца. Уравнение гиперболы имеет вид:
Figure 00000014
Максимальная погрешность (отклонение значения экспериментальной точки от градуировочной кривой) составила ±2%. Именно подсчет среднего значения параметра S/S устранил существенную ошибку, возникающую из-за фазовой неоднородности образца. Так, например, в эталонном образце, содержащем 60% моноклинной фазы, при подстановке всех измеренных для него S/S в (7) разброс в значениях C2 составил от 34% до 85%.
Теперь воспользуемся данной кривой для определения содержания моноклинной фазы в не эталонном образце, для которого в качестве проверки был сделан рентгенофазовый анализ. Регистрация спектра фотолюминесценции и подсчет параметра (6) были сделаны аналогично эталонным замесам. В результате согласно (7) было получено 53% моноклинной фазы в исследуемом образце. Согласно РФА данное значение составило 51%.
Таким образом, возможно дальнейшее использование построенной градуировочной кривой
Figure 00000015
для экспрессного определения количественного содержания дополнительной моноклинной фазы Nd3+ : Y2O3 в образцах с ее неизвестным содержанием, измеряя параметр S/S зарегистрированного спектра люминесценции.
На Фиг. 1 - спектры фотолюминесценции: 1 - диапазон для подсчета S, 2 - диапазон для подсчета S, 3 - эталонный замес нанопорошка Nd3+ : Y2O3, где 64% - кубическая, 36% - моноклинная кристаллическая фаза, 4 - кубический нанопорошок Nd3+ : Y2O3, 5 - моноклинный нанопорошок Nd3+ : Y2O3.
На Фиг. 2. - градуировочная аппроксимационная кривая с экспериментальными точками, где S/S - люминесцентный аналитический параметр.

Claims (6)

  1. Способ определения количественного содержания дополнительной кристаллической фазы в двухфазном веществе с примесными ионами-люминогенами, включающий в себя регистрацию спектров люминесценции, построение гиперболической градуировочной кривой, отражающей зависимость содержания дополнительной фазы в эталонных образцах с ее известным содержанием от люминесцентного аналитического параметра, и последующее использование этой кривой для определения неизвестного содержания дополнительной фазы в исследуемом образце подобного фазового состава, как и в эталонных образцах, подстановкой измеренного для него люминесцентного аналитического параметра в градуировочную кривую, отличающийся тем, что для определения фазового состава сильнорассеивающей дисперсной среды с неоднородно распределенными по объему фазами, для которой выполняется условие рассеяния Рэлея, используют люминесцентный аналитический параметр, рассчитанный по формуле
  2. Figure 00000016
  3. где λ - длина волны люминесценции,
  4. I(λ)reg - регистрируемый спектр люминесценции,
  5. (D1-D2) и (L1-L2)- диапазоны спектра,
  6. причем диапазоны (D1-D2) и (L1-L2) выбираются таким образом, чтобы хотя бы один из них включал полосы люминесценции иона-люминогена, расположенного в позициях как одной, так и другой кристаллической фазы.
RU2016118906A 2016-05-16 2016-05-16 Люминесцентный способ определения количественного содержания неоднородно распределенной дополнительной кристаллической фазы в сильнорассеивающих дисперсных двухфазных средах с примесными ионами-люминогенами RU2629703C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016118906A RU2629703C1 (ru) 2016-05-16 2016-05-16 Люминесцентный способ определения количественного содержания неоднородно распределенной дополнительной кристаллической фазы в сильнорассеивающих дисперсных двухфазных средах с примесными ионами-люминогенами

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016118906A RU2629703C1 (ru) 2016-05-16 2016-05-16 Люминесцентный способ определения количественного содержания неоднородно распределенной дополнительной кристаллической фазы в сильнорассеивающих дисперсных двухфазных средах с примесными ионами-люминогенами

Publications (1)

Publication Number Publication Date
RU2629703C1 true RU2629703C1 (ru) 2017-08-31

Family

ID=59797945

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016118906A RU2629703C1 (ru) 2016-05-16 2016-05-16 Люминесцентный способ определения количественного содержания неоднородно распределенной дополнительной кристаллической фазы в сильнорассеивающих дисперсных двухфазных средах с примесными ионами-люминогенами

Country Status (1)

Country Link
RU (1) RU2629703C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2198394C2 (ru) * 2000-12-18 2003-02-10 Военный университет радиационной, химической и биологической защиты Оптический биосенсор необратимых ингибиторов холинэстеразы в воздухе
RU2221236C1 (ru) * 2002-09-16 2004-01-10 Калачев Алексей Александрович Способ анализа физических и/или химических свойств поверхностного слоя твердого тела (варианты)
US20040142484A1 (en) * 2002-09-30 2004-07-22 Intel Corporation Spectroscopic analysis system and method
DE102012216164A1 (de) * 2012-09-12 2014-03-13 Forschungsverbund Berlin E.V. Vorrichtung mit einer Anordnung optischer Elemente

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2198394C2 (ru) * 2000-12-18 2003-02-10 Военный университет радиационной, химической и биологической защиты Оптический биосенсор необратимых ингибиторов холинэстеразы в воздухе
RU2221236C1 (ru) * 2002-09-16 2004-01-10 Калачев Алексей Александрович Способ анализа физических и/или химических свойств поверхностного слоя твердого тела (варианты)
US20040142484A1 (en) * 2002-09-30 2004-07-22 Intel Corporation Spectroscopic analysis system and method
DE102012216164A1 (de) * 2012-09-12 2014-03-13 Forschungsverbund Berlin E.V. Vorrichtung mit einer Anordnung optischer Elemente

Similar Documents

Publication Publication Date Title
Waljeski et al. The composition of a coronal active region
Bonizzoni et al. Comparison between XRF, TXRF, and PXRF analyses for provenance classification of archaeological bricks
Drdlikova et al. Processing and properties of luminescent Cr3+ doped transparent alumina ceramics
Bastron et al. Method for the quantitative spectrochemical analysis of rocks, minerals, ores, and other materials by a powder dc arc technique
Mao et al. A study on temperature sensing performance based on the luminescence of Eu 3+ and Er 3+ co-doped YNbO 4
EP2912143B1 (en) Scintillation crystal including a rare earth halide, and a radiation detection apparatus including the scintillation crystal
Kumar et al. Effect of doping Ge into Y 2 O 3: Ho, Yb on the green-to-red emission ratio and temperature sensing
Mullins et al. Dual-emission luminescence thermometry using LaGaO 3: Cr 3+, Nd 3+ phosphors
Kushida et al. Absorption spectra of optically pumped ZnS: Mn
JP2023021247A (ja) 分光測定方法
Bhiri et al. Excitation power density dependence of a primary luminescent thermometer based on Er3+, Yb3+: GdVO4 microcrystals operating in the visible
Rodríguez et al. Cathodoluminescence, SEM and EDX analysis of CaF2 and Tm2O3 pellets for radiation dosimetry applications
Lesniewski et al. Comparison of quenching mechanisms in Gd 3 Al 5− x Ga x O 12: Ce 3+(x= 3 and 5) garnet phosphors by photocurrent excitation spectroscopy
RU2629703C1 (ru) Люминесцентный способ определения количественного содержания неоднородно распределенной дополнительной кристаллической фазы в сильнорассеивающих дисперсных двухфазных средах с примесными ионами-люминогенами
Godbole et al. UV luminescence of U4+ ions in LiYF4 single crystal: Observation of 5f16d1→ 5f2 transitions
Lazarowska et al. Structural phase transitions and photoluminescence properties of oxonitridosilicate phosphors under high hydrostatic pressure
Zych et al. Temperature dependence of Ce-emission kinetics in YAG: Ce optical ceramic
Anfone et al. Radio frequency glow discharge optical emission spectrometry (rf-GD-OES) analysis of solid glass samples
Kato et al. Optical and thermally-stimulated luminescence properties of Ce-doped Al2O3 transparent ceramics
Bennun et al. A Procedure for the Improvement in the Determination of a TXRF Spectrometer Sensitivity Curve
Chaika et al. Spectral characteristics of “mixed” sesquioxide Yb:(Gd, Lu) 2O3 transparent ceramics
Sukul et al. Boltzmann relation reliability in optical temperature sensing based on upconversion studies of Er3+/Yb3+ co‐doped PZT ceramics
Chung Quantitative X-ray diffraction and X-ray fluorescence analyses of mixtures–unified and simplified
Costantini et al. Comparison of semiquantification experimental methodologies using micro‐Raman spectroscopy: palme software as an alternative tool for the study of salt efflorescence
Lyapin et al. Characteristics of Upconversion Luminescence of CaF 2: Er Powders Excited by 1.5-µm Laser Radiation