RU2629542C2 - Устройство для изготовления периодических структур методом лазерной интерференционной литографии с использованием лазера с перестраиваемой длиной волны - Google Patents

Устройство для изготовления периодических структур методом лазерной интерференционной литографии с использованием лазера с перестраиваемой длиной волны Download PDF

Info

Publication number
RU2629542C2
RU2629542C2 RU2015148270A RU2015148270A RU2629542C2 RU 2629542 C2 RU2629542 C2 RU 2629542C2 RU 2015148270 A RU2015148270 A RU 2015148270A RU 2015148270 A RU2015148270 A RU 2015148270A RU 2629542 C2 RU2629542 C2 RU 2629542C2
Authority
RU
Russia
Prior art keywords
laser
interference lithography
mirror
tunable wavelength
period
Prior art date
Application number
RU2015148270A
Other languages
English (en)
Other versions
RU2015148270A (ru
Inventor
Игорь Сергеевич Балашов
Андрей Анатольевич Грунин
Андрей Анатольевич Федянин
Артем Вячеславович Четвертухин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority to RU2015148270A priority Critical patent/RU2629542C2/ru
Publication of RU2015148270A publication Critical patent/RU2015148270A/ru
Application granted granted Critical
Publication of RU2629542C2 publication Critical patent/RU2629542C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2053Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70408Interferometric lithography; Holographic lithography; Self-imaging lithography, e.g. utilizing the Talbot effect

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

Изобретение относится к области литографии и касается устройства для изготовления периодических микроструктур методом лазерной интерференционной литографии. Устройство включает в себя лазерный источник излучения, щелевую диафрагму, расширитель пучка и держатель образца с закрепленным на нем зеркалом. В качестве лазерного источника излучения используют лазер с перестраиваемой длиной волны. Расширитель пучка состоит из рассеивающей и собирающей линз. Линия разреза щелевой диафрагмы параллельна линии пересечения плоскостей зеркала и держателя образца. Технический результат заключается в упрощении устройства и повышении его надежности. 1 з.п. ф-лы, 2 ил.

Description

Заявляемое изобретение относится к области физики, в частности к сфере изготовления микроструктур с периодической структурированной поверхностью, и может быть использовано в устройствах фотоники. Устройство позволяет создавать периодический рисунок путем экспонирования лазерным светом светочувствительного слоя, нанесенного на поверхность, что может быть применено в устройствах фотоники, например в дисперсионных или поляризационных оптических элементах и голограммах [1].
Метод лазерной интерференционной литографии [2] используется для создания голограмм, дифракционных решеток, а также иных периодических одномерных и двумерных структур с высоким разрешением (периоды структур 100-1000 нм, разрешение достигает единиц нм). Он заключается в экспонировании светочувствительного слоя двумя (или более) когерентными лазерными лучами из одного источника света. При этом на поверхности светочувствительного слоя возникает периодический рисунок, обусловленный интерференцией лазерных лучей. Экспонированный образец после проявления можно использовать для нанесения дополнительных функциональных слоев, что используется, например, при создании металлических и магнитных структур. В качестве источника света используется лазер с высокой пространственной когерентностью и длиной волны~300-400 нм для возможности создания структур с малым периодом. Основным недостатком метода считается сложность юстировки оптической схемы устройства для изменения периодичности изготавливаемых структур.
Для практических применений, в частности для получения структур с периодически структурированной поверхностью, используют устройства с двумя основными оптическими схемами:
- лазерная интерференционная литография на основе интерферометра Ллойда, которая используется для получения структур с высоким разрешением [3], и
- двухлучевая лазерная интерференционная литография, которая предпочтительнее для экспонирования больших пространственных областей [4].
В двухлучевой лазерной интерференционной литографии исходный луч делится на два при помощи светоделителя. Затем лучи по независимым оптическим путям попадают на поверхность подложки с нанесенным светочувствительным слоем. В случае использования лазерной интерференционной литографии на основе интерферометра Ллойда исходный луч фокусируют собирающей линзой на точечное отверстие (круговую диафрагму), из который выходит расходящийся пучок света и попадает на интерферометр Ллойда - подложку и зеркало, расположенное перпендикулярно подложке. При этом максимальный размер структуры ограничен поперечной когерентностью луча. Однако, данный метод является более простым для сбора и юстировки устройства для изготовления периодических структур [2].
Период получаемой микроструктуры зависит от длины волны λ лазерного излучения и угла падения света α (в случае одинаковых углов падения света для первого и второго лазерного луча) [2]:
P=λ/2sinα.
Таким образом, для того чтобы устройство было пригодно для изготовления микроструктур с различной периодичностью, необходимо предусмотреть возможность либо изменения угла падения света, либо перестройки длины волны.
Из уровня техники известно устройство изготовления микроструктур методом двухлучевой лазерной интерференционной литографии, раскрытое в публикации US 8681315 B2, в котором для изменения периода изготавливаемых структур изменяется наклон зеркал, которые направляют излучение на область экспонирования. Кроме того, в данной системе требуется изменять расстояние от вращающихся зеркал до области экспонирования, чтобы при перестройке угла падения света поверхность фоточувствительного слоя оставалась в области перекрытия лучей, создающих интерференционную картину.
Известное устройство не всегда удобно в применении, особенно в случае изготовления двумерной структуры с разным периодом в обоих направлениях.
Известны также способ и оптическая схема по интерференционной литографии с одним исходным лазерным лучом и активной стабилизацией с использованием интерферометра Ллойда, раскрытые в публикации US 20010035991 A1, при этом для повышения качества изготавливаемой структуры используется система активной стабилизации. Система обратной связи поддерживает постоянную разность фаз между интерферирующими волновыми фронтами, что понижает помехи при экспозиции. Система зеркал поддерживает оптимальное поляризационное состояние лазерного луча. Преимуществом известного способа является высокое качество изготавливаемых структур. Вместе с тем, способу присущ основной недостаток - сложность юстировки оптической схемы и отсутствие автоматического поворота образца для изготовления двумерных периодических структур в условиях чистой комнаты.
Известно устройство лазерной интерференционной литографии с использованием оптоволокна в качестве пространственного фильтра и расширителя пучка (публикация CN 103792795 A), в котором в качестве пространственного фильтра и расширителя пучка используется оптическое волокно, что также упрощает настройку устройства и упрощает оптическую схему. Использование оптического волокна вместо круговой диафрагмы понижает пространственные шумы, вносимые окружающей средой, и позволяет добиться хорошей интерференционной картины и, следовательно, высококачественных периодических структур.
Однако данное устройство неприменимо при высоких рабочих мощностях лазера, поэтому его использование может приводить к необходимости использования нейтральных фильтров и поглотителей, а также к увеличению времени экспозиции.
Наиболее близким к заявляемому устройству является устройство для метода лазерной интерференционной литографии (публикация US 8400616 B2) с интерферометром Ллойда, в котором для получения больших размеров экспонированной области используется подвижный держатель образца, позволяющий последовательно экспонировать соседние области. Преимуществом данного метода является возможность получения структур большого размера.
Недостатками всех вышеперечисленных схем является необходимость поворота одного или нескольких оптических элементов и дополнительной юстировки при необходимости изменения периода изготавливаемой структуры.
Задачей изобретения является создание устройства для изготовления периодических микроструктур с заданным периодом без необходимости дополнительных настроек системы оптических элементов.
Технический результат, достигаемый при использовании заявляемого изобретения, заключается в упрощении процесса настройки и управления устройством, повышении его надежности за счет устранения механических движений, что приводит к снижению вероятности поломки и износа устройства.
При реализации заявляемого устройства становится возможным не использовать собирающую линзу для фокусировки светового излучения (фиг. 2), что позволяет использовать большие рабочие мощности и уменьшить время изготовления микроструктур.
Поставленная задача решается тем, что устройство для изготовления периодических микроструктур методом лазерной интерференционной литографии согласно техническому решению включает расположенные по ходу оптического излучения источник света, в качестве которого используют лазер с перестраиваемой длиной волны, обеспечивающей возможность изменения периода изготавливаемой структуры, щелевую диафрагму, расширитель пучка, содержащий рассеивающую и собирающую линзы, и держатель образца с зеркалом, при этом линия разреза щелевой диафрагмы параллельна линии пересечения плоскостей зеркала и держателя образца. При этом изменение периода P изготавливаемой микроструктуры определяют по заданной длине волны лазера λ как P=λ/2sinα, где α - угол падения света от источника.
Заявляемое изобретение характеризуется схематичным изображением оптической схемы устройства (фиг. 1).
На фиг. 2 приведена ранее используемая оптическая схема с круговой диафрагмой.
Позициями на чертежах обозначены:
1. Лазер с перестраиваемой длиной волны
2. Щелевая диафрагма
3. Зеркало
4. Образец
5. Держатель образца
6. Расширитель пучка
7. Рассеивающая линза
8. Собирающая линза
9. Круговая диафрагма
В заявляемом устройстве предлагается использовать метод лазерной интерференционной литографии с интерферометром Ллойда и лазером с перестраиваемой длиной волны. При этом изменение периода изготавливаемой структуры определяется заданной длиной волны лазера, что позволяет избежать механических движений элементов в системе по сравнению с заданием периода при помощи изменения угла падения света. Устройство включает источник света 1, в качестве которого используется лазер с перестраиваемой длиной волны, щелевую диафрагму 2, размещенную на пути излучения, испускаемого источником света, расширитель пучка света, который представляет собой установленные последовательно на пути пучка света рассеивающую 7 и собирающую 8 линзы и держатель образца 5 с зеркалом 3. При этом держатель с зеркалом взаимно расположены таким образом, что линия, образованная при пересечении плоскостей расположения держателя и зеркала, параллельна линии разреза (щели) щелевой диафрагмы.
В предлагаемой схеме вместо обычно использующихся линзы и круговой диафрагмы (фиг. 2) для создания точечного источника когерентного света, падающего на область экспонирования образца, применяется щелевая диафрагма.
Использование щелевой диафрагмы вместо собирающей линзы и круговой диафрагмы позволяет применять большие рабочие мощности излучения, так как свет не фокусируется в одной точке с ее возможным перегревом. С другой стороны, повышение мощности излучения уменьшает время экспонирования и, тем самым, ускоряет процесс изготовления микроструктур.
Таким образом, создаются возможности для создания поверхностей с контролируемым периодом методом лазерной интерференционной литографии с использованием лазера с перестраиваемой длиной волны. Указанные признаки являются существенными и взаимосвязаны с образованием устойчивой совокупности существенных признаков, достаточной для получения требуемого технического результата. Настоящее устройство поясняется конкретным примером исполнения, который, однако, не является единственно возможным, но наглядно демонстрирует возможность достижения требуемого технического результата.
Данное устройство позволяет в прикладном плане получить возможность создания элементов устройств кремниевой электроники и фотоники, применимых для пространственного и частотного управления светом, например в дисперсионных или поляризационных оптических элементах и голограммах.
Список использованной литературы
1. Jiang, Н.J., et al. "Single-step fabrication of diffraction gratings on hybrid sol-gel glass using holographic interference lithography." Optics communications 185.1 (2000): 19-24. H. Wolferen and L. Abelmann, Lithography: Principles, Processes and Materials, Nova Publishers (2011).
2. Xie, Q., et al. "Fabrication of nanostructures with laser interference lithography." Journal of alloys and compounds 449.1 (2008): 261-264.
3. Kitson, S.C., W.L. Barnes, and J.R. Sambles. "The fabrication of submicron hexagonal arrays using multiple-exposure optical interferometry." Photonics Technology Letters, IEEE 8.12 (1996): 1662-1664.
4. Q. Xie, M.H. Hong, H.L. Tan, G.X. Chen, L.P. Shi, and Т.C. Chong, "Fabrication of nanostructures with laser interference lithography." Journal of alloys and compounds 449, no. 1 (2008): 261-264.

Claims (2)

1. Устройство для изготовления периодических микроструктур методом лазерной интерференционной литографии, характеризующееся тем, что оно включает расположенные по ходу оптического излучения источник света, в качестве которого используют лазер с перестраиваемой длиной волны, обеспечивающей возможность изменения периода изготавливаемой структуры, щелевую диафрагму, расширитель пучка, содержащий рассеивающую и собирающую линзы, и держатель образца с зеркалом, при этом линия разреза щелевой диафрагмы параллельна линии пересечения плоскостей зеркала и держателя образца.
2. Устройство по п. 1, характеризующееся тем, что изменение периода Р изготавливаемой микроструктуры определяют по заданной длине волны лазера λ как P=λ/2sinα, где α - угол падения света от источника.
RU2015148270A 2015-11-10 2015-11-10 Устройство для изготовления периодических структур методом лазерной интерференционной литографии с использованием лазера с перестраиваемой длиной волны RU2629542C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015148270A RU2629542C2 (ru) 2015-11-10 2015-11-10 Устройство для изготовления периодических структур методом лазерной интерференционной литографии с использованием лазера с перестраиваемой длиной волны

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015148270A RU2629542C2 (ru) 2015-11-10 2015-11-10 Устройство для изготовления периодических структур методом лазерной интерференционной литографии с использованием лазера с перестраиваемой длиной волны

Publications (2)

Publication Number Publication Date
RU2015148270A RU2015148270A (ru) 2017-05-12
RU2629542C2 true RU2629542C2 (ru) 2017-08-29

Family

ID=58715573

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015148270A RU2629542C2 (ru) 2015-11-10 2015-11-10 Устройство для изготовления периодических структур методом лазерной интерференционной литографии с использованием лазера с перестраиваемой длиной волны

Country Status (1)

Country Link
RU (1) RU2629542C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2796486C1 (ru) * 2021-12-27 2023-05-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В.Ломоносова" (МГУ) Способ и система для прецизионной аддитивной печати трехмерных структур (варианты)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060019667A (ko) * 2004-08-28 2006-03-06 엘지전자 주식회사 레이저 간섭 리소그라피 장치
US8400616B2 (en) * 2009-07-22 2013-03-19 National Tsing Hua University Laser interference lithography apparatus capable of stitching small exposed areas into large exposed area
RU2491594C2 (ru) * 2011-12-02 2013-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" (национальный исследовательский университет) (ФГБОУ ВПО "ЮУрГУ" (НИУ)) Способ получения трехмерных объектов
US20140118715A1 (en) * 2012-10-29 2014-05-01 National Tsing Hua University Laser Interference Lithography Apparatus Using Fiber as Spatial Filter and Beam Expander

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060019667A (ko) * 2004-08-28 2006-03-06 엘지전자 주식회사 레이저 간섭 리소그라피 장치
US8400616B2 (en) * 2009-07-22 2013-03-19 National Tsing Hua University Laser interference lithography apparatus capable of stitching small exposed areas into large exposed area
RU2491594C2 (ru) * 2011-12-02 2013-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" (национальный исследовательский университет) (ФГБОУ ВПО "ЮУрГУ" (НИУ)) Способ получения трехмерных объектов
US20140118715A1 (en) * 2012-10-29 2014-05-01 National Tsing Hua University Laser Interference Lithography Apparatus Using Fiber as Spatial Filter and Beam Expander

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2796486C1 (ru) * 2021-12-27 2023-05-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В.Ломоносова" (МГУ) Способ и система для прецизионной аддитивной печати трехмерных структур (варианты)
RU2804779C1 (ru) * 2022-11-22 2023-10-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ и система для прецезионной аддитивной печати трехмерных структур

Also Published As

Publication number Publication date
RU2015148270A (ru) 2017-05-12

Similar Documents

Publication Publication Date Title
KR100693024B1 (ko) 미세 구조체의 제조 방법, 노광 장치, 전자 기기
KR102453461B1 (ko) 레이저 가공용 방사선을 형성하는 방법 및 장치
TWI484307B (zh) 以光纖作為空間濾波器與擴束器之雷射干涉微影設備
JPH1054914A (ja) 光導波路に格子を形成する方法
KR20030003273A (ko) 회절형 렌즈 소자 및 이것을 사용한 조명 장치
US10061139B2 (en) Optical devices based on non-periodic sub-wavelength gratings
KR20010080342A (ko) 광유도 격자의 파장 조절
JP3330874B2 (ja) 自動光ファイバブラッグ格子書き込みのための高精度波長制御装置及び方法
JPH116926A (ja) 光ファイバブラッグ格子書き込みのための自動高精度波長制御装置及び方法
Xiong et al. Effects of the zeroth-order diffraction of a phase mask on Bragg gratings
JP6221849B2 (ja) 露光方法、微細周期構造体の製造方法、グリッド偏光素子の製造方法及び露光装置
US9904176B2 (en) Interference lithography device
US10101652B2 (en) Exposure method, method of fabricating periodic microstructure, method of fabricating grid polarizing element and exposure apparatus
RU2629542C2 (ru) Устройство для изготовления периодических структур методом лазерной интерференционной литографии с использованием лазера с перестраиваемой длиной волны
JP2006339359A (ja) 微細構造体の製造方法、電子機器
JP4373163B2 (ja) 光学用構造体の製造方法
CN115793117A (zh) 一种制作反射式体布拉格光栅的全息曝光光路系统及其写入方法
KR101753355B1 (ko) 레이저 홀로그래픽 리소그래피 장치 및 패턴 제조 방법
KR101395294B1 (ko) 레이저 간섭 리소그래피 장치
JP2005262230A (ja) レーザ加工方法及びその装置、並びに構造体及びその製造方法
KR100418910B1 (ko) 광자 결정 제조 장치 및 방법
RU2654318C1 (ru) Устройство для создания мультимодальной структуры методом лазерной интерференционной литографии
CN109643025B (zh) 具有用于制造gpoe的应用的旋转几何相位全息图
US6873762B1 (en) Fabrication of fiber optic grating apparatus and method
KR20020049493A (ko) 대면적 홀로그래픽 회절격자 생성방법 및 장치