RU2626297C1 - Устройство для определения концентрации компонентов смеси сильных электролитов - Google Patents

Устройство для определения концентрации компонентов смеси сильных электролитов Download PDF

Info

Publication number
RU2626297C1
RU2626297C1 RU2016129623A RU2016129623A RU2626297C1 RU 2626297 C1 RU2626297 C1 RU 2626297C1 RU 2016129623 A RU2016129623 A RU 2016129623A RU 2016129623 A RU2016129623 A RU 2016129623A RU 2626297 C1 RU2626297 C1 RU 2626297C1
Authority
RU
Russia
Prior art keywords
measuring
mixture
solvent
liquid
electrolytes
Prior art date
Application number
RU2016129623A
Other languages
English (en)
Inventor
Владимир Николаевич Щербаков
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет"
Priority to RU2016129623A priority Critical patent/RU2626297C1/ru
Application granted granted Critical
Publication of RU2626297C1 publication Critical patent/RU2626297C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Изобретение относится к измерительной технике и может быть использовано в системах автоматического контроля водно-химического режима для тепловой, атомной и промышленной энергетики. Устройство для определения концентрации компонентов смеси сильных электролитов содержит рекуперативный теплообменный аппарат, систему автоматического измерения и регулирования температуры, кондуктометр с проточной измерительной ячейкой, измерительный прибор с датчиком для измерения температуры раствора в измерительной ячейке и ЭВМ. Согласно изобретению устройство дополнительно содержит систему автоматического разбавления анализируемых смесей растворителем, при этом система автоматического разбавления анализируемых смесей растворителем снабжена последовательно соединенными мерными сосудами различного объема, электрическими клапанами для заполнения мерных сосудов, перелива избытка жидкости и слива жидкости, а также емкостью для растворителя, снабженной переливной трубкой, электрическими клапанами для заполнения емкости для растворителя жидкостью и слива жидкости, смесителем для перемешивания разбавляемых смесей электролитов с растворителем с размещенной в нем магнитной мешалкой, снабженным электрическим клапаном для подачи разбавленной смеси в рекуперативный теплообменный аппарат. Изобретение обеспечивает повышение точности измерений и снижение эксплуатационных затрат. 2 з.п. ф-лы, 2 ил., 1 пр.

Description

Изобретение относится к измерительной технике, а именно - к устройствам для определения концентрации отдельных компонентов смеси электролитов, и может быть использовано в системах автоматического контроля водно-химического режима для тепловой, атомной и промышленной энергетики.
Известен анализатор примесей конденсата пара, состоящий из устройства подготовки пробы, Н - катионитовой колонки, двух датчиков измерения удельной электропроводности исходной и Н - катионированной пробы, отличающийся тем, что анализатор состоит из измерительного и обрабатывающего блоков и двух измерительных каналов: на канале измерения удельной электропроводности дополнительно установлен Н1 - катионитовый фильтр, контрольный датчик электропроводности включен между Н и Н1 - катионитовыми фильтрами; на другом канале установлен датчик измерения активности ионов водорода (патент RU 2348031 С1, МПК G01N 27/27, опубл. 27.02.2009).
Наиболее близким техническим решением является устройство, представленное в примере осуществления изобретения «Способ определения концентрации компонентов смеси высокоразбавленных сильных электролитов» (патент RU 2506577 С1, МПК G01N 27/02, опубл. 10.02.2014), содержащее теплообменный аппарат, систему автоматического измерения и регулирования температуры, кондуктометр с проточной измерительной ячейкой, измерительный прибор с датчиком для измерения температуры раствора в измерительной ячейке кондуктометра и ЭВМ.
Однако указанное устройство при определении концентрации компонентов смеси сильных электролитов более высоких концентраций не может обеспечить получение достоверных данных о концентрации компонентов смеси, так как необходимая для расчетов по методике, изложенной в описании патента RU 2506577, величина эквивалентной электропроводности растворов λ для каждого из веществ - компонентов смеси в этом случае не может быть принята равной эквивалентной электропроводности при бесконечном разбавлении λо, что внесло бы большую погрешность в результаты определения концентрации компонентов смеси и увеличило бы эксплуатационные затраты.
Задача предлагаемого изобретения - повышение точности измерений и снижение эксплуатационных затрат.
Сущность изобретения заключается в том, что устройство для определения концентрации компонентов смеси сильных электролитов, содержащее рекуперативный теплообменный аппарат, систему автоматического измерения и регулирования температуры, кондуктометр с проточной измерительной ячейкой, измерительный прибор с датчиком для измерения температуры раствора в измерительной ячейке и ЭВМ, дополнительно содержит систему автоматического разбавления анализируемых смесей растворителем, при этом система автоматического разбавления анализируемых смесей растворителем снабжена последовательно соединенными мерными сосудами различного объема, электрическими клапанами для заполнения мерных сосудов, перелива избытка жидкости и слива жидкости, а также емкостью для растворителя, снабженной переливной трубкой, электрическими клапанами для заполнения емкости для растворителя жидкостью и слива жидкости, смесителем для перемешивания разбавляемых смесей электролитов с растворителем с размещенной в нем магнитной мешалкой, снабженным электрическим клапаном для подачи разбавленной смеси в рекуперативный теплообменный аппарат;
- при этом все электрические клапаны имеют электрическое управление при помощи переключающих контактов реле, включенных в цепь электрического питания электрических клапанов, по управляющему сигналу от микропроцессорного измерительно-регулирующего прибора, подключенного к реле, управляющих работой электрических клапанов через реле времени, и к измерительному блоку кондуктометра с проточной измерительной ячейкой, установленного на линии заполнения мерных сосудов;
- при этом цепь электрического питания магнитной мешалки подключена параллельно к цепи электрического клапана для слива жидкости из мерной емкости для растворителя.
Техническим результатом является повышение точности измерений и снижение эксплуатационных затрат за счет того, что при помощи устройства для определения концентрации компонентов смеси электролитов, снабженного системой автоматического разбавления анализируемых смесей электролитов растворителем, обеспечивается получение значений удельной электропроводности χ смеси в заданных пределах - от 1,5 до 3⋅10-6 См⋅см-1, соответствующих диапазону концентраций С высокоразбавленных растворов электролитов (С=0,0000138-0,0000275 г-экв/л в пересчете на NaCl), что позволяет по справочным данным об ионной электропроводности при бесконечном разбавлении λoi при 18°С для различных ионов (Д. Добош. «Электрохимические константы». Справочник для электрохимиков. М.: Мир, 1980 г., 365 с., с. 73) вычислить значения эквивалентной электропроводности λ для высокоразбавленных растворов - компонентов смеси как сумму ионных электропроводностей для катиона λoi + и аниона λoi - при бесконечном разбавлении: λ=(λoi +oi -). При С=0,0000138-0,0000275 г-экв/л эквивалентная электропроводность λ для NaCl отличается от эквивалентной электропроводности при бесконечном разбавлении λо не более чем на 0,3%, как и для других веществ (например, KCl и LiCl), что следует из анализа графиков зависимостей λ=f(C), построенных по справочным данным для эквивалентных ионных электропроводностей водных растворов электролитов при различных концентрациях при 18°С (Д. Добош. «Электрохимические константы». Справочник для электрохимиков. М.: Мир, 1980 г., 365 с., с. 73) и гарантирует малую погрешность определения λ. Значения концентрации С электролитов - компонентов смеси определяются при 18°С на основании зависимости С=F(χ, λ), полученной на основании данных о λ=λо растворов компонентов смеси при различных значениях С с использованием известного соотношения между χ и λ (Мартынова О.И., Живилова Л.М., Рогацкин B.C., Субботина Н.П. Химический контроль на тепловых и атомных электростанциях. М.: Энергия, 1980 г., 319 с., с. 147): χ=10-3⋅λ⋅С, где χ - удельная электропроводность, См⋅см-1, λ - эквивалентная электропроводность, См⋅см2/г-экв, С-концентрация раствора, г-экв/л. Таким образом, располагая данными о степени разбавления смеси электролитов, при помощи предлагаемого устройства становится возможным повысить точность определения концентрации компонентов смеси для растворов, не являющихся высокоразбавленными, и за счет этого снизить экономические затраты, которые были бы, например, при отсутствии возможности оперативного получения точных данных о концентрации примесей в воде, представляющей смесь электролитов, на тепловых, атомных электрических станциях и в производственных котельных путем измерения электропроводности воды. За счет автоматизации процесса разбавления смесей в предлагаемом устройстве уменьшается время подготовки пробы для кондуктометрического определения концентрации компонентов смеси. Это позволяет более оперативно корректировать водный режим котельных агрегатов и повысить эффективность мер для предупреждения усиления процессов коррозии теплосилового оборудования и отложения солей, позволяющих улучшить технико-экономические показатели энергетических установок.
Сущность изобретения поясняется чертежами, где
на фиг. 1 - принципиальная схема блока разбавления смеси;
на фиг. 2 - принципиальная схема измерительного блока для определения концентрации компонентов смеси.
Основным элементом системы автоматического разбавления анализируемых смесей электролитов растворителем являются последовательно соединенные мерные сосуды различного объема 1, мерная емкость для растворителя 2, снабженная переливной трубкой 3, смеситель 4 с магнитной мешалкой 5 для перемешивания разбавляемых смесей электролитов с растворителем. Смеситель 4 имеет сливной патрубок 6, к которому подсоединен электрический клапан 7, установленный на линии подачи разбавленной смеси в устройство для регулирования ее температуры, измерения электропроводности и обработки результатов измерения с целью получения данных о концентрации компонентов в смеси. Мерные сосуды 1 и емкость 2 имеют патрубки с подсоединенными к ним электрическими клапанами 8, 9 на линии заполнения и патрубки для слива избытка разбавляемой смеси из каждого из последовательно включенных мерных объемов V1, V2, V3, составляющих мерный сосуд 1, с подсоединенными к ним электрическими клапанами 10, 11, 12. Мерные сосуды 1 и мерная емкость 2 имеют патрубки для слива необходимой дозы разбавляемой смеси в смеситель 4, к которым подсоединены электрические клапаны 13 и 14. Электрические клапаны 7, 8, 9, 10, 11, 12, 13, 14 подключены к источнику напряжения через последовательно включенные контакты реле Р8, Р1, Р7, Р2, Р3, Р4, Р5, Р6 соответственно, которые являются разомкнутыми при отсутствии напряжения на катушках реле. На линии заполнения мерных сосудов 1 установлена проточная кондуктометрическая ячейка кондуктометра 15, измерительный блок которого подключен к микропроцессорному измерительно-регулирующему прибору 16, имеющему несколько выходов. Все выходы измерительно-регулирующего прибора 16 подключены к катушкам реле Р8, Р1, Р7, Р2, Р3, Р4, Р5, Р6 через последовательно включенные в цепь управления реле времени РВ8, РВ1, РВ7, РВ2, РВ3, РВ4, РВ5, РВ6. Цепь электрического питания магнитной мешалки 5 подключена параллельно к цепи питания электрического клапана 14 для слива жидкости из мерной емкости 2 для растворителя.
Основными элементами устройства для регулирования температуры разбавленной смеси электролитов, измерения ее электропроводности и обработки результатов измерений являются теплообменный аппарат 17, система автоматического измерения и регулирования температуры 18, подключенная к датчику температуры 19, проточная измерительная ячейка 20, подключенная к кондуктометру 21. Измерительные электроды 22 кондуктометра 21 размещены в проточной измерительной ячейке 20. В проточной измерительной ячейке 20 установлен датчик 23 для измерения температуры разбавленной смеси, подключенный к прибору для измерения температуры 24. На выходе из проточной кондуктометрической ячейки 20 установлено сливное устройство 25. Выходы кондуктометра 21 и прибора для измерения температуры 24 подключены к ЭВМ 26.
Устройство для определения концентрации компонентов смеси сильных электролитов работает следующим образом. По управляющему сигналу от микропроцессорного измерительно-регулирующего прибора 16 замыкаются контакты реле Р1, управляющего работой электрического клапана 8. Клапан 8 открывается и смесь электролитов начинает поступать через проточную кондуктометрическую ячейку кондуктометра 15, установленную перед клапаном 8, в последовательно соединенные мерные сосуды 1, и заполняет сначала самый малый объем V1, затем объем, равный (V1+V2), где V2 больше V1, а затем заполняется и объем, равный (V1+V2+V3), где V3 больше, чем V2. Величины объемов V1, V2, V3 и объема V4 мерной емкости 2 для растворителя определяются на основании расчетов исходя из наименьших и наибольших наблюдаемых значений удельных электропроводностей χ смесей электролитов, которые необходимо разбавлять до тех пор, пока величина χ разбавленной смеси не будет находиться в пределах 1,5-3⋅10-6 См⋅см-1. С увеличением разницы между наибольшими и наименьшими наблюдаемыми значениями χ смесей электролитов в системе автоматического разбавления анализируемых смесей электролитов количество последовательно соединенных объемов Vi в мерных сосудах 1 и соответственно количество электрических клапанов для перелива избытка жидкости из мерных сосудов 1 необходимо увеличивать, чтобы получить необходимое значение χ разбавленной смеси в пределах 1,5-3⋅10-6 См⋅см-1.
Электрический сигнал, соответствующий величине удельной электропроводности смеси электролитов χ, подается с выхода измерительного прибора кондуктометра 15 на вход микропроцессорного измерительно-регулирующего прибора 16, в котором эта информация обрабатывается, и формируется управляющий выходной сигнал, поступающий на одно из реле Р2, Р3 или Р4, которые обеспечивают открытие одного из электрических клапанов 10, 11 или 12. Причем один из этих клапанов будет открыт в течение времени, необходимого для заполнения жидкостью емкости с необходимым объемом V, который обеспечит значение удельной электропроводности смеси электролитов χ после ее разбавления растворителем в пределах 1,5-3⋅10-6 См⋅см-1. В ходе заполнения мерных сосудов 1 избыток жидкости сливается в дренаж через один из открытых клапанов 10, 11 или 12. После того как завершается заполнение необходимого объема V в мерных сосудах 1 и избыток жидкости начнет вытекать через один из клапанов 10, 11, или 12 в дренаж, на выходе из измерительно-регулирующего прибора 16 появляются управляющие сигналы, под действием которых реле Р5 и Р6 открывают электрические клапаны 13 и 14 на линиях слива смеси и растворителя в емкость смесителя 4. Одновременно с открытием клапана 14 включается магнитная мешалка 5. Перед открытием клапана 13 клапан 8 закрывается путем размыкания цепи управления реле Р1 при помощи реле времени РВ1. Затем происходит опорожнение мерных сосудов 1 при открытом клапане 13 и открытом одном из клапанов 10, 11 или 12 и смесь электролитов сливается в емкость смесителя 4. После опорожнения мерных сосудов 1 реле времени РВ5 размыкает цепь управления реле Р5 и клапан 13 закрывается. После опорожнения мерной емкости для растворителя 2 реле времени РВ6 размыкает цепь управления реле Р6, клапан 14 закрывается, магнитная мешалка 5, включенная параллельно клапану 14, перестает работать. Одно из реле РВ1, РВ2 или РВ4 размыкает цепь управления реле Р2, Р3 или Р4 и один из клапанов 10, 11 или 12 закрывается. Время τ, в течение которого контакты реле времени РВ1 и РВ5 остаются замкнутыми и обеспечивают прохождение управляющего сигнала на реле Р1 и Р5 для обеспечения открытия клапанов 8 и 13, не является неизменной величиной и зависит от необходимой степени заполнения мерных сосудов 1, то есть от того, какой из переливных клапанов 10, 11 или 12 будет открытым в течение времени заполнения смесью сосудов 1 и слива ее в емкость смесителя 4. Это время τ регулируется микропроцессором измерительно-регулирующего прибора 16. Если будет открыт переливной клапан 10, то время τ будет наименьшим, если будет открыт переливной клапан 12 - то время τ будет наибольшим, так как наибольшим будет заполняемый смесью объем сосудов 1 и потребуется наибольшее время для его опорожнения.
После перемешивания разбавленной в смесителе 4 смеси электролитов одновременно с закрытием клапана 14 по управляющему сигналу от измерительно-регулирующего прибора 16 через реле Р8 открывается сливной клапан 7 и разбавленная смесь электролитов направляется по трубопроводу в рекуперативный теплообменный аппарат 17. В теплообменном аппарате 17 потоки теплоносителя и раствора отделены один от другого твердой стенкой и, регулируя с помощью системы автоматического измерения и регулирования температуры 18, подключенной к датчику температуры 19, расход или температуру теплоносителя (жидкого или газообразного), проходящего через теплообменный аппарат 17 и обменивающегося теплом с раствором, устанавливают требуемую температуру раствора на выходе из теплообменного аппарата 17. Из теплообменного аппарата 17 раствор направляют в измерительную ячейку 20 кондуктометра 21, где кроме измерительных электродов 22 для измерения электропроводности раствора установлен датчик 23 для измерения температуры раствора в ячейке, подключенный к измерительному прибору 24. Из ячейки 20 раствор направляют на слив в сливное устройство 25. Измерение электропроводности раствора в ячейке 20 кондуктометром 21 и температуры раствора измерительным прибором 24 производится одновременно, когда температура раствора принимает значение, равное заданному программой измерений системе автоматического измерения и регулирования температуры 18. Измерения проводятся в автоматическом режиме. При этом температура раствора на выходе из теплообменного аппарата 17 должна быть равна температуре раствора в ячейке 20. Сигналы с кондуктометра 21 и измерительного прибора 24 после каждого измерения направляются на ЭВМ 26 для дальнейшей обработки результатов измерения. После первого измерения в соответствии с программой измерений автоматическая система измерения и регулирования температуры устанавливает новое (второе) значение температуры раствора на выходе из теплообменного аппарата 17, отличающееся от значения для первого измерения, и когда это второе значение и значение температуры в измерительной ячейке 20 станут равны, производится второе измерение электропроводности и температуры в ячейке 20, а сигнал после измерения направляется на ЭВМ 26. Процедура перехода к новому значению температуры раствора и измерения электропроводности и температуры раствора в ячейке 20 повторяется в автоматическом режиме столько раз, сколько известных веществ присутствуют в растворе, причем все значения температуры для каждого из измерений должны быть разными, после чего на основании результатов измерения с помощью ЭВМ 26 решается система уравнений электропроводности, число которых равно числу веществ, входящих в раствор, и в результате решения системы определяются значения концентраций для каждого из веществ.
Система уравнений для обработки результатов измерений имеет следующий вид:
Figure 00000001
Figure 00000002
В этих уравнениях
Figure 00000003
,
Figure 00000004
,
Figure 00000005
- суммарная удельная электропроводность разбавленной смеси электролитов, полученная путем измерения χ смеси кондуктометром 21 при температурах, равных t1, t2 … tn, и вычитания из измеренных значений χ растворителя при этих же температурах, которые внесены в память ЭВМ 26;
Figure 00000006
- вклад в суммарную удельную электропроводность первого компонента разбавленной смеси при температуре, равной t1;
Figure 00000007
- вклад в суммарную удельную электропроводность второго компонента разбавленной смеси при температуре, равной t1;
Figure 00000008
- вклад в суммарную удельную электропроводность n-го компонента разбавленной смеси при температуре, равной t1;
Figure 00000009
,
Figure 00000010
,
Figure 00000011
Figure 00000012
- коэффициенты, где
Figure 00000013
,
Figure 00000014
,
Figure 00000015
,
Figure 00000016
,
Figure 00000017
Figure 00000018
,
Figure 00000019
.
Как было отмечено выше, для высокоразбавленных растворов эквивалентную электропроводность можно считать равной сумме ионных электропроводностей для катиона λoi + и аниона λoi - при бесконечном разбавлении: λ=(λoi +oi -). Тогда на основании справочных данных о λoi + и λoi - при разных температурах можно получить значения λ. В расчетах для различных температур в известное соотношение между χ и λ, представленное выше, необходимо ввести учет изменения объема раствора с изменением температуры за счет изменения плотности раствора:
Figure 00000020
где χt - удельная электропроводность раствора при температуре t, См⋅см-1;
λt - эквивалентная электропроводность раствора при температуре t, См⋅см2/г-экв;
С - концентрация раствора при температуре 18°С, г-экв/л,
ρ и ρo - плотность раствора при температуре t и температуре 18°С соответственно, кг/м3.
В уравнениях (1)
Figure 00000021
,
Figure 00000022
Figure 00000023
являются величинами, которые необходимо определить, чтобы затем найти значения концентраций
Figure 00000024
для каждого i-го компонента разбавленной смеси электролитов при температуре t1=18°С, используя уравнение (2):
Figure 00000025
где
Figure 00000026
и
Figure 00000027
удельная и эквивалентная электропроводность i-го компонента при температуре t1. Система уравнений (1) является линейной с постоянными коэффициентами
Figure 00000028
,
Figure 00000029
,
Figure 00000030
Figure 00000031
, которые можно вычислить. Для нахождения концентраций компонентов исходной смеси после решения ЭВМ уравнений (1) и (3) все значения полученных концентраций компонентов разбавленной смеси электролитов умножаются на коэффициент K, равный степени разбавления исходной смеси. Этот коэффициент равен отношению объема смеси после разбавления к объему смеси до разбавления: K=(V+V4)/V, где V - объем смеси, залитой в мерные сосуды 1 перед разбавлением смеси, V4 - объем мерной емкости для растворителя.
Значения коэффициента K передаются после каждого очередного разбавления смеси с выхода микропроцессорного прибора 16 на вход компьютера 26 и используются в программе расчета концентраций компонентов смеси.
На основании справочных данных об эквивалентных ионных электропроводностях при различных концентрациях растворов (кн. Д, Добош. «Электрохимические константы». Справочник для электрохимиков. М.: Мир, 1980 г., 365 с., с. 73) получим эквивалентную электропроводность NaCl, равную сумме эквивалентных ионных электропроводностей для ионов Na+ и Cl-. Используя формулу (2), получаем зависимость удельной электропроводности χ от концентрации С для водных растворов NaCl при 18°С: χ NaCl = f (С). Эта зависимость заносится в память прибора 16.
После того, как кондуктометр 15 подаст на вход прибора 16 сигнал, соответствующий величине χ смеси электролитов перед ее разбавлением, микропроцессор прибора 16 путем анализа зависимости χ NaCl = f (С) определит величину концентрации разбавляемой смеси (условной) в пересчете на NaCl в предположении, что вместо смеси электролитов мы имеем раствор NaCl.
Пример. Пусть χ разбавляемой смеси равна 1,02⋅10-3 См⋅см-1 при температуре t=18°С. Тогда на основании зависимости χ NaCl = f (С) микропроцессор прибора 16 вычислит значение С NaCl, которое будет равно 1⋅10-2 моль/л. Значение χ разбавленной смеси электролитов в пересчете на NaCl χразб NaCl должно быть в пределах от 1,5 до 3⋅10-6 См⋅см-1, как было отмечено выше. Пусть χразб NaCl = 2⋅10-6 См⋅см-1. Используя зависимость χ NaCl = f (С), микропроцессор прибора вычислит концентрацию разбавленной смеси в пересчете на NaCl Сразб NaCl, она будет равна 1,835⋅10-5 моль/л. Микропроцессор измерительно-регулирующего прибора 16 определит степень разбавления K смеси электролитов из соотношения K = С NaCl / Сразб NaCl. В приведенном примере K будет равно 545. На основании значения K в автоматическом режиме будет выбран необходимый объем мерных сосудов V1 и начнется разбавление смеси в 545 раз.
Допустим, что смесь электролитов состоит из растворенных в воде NaCl, KCl и LiCl. Вода вносит вклад в удельную электропроводность смеси электролитов и электропроводность воды, поэтому вычитают из электропроводности смеси, чтобы оценить вклад электролитов в суммарную электропроводность смеси. При t=18°С удельная электропроводность χ смеси, из которой вычли удельную электропроводность растворителя (воды), при t=18°С равна 1,02⋅10-3 См⋅см-1. Удельная электропроводность χ разбавленной смеси, из которой вычли удельную электропроводность воды при t=18°С, равна 2⋅10-6 См⋅см-1 при t=18°С. Можно записать систему уравнений, аналогичную системе (1), представленной выше, для температур смеси, равных 18, 25 и 35°С:
Figure 00000032
Figure 00000033
Figure 00000034
Значения
Figure 00000035
,
Figure 00000036
и
Figure 00000037
заносятся в память компьютера 26 на основании измерения удельной электропроводности разбавленной смеси электролитов кондуктометром 5 при температурах 18, 25 и 35°С и учета поправки на удельную электропроводность воды. Значения коэффициентов
Figure 00000038
,
Figure 00000039
,
Figure 00000040
,
Figure 00000041
,
Figure 00000042
,
Figure 00000043
равны χNaClt=25/χNaClt=18, χKClt=25/χKClt=18, χLiClt=25/χLiClt=18, χNaClt=35/χNaClt=18, χKClt=35/χKClt=18, χLiClt=35/χLiClt=18 соответственно. На основании соотношения (2) можно найти коэффициенты
Figure 00000038
,
Figure 00000039
,
Figure 00000040
,
Figure 00000041
,
Figure 00000042
,
Figure 00000043
, воспользовавшись справочными данными об эквивалентной электропроводности X при бесконечном разбавлении при 18, 25 и 35°С для NaCl, KCl и LiCl, приведенными в книге Д. Добош. «Электрохимические константы». Справочник для электрохимиков. М.: Мир, 1980 г., 365 с., с. 73 и в кн. Г. Харнеда, Б. Оуэна «Физическая химия растворов электролитов». М.: Иностранная литература, 1952 г., 628 с., с. 558.
При t=25°C для NaCl
Figure 00000038
= (λNaClt=25/λNaClt=18)⋅(ρt=25t=18) = (126,45/109)⋅(997,009/998,502).
Figure 00000044
Figure 00000045
Figure 00000046
Figure 00000047
Figure 00000048
Figure 00000049
Значения плотности высокоразбавленных смесей при 18, 25, и 35°С принимались равными плотности воды при этих температурах. Плотность воды брали из справочника А.А. Александрова, К.А. Орлова, В.Ф. Очкова. «Теплофизические свойства рабочих веществ теплоэнергетики». М.: Издательский дом МЭИ, 2009. - 224 с., с. 25.
Систему уравнений (4) с учетом полученных значений коэффициентов и результатов измерения χсум. при 18, 25 и 35°С можно представить в виде:
Figure 00000050
Figure 00000051
Figure 00000052
В результате решения на ЭВМ линейной системы уравнений (5) получены результаты: χNaClt=18 = 6.422⋅10-7 См⋅см-1, χKClt=18 = 5,321⋅10-7 См⋅см-1, χLiClt=18 = 8,257⋅10-7 См⋅см-1. Значения концентрации компонентов в разбавленной смеси при 18°С находим по формуле (3):
Figure 00000053
. Тогда, учитывая, что
Figure 00000054
для NaCl, KCl и LiCl равны 109; 130,1 и 98,9 См⋅см2/г-экв по справочным данным, приведенным в книге Д. Добош. «Электрохимические константы». Справочник для электрохимиков. М.: Мир, 1980 г., 365 с., с. 73, получим:
Figure 00000055
Figure 00000056
Figure 00000057
Если учесть, что смесь электролитов была разбавлена в 545 раз (K=545), то до разбавления:
Figure 00000058
Figure 00000059
Figure 00000060
Эти концентрации требовалось определить.

Claims (3)

1. Устройство для определения концентрации компонентов смеси сильных электролитов, содержащее рекуперативный теплообменный аппарат, систему автоматического измерения и регулирования температуры, кондуктометр с проточной измерительной ячейкой, измерительный прибор с датчиком для измерения температуры раствора в измерительной ячейке и ЭВМ, отличающееся тем, что дополнительно содержит систему автоматического разбавления анализируемых смесей растворителем, снабженную последовательно соединенными мерными сосудами различного объема, электрическими клапанами для заполнения мерных сосудов, перелива избытка жидкости и слива жидкости, а также емкостью для растворителя, снабженной переливной трубкой, электрическими клапанами для заполнения емкости для растворителя жидкостью и слива жидкости, смесителем для перемешивания разбавляемых смесей электролитов с растворителем с размещенной в нем магнитной мешалкой, снабженным электрическим клапаном для подачи разбавленной смеси в рекуперативный теплообменный аппарат.
2. Устройство по п. 1, отличающееся тем, что все электрические клапаны имеют электрическое управление при помощи переключающих контактов реле, включенных в цепь электрического питания электрических клапанов, по управляющему сигналу от микропроцессорного измерительно-регулирующего прибора, подключенного к реле, управляющих работой электрических клапанов через реле времени, и к измерительному блоку кондуктометра с проточной измерительной ячейкой, установленного на линии заполнения мерных сосудов.
3. Устройство по п. 1, отличающееся тем, что цепь электрического питания магнитной мешалки подключена параллельно к цепи электрического клапана для слива жидкости из мерной емкости для растворителя.
RU2016129623A 2016-07-20 2016-07-20 Устройство для определения концентрации компонентов смеси сильных электролитов RU2626297C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016129623A RU2626297C1 (ru) 2016-07-20 2016-07-20 Устройство для определения концентрации компонентов смеси сильных электролитов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016129623A RU2626297C1 (ru) 2016-07-20 2016-07-20 Устройство для определения концентрации компонентов смеси сильных электролитов

Publications (1)

Publication Number Publication Date
RU2626297C1 true RU2626297C1 (ru) 2017-07-25

Family

ID=59495875

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016129623A RU2626297C1 (ru) 2016-07-20 2016-07-20 Устройство для определения концентрации компонентов смеси сильных электролитов

Country Status (1)

Country Link
RU (1) RU2626297C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108267356A (zh) * 2018-02-08 2018-07-10 中国科学院寒区旱区环境与工程研究所 一种样品自动稀释装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198749A (ja) * 1982-05-13 1983-11-18 Masayoshi Hoshina 電解質溶液濃度測定装置
SU1124212A1 (ru) * 1983-06-08 1984-11-15 Московский Институт Химического Машиностроения Автоматическое устройство дл измерени концентрации электролитов
EP0650049A1 (de) * 1993-10-21 1995-04-26 AVL Medical Instruments AG Verfahren und Vorrichtung zum Vermischen zweier Ausganslösungen
RU2348031C1 (ru) * 2007-06-25 2009-02-27 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ивановский государственный энергетический университет им. В.И. Ленина (ИГЭУ) Анализатор примесей конденсата и способ их определения
RU2506577C1 (ru) * 2012-09-21 2014-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Донской государственный технический университет" Способ определения концентрации компонентов смеси высокоразбавленных сильных электролитов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198749A (ja) * 1982-05-13 1983-11-18 Masayoshi Hoshina 電解質溶液濃度測定装置
SU1124212A1 (ru) * 1983-06-08 1984-11-15 Московский Институт Химического Машиностроения Автоматическое устройство дл измерени концентрации электролитов
EP0650049A1 (de) * 1993-10-21 1995-04-26 AVL Medical Instruments AG Verfahren und Vorrichtung zum Vermischen zweier Ausganslösungen
RU2348031C1 (ru) * 2007-06-25 2009-02-27 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ивановский государственный энергетический университет им. В.И. Ленина (ИГЭУ) Анализатор примесей конденсата и способ их определения
RU2506577C1 (ru) * 2012-09-21 2014-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Донской государственный технический университет" Способ определения концентрации компонентов смеси высокоразбавленных сильных электролитов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108267356A (zh) * 2018-02-08 2018-07-10 中国科学院寒区旱区环境与工程研究所 一种样品自动稀释装置

Similar Documents

Publication Publication Date Title
Gans et al. SUPERQUAD: an improved general program for computation of formation constants from potentiometric data
KR20150051873A (ko) 화학적 산소 소비량(cod) 자동 측정 장치
US20230086247A1 (en) System and Method for Separating and In-Situ Analyzing A Multiphase Immiscible Fluid Mixture
US2396934A (en) Detection of the chemical condition of materials
RU2626297C1 (ru) Устройство для определения концентрации компонентов смеси сильных электролитов
Elsayed et al. High salinity seawater boiling point elevation: Experimental verification
CN108896629B (zh) 一种钠离子浓度计三点流动式标定装置及其标定方法
KR102148076B1 (ko) 무기이온 농도를 분석하는 방법 및 장치
US5312528A (en) Method of determining, with the aid of an ion-selective electrode, the concentration of a substance to be determined, and apparatus to be used in said method
RU126467U1 (ru) Автоматический весовой титратор-дозатор
CA1231133A (en) Ion analyzer calibration cell
Kundu et al. Standard Potentials of Ag-AgCl and Ag-AgBr Electrodes in Ethylene Glycol and Propylene Glycol at 30° C, and Related Thermodynamic Quantitites.
WO2019191589A1 (en) Method for determining hardness concentration using a monovalent ion selective electrode
CN214252174U (zh) 一种基于电位滴定法的高浊水氯离子在线测量系统
Kimoto et al. Achieving high time-resolution with a new flow-through type analyzer for total inorganic carbon in seawater
CN114441602A (zh) 一种在线氢电导率表氢交换柱附加误差检验系统及方法
RU2506577C1 (ru) Способ определения концентрации компонентов смеси высокоразбавленных сильных электролитов
RU2789605C1 (ru) Способ обнаружения и определения концентрации нанообъектов в сложных растворах
Wills et al. Transport Phenomena in Ion-Exchange Membrane
Larin et al. Prediction Methods Based on Electrical Conductivity and pH Measurements in Water Coolant Chemical-Monitoring Systems
RU2578045C1 (ru) СПОСОБ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ ВЕЛИЧИНЫ pH ЦИРКУЛЯЦИОННОЙ ВОДЫ КОНТУРА ОХЛАЖДЕНИЯ СТАТОРА ЭЛЕКТРОГЕНЕРАТОРА ПАРОВОЙ ТУРБИНЫ
Yegoshina et al. Estimation of Hydrocarbonates’ Effect on Ammonia Concentration and pH in Conditions of Feed-Water Quality Deterioration
JP3401387B2 (ja) 溶液組成測定システム
CN218675143U (zh) 一种用于氢/比电导率的一体式在线测量装置
US20240183776A1 (en) Analysis System for the Determination of Ions in an Ion-Containing Liquid Medium, and an Analysis Process Performed with the Analysis System