RU2625451C1 - Способ получения пентафторэтана - Google Patents

Способ получения пентафторэтана Download PDF

Info

Publication number
RU2625451C1
RU2625451C1 RU2016130614A RU2016130614A RU2625451C1 RU 2625451 C1 RU2625451 C1 RU 2625451C1 RU 2016130614 A RU2016130614 A RU 2016130614A RU 2016130614 A RU2016130614 A RU 2016130614A RU 2625451 C1 RU2625451 C1 RU 2625451C1
Authority
RU
Russia
Prior art keywords
fraction
products
pentafluoroethane
synthesis
mpa
Prior art date
Application number
RU2016130614A
Other languages
English (en)
Inventor
Екатерина Сергеевна Вихарева
Алексей Васильевич Мурин
Маргарита Дмитриевна Новикова
Дмитрий Александрович Шабалин
Николай Альбертович Давыдов
Original Assignee
Общество с ограниченной ответственностью "ГалоПолимер Кирово-Чепецк"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ГалоПолимер Кирово-Чепецк" filed Critical Общество с ограниченной ответственностью "ГалоПолимер Кирово-Чепецк"
Priority to RU2016130614A priority Critical patent/RU2625451C1/ru
Application granted granted Critical
Publication of RU2625451C1 publication Critical patent/RU2625451C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/10Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • C07C19/10Acyclic saturated compounds containing halogen atoms containing fluorine and chlorine
    • C07C19/12Acyclic saturated compounds containing halogen atoms containing fluorine and chlorine having two carbon atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к способу получения пентафторэтана, включающему синтез гидродифтортрихлорэтана (R 122) путем взаимодействия 1,1-дифторэтана с хлором при повышенной температуре и давлении, близком к атмосферному, отделение продуктов синтеза от хлористого водорода, выделение фракций, выкипающей ниже температуры кипения R 122, которую возвращают на хлорирование, и фракции R 122, которую контактируют с фтористым водородом при температуре 320-420°С, давлении 0,1-0,5 МПа и времени контакта 10-60 с. Продукты синтеза R 122 отмывают водой от хлористого водорода, компримируют до 0,12-0,15 МПа и ректифицируют с выделением фракции продуктов, выкипающих ниже R 122, и фракции R 122 или компримируют до 1,2-1,5 МПа и ректифицируют с выделением фракции хлористого водорода, фракции продуктов, выкипающих ниже R 122, и фракции R 122. Пентафторэтан (R 125) дополнительно очищают от примеси R 115. Технический результат - использование в производстве отечественного сырья, повышение качества целевого продукта за счет дополнительной очистки от примесей на катализаторах, характеризующихся высокой устойчивостью, высокая производительность и селективность. 4 з.п. ф-лы, 3 табл., 5 пр.

Description

Изобретение относится к химической технологии, а именно к способу получения пентафторэтана (хладон 125, R125, HFC125) - озонобезопасного фторуглеводорода, применяемого в качестве хладагента, пропеллента, вспенивателя, а также в системах пожаротушения.
Известный способ получения R125 основан на гидрофторировании тетрахлорэтилена в газовой фазе в присутствии катализатора (Промышленные фторорганические продукты: Справ. изд. / Б.Н. Максимов, В.Г. Барабанов и др. - СПб: Химия, 1996, с. 65).
Существует большое число патентов, раскрывающих применяемые в процессе гидрофторирования катализаторы. Как правило, катализаторы содержат оксиды и фториды хрома и алюминия, характеризуются высокой удельной поверхностью; для повышения активности катализаторы могут содержать добавки соединений никеля, цинка, кобальта, железа (патент РФ №2179885, МПК B01J 23/26, С07С 17/20, опубл. 27.02.2002; патент РФ №2431524, МПК B01J 23/26, С07С 17/20, опубл. 20.10.2011; патент США №6274780, НПК 570/163, опубл. 14.08.2001; патент США №6165931, НПК 502/224, опубл. 26.12.2000; патент США №5155082, НПК 502/228, 570/166, опубл. 13.10.1992).
Известно, что процесс гидрофторирования тетрахлорэтилена с получением пентафторэтана является экзотермическим и характеризуется выделением большого количества тепла, около 30 ккал на 1 моль пентафторэтана. В этой связи, отвод избыточного тепла реакции чрезвычайно важен, поскольку при разогреве возможно осмоление поверхности катализатора, снижение его активности, что, в конечном счете, приводит к уменьшению конверсии и селективности по целевому продукту. Отвод избыточного тепла реакции решается либо проведением процесса гидрофторирования в несколько стадий, либо применением разбавителя, либо осуществлением процесса в адиабатических условиях.
В заявках США №2007/0129581, НПК 570/161, опубл. 07.06.2007 и №2011/0060171, НПК 570/168, опубл. 10.03.2011, описан способ получения R125, в котором в качестве разбавителя используют фтористый водород, и процесс проводят при мольном соотношении фтористый водород/перхлорэтилен не менее 20. Существенное разбавление позволяет снизить смолообразование, но создает дополнительные сложности с выделением конечных продуктов.
Осуществление процесса в адиабатических условиях описано в заявках США №2009/0270659, НПК 570/136, опубл. 29.10.2009 и №2009/0326284, НПК 570/1169, опубл. 31.12.2009, но адиабатический реактор достаточно сложен в устройстве.
В способе получения R125 по патенту США №5763707, НПК 570/168, опубл. 09.06.1998, процесс проводят в две стадии при большом избытке фтористого водорода. На первой стадии из перхлорэтилена и фтористого водорода синтезируют R123, R122, R124 в газовой фазе в присутствии хромсодержащего катализатора, на второй стадии продукты, полученные на первой стадии, отделяют от хлористого водорода и вновь контактируют с фтористым водородом в присутствии катализатора. Осуществление процесса в две стадии позволяет снизить выделение тепла при реакции, увеличить пробег катализатора как на первой, так и на второй стадии процесса, однако требует большого избытка фтористого водорода.
Синтезированный газофазным каталитическим методом пентафторэтан, как правило, содержит нежелательные примеси, трудноотделяемые ректификацией, в частности пентафторхлорэтан (R115). В известном способе получения пентафторэтана (Европейский патент №0687660, МПК С07С 19/08, опубл. 03.03.1994) очистку от примеси R115 проводят с помощью нанесенных катализаторов (родий или палладий на активном оксиде алюминия или активном угле). Катализаторы на основе активного оксида алюминия недостаточно устойчивы в среде хлористого водорода, образующегося в качестве побочного продукта при очистке от пентафторхлорэтана, и постепенно разрушаются; катализаторы на основе активного угля не подлежат регенерации воздухом.
Разделение процесса получения 125 на две стадии использовано в Европейском патенте №0811592, опубл. 10.12.1997. Этот способ по совокупности существенных признаков наиболее близок к предлагаемому. Способ включает взаимодействие перхлорэтилена с фтористым водородом в жидкой фазе с получением гидрофторхлорэтанов, в числе которых R122 и R123, - на первой стадии, и взаимодействие полученных продуктов с фтористым водородом в газовой фазе в присутствии хромсодержащего катализатора с получением пентафторэтана - на второй стадии. Проведение первой стадии в жидкой фазе при невысокой температуре позволяет существенно снизить смолообразование в процессе гидрофторирования перхлорэтилена до R122 и R123. Осуществление процесса в две стадии позволяет продлить срок службы катализатора газофазного гидрофторирования. Показано, что реализация процесса в одну стадию (газофазным гидрофторированием перхлорэтилена) характеризуется невысокими конверсией перхлорэтилена и выходом целевого пентафторэтана.
К недостаткам способа следует отнести необходимость использования в качестве исходного сырья перхлорэтилена высокого качества, производство которого в РФ крайне ограниченно, а использование импортного сырья приводит к удорожанию конечного продукта. Кроме того, проведение первой стадии требует использования катализаторов (пентафторида и трифторида сурьмы), которые также подвержены смолообразованию и постепенному снижению активности.
Российская химическая промышленность в достаточных объемах выпускает винилхлорид, на основе которого по известной технологии легко может быть синтезирован 1,1-дифторэтан (патент РФ №2150452, МПК С07С 17/08, опубл. 10.06.2000). Кроме того, известен способ получения 1,1-дифторхлорэтанов (R142, R132, R122) путем газофазного хлорирования 1,1-дифторэтана без использования катализаторов (патент РФ №2526249, МПК С07С 17/06, опубл. 20.08.2014). Способ характеризуется высокой производительностью и селективностью.
Технической задачей настоящего изобретения являются разработка способа получения пентафторэтана, характеризующегося высокой производительностью и селективностью, на основе доступного отечественного сырья, а также повышение качества целевого продукта за счет дополнительной очистки от примесей на катализаторах, характеризующихся высокой устойчивостью.
Поставленная техническая задача решается тем, что в способе получения пентафторэтана, включающем синтез R122 на первой стадии, контактирование R122 с фтористым водородом в газовой фазе в присутствии хромсодержащего катализатора на второй стадии, разделение продуктов, полученных на второй стадии, с выделением пентафторэтана, согласно изобретению, синтез R122 проводят путем взаимодействия 1,1-дифторэтана с хлором при повышенной температуре и давлении, близком к атмосферному, продукты синтеза R122 отделяют от хлористого водорода, выделяют фракцию, выкипающую ниже температуры кипения R122, которую возвращают на хлорирование, и фракцию R122, которую контактируют с фтористым водородом при температуре 320-420°С, давлении 0,1-0,5 МПа и времени контакта 10-60 с.
Существует вариант, в котором продукты синтеза R122 отмывают водой от хлористого водорода, компримируют до 0,12-0,15 МПа и ректифицируют с выделением фракции продуктов, выкипающих ниже R122, и фракции R122.
Существует также вариант, в котором продукты синтеза R122 компримируют до 1,2-1,5 МПа и ректифицируют с выделением фракции хлористого водорода, фракции продуктов, выкипающих ниже R122, и фракции R122.
Возможен вариант, где разделение продуктов, полученных на второй стадии, проводят путем ректификации при повышенном давлении с выделением фракции пентафторэтана и фракции продуктов, выкипающих при температуре выше пентафторэтана, которую возвращают на контактирование с фтористым водородом.
Возможен также вариант, когда фракцию пентафторэтана дополнительно контактируют с водородом в газовой фазе при повышенной температуре в присутствии никеля или палладия, нанесенного на α-оксид алюминия.
Синтез R122 проводится путем термического хлорирования 1,1-дифторэтана (R152a) в отсутствие катализатора, поэтому не возникает проблема отравления катализатора смолами. Хлорирование проводится в режиме, предусматривающем рецикл низкокипящих продуктов хлорирования (R142, R132), а также непрореагировавшего R152a, благодаря чему происходит разбавление реагентов, отвод избыточного тепла реакции и достигается высокий выход целевого R122.
Гидрофторирование R122 характеризуется последовательным замещением атомов хлора на фтор с образованием набора продуктов: R123, R124, R125, а также минорного количества побочных продуктов, в числе которых R114, R115. В качестве катализаторов гидрофторирования применяются оксиды или фториды хрома или оксиды или фториды хрома, диспергированные на поверхности носителя с развитой поверхностью. В частности, возможно использование отечественного катализатора марки МФМ по СТП 6-00-05807960-141, представляющего собой фторид хрома, диспергированный на поверхности фторида магния.
В процессе хлорирования 1,1-дифторэтана и гидрофторирования R122 образуется хлористый водород. Благодаря существенной разнице в температурах кипения хлористого водорода и органических соединений, образующихся при хлорировании R152a и гидрофторировании R122, эффективным способом их разделения является ректификация при повышенном давлении, например, при давлении 1,2-1,5 МПа. В этом случае вначале проводится компримирование, затем ректификация с выделением последовательно фракции хлористого водорода, фракции продуктов, выкипающих при температуре ниже R122, и фракции R122. Возможно также выделение хлористого водорода путем отмывки водой с получением соляной кислоты; в этом случае на стадии компримирования продукт первой стадии сжимают до 0,12-0,15 МПа и проводят ректификацию с выделением продуктов, выкипающих ниже R122, и фракции R122.
Продукт, полученный гидрофторированием R122, после отделения хлористого водорода ректифицируют с выделением фракции пентафторэтана и кубовой фракции, в которой концентрируются продукты неполного замещения фтора на хлор в R122 (R123, R124), фтористый водород, а также непрореагировавший R122. Эту фракцию возвращают в голову второй стадии процесса, а именно на гидрофторирование. Отделение хлористого водорода возможно проводить отмывкой водой с последующим компримированием, конденсацией и ректификацией органических продуктов, а также путем дополнительного компримирования и ректификации с выделением последовательно фракции хлористого водорода, фракции пентафторэтана и фракции продуктов, выкипающих выше R125, которую возвращают на гидрофторирование.
Целевой продукт, пентафторэтан, как правило, содержит в качестве примеси R115 в количестве 0,1-1%, с которым образует азеотропную смесь, и возникает проблема получения R125, свободного от примеси R115. Известно, что высокую активность в процессе замещения хлора на водород в гидрофторхлоралканах и гидрофторхлоралкенах проявляют металлы VIII группы таблицы Менделеева, в частности палладий, родий, рутений, никель, кобальт, диспергированные на поверхности носителя с развитой поверхностью (активный уголь или γ-Al2O3). Специальными опытами было показано, что для очистки от примеси R115 могут быть использованы отечественные промышленные катализаторы ГИАП-8 (Ni/α-Al2O3) или АПК-2 (Pd/α-Al2O3).
Способ проверен в лабораторных условиях. Продолжительность каждого опыта составляла 4-6 часов.
Пример 1
Первую стадию процесса, получение R122, проводят на установке, включающей реактор хлорирования, баллоны с R152a и хлором, мембранный компрессор, систему конденсации органических продуктов и две ректификационные колонки эффективностью 40 теоретических тарелок. Реактор представляет собой трубку из кварцевого стекла с внутренним диаметром 30 мм и длинной 270 мм. Реактор снабжен наружным электрообогревом. После реактора продукты направляют на компримирование до 1,2 МПа и конденсацию. Конденсацию проводят в стальной емкости, снабженной обратным холодильником; емкость-конденсатор и холодильник охлаждают хладагентом с температурой минус 40°С (раствор хлорида кальция). Неконденсируемый газовый поток, представляющий собой, в основном, хлористый водород, направляют на поглощение водой с получением соляной кислоты, конденсат направляют на ректификацию при атмосферном давлении в непрерывном режиме: на первой колонке при температуре в кубе колонки не более 70°С в качестве дистиллята выделяют непрореагировавший R152a и фракцию, выкипающую при температуре ниже R122, а именно R142, R132. Эту фракцию смешивают с исходным 1,1-дифторэтаном и направляют в реактор хлорирования; на второй колонке выделяют фракцию R122, выкипающую при температуре 70÷75°С при атмосферном давлении.
Расход 1,1-дифторэтана составляет 0,31 моль/ч, расход хлора 0,92 моль/ч. Хлорирование проводят при температуре 300°С. После компримирования, конденсации и ректификации получают 289 г R122 состава (% мольн.): R132 - 1,3; R122 - 96,5, R112 - 2,2.
Вторую стадию процесса, получение пентафторэтана из R122, проводят в никелевом цилиндрическом реакторе диаметром 24 мм и длиной 350 мм, снабженном внешним электрообогревом. В реактор помешают 150 см3 катализатора МФМ по СТП 6-00-05807960-141 (фторид хрома, диспергированный на поверхности фторида магния), который прокаливают в азоте при 400°С и обрабатывают смесью азота и фтористого водорода при 350-400°С. R122 из специального дозатора давлением азота по капилляру направляют в испаритель, смешивают с фтористым водородом и подают в реактор гидрофторирования. Гидрофторирование проводят при температуре 370°С и атмосферном давлении; расход R122 составляет 0,3 моль/ч, расход фтористого водорода 1,2 моль/ч. Продукты гидрофторирования отмывают от кислых примесей, сушат дегидратированным хлоридом кальция и конденсируют в стеклянной ловушке, охлаждаемой смесью углекислоты и этанола. Продолжительность опыта составляет 6 часов. Получают 218 г продукта, состав которого приведен в табл. 1.
Figure 00000001
Конверсия R122 составила 100%, селективность по R125 составила: S125=45,4/96,5*100=47,0%, по сумме продуктов R125, R124a, R123a: (45,4+46,8+3,7)/96,5*100=99,4%.
Пример 2
R122 получают по примеру 1 и направляют на гидрофторирование в реактор, описанный в примере 1, но при температуре 380°С и давлении 0,3 МПа. Продукты гидрофторирования сжимают мембранным компрессором до давления 1,2 МПа и конденсируют в стальной емкости, снабженной обратным холодильником, при температуре минус 40°С. Неконденсируемый газовый поток, представляющий собой, в основном, хлористый водород с примесями пентафторэтана, направляют на поглощение водой с получением соляной кислоты, конденсат - на ректификацию на стальной колонке периодического действия эффективностью 40 теоретических тарелок. При давлении 0,8-1,0 МПа, температуре верха колонки 10-15°С выделяют фракцию пентафторэтана. Продолжительность опыта составляет 6 ч. Получают 215 г конденсата состава:
Figure 00000002
В результате ректификации выделяют 135 г фракции пентафторэтана состава (% мольн.): R125 - 98,8; R143b - 0,3; R115 - 0,9. Куб колонки охлаждают до -15°С и выгружают кубовую фракцию в охлажденный отвакуумированный баллон. В кубовой фракции найдено: 36 г фтористого водорода, а также органических продуктов в количестве 76 г состава (% мольн.): R124a - 85,3; R133a - 5,6; R123a - 1,8; R114 - 6,5; R113 - 0,8. Выделено 135/120=1,12 моль R125, а также 36 г фтористого водорода и 76 г кубовых, в том числе 0,52 моль R124a и 0,01 моль R123a, которые, наряду с фтористым водородом, возможно вернуть на стадию гидрофторирования. Выход полезных продуктов составил: (1,12+0,47+0,01)/1,8*100=88,9%.
Пример 3
Первую стадию процесса, получение R122, проводят на установке, включающей реактор хлорирования, баллоны с R152a и хлором, систему отмывки продуктов хлорирования от хлористого водорода, мембранный компрессор, систему конденсации органических продуктов и две ректификационные колонки эффективностью 40 теоретических тарелок. Первую стадию, хлорирование 1,1-дифторэтана, проводят в реакторе и в режиме, описанном в примере 1. После реактора продукты направляют на отмывку водой с получением соляной кислоты, отмытые продукты компримируют до 0,12 МПа и конденсируют в стальной емкости, снабженной обратным холодильником, при температуре минус 40°С. Сконденсированные продукты направляют на ректификацию при атмосферном давлении: на первой колонке при температуре в кубе колонки не более 70°С в качестве дистиллята выделяют непрореагировавший R152a и фракцию, выкипающую при температуре ниже R122, а именно R142, R132. Эту фракцию смешивают с исходным 1,1-дифторэтаном и направляют в реактор хлорирования; на второй колонке выделяют фракцию R122, выкипающую при температуре 70÷75°С при атмосферном давлении.
Хлорирование проводят при температуре 320°С.После компримирования, конденсации и ректификации получают 280 г продукта состава (% мольн.): R132 - 0,6; R122 - 97,4, R112 - 2,0.
Вторую стадию процесса, получение пентафторэтана из R122, проводят в реакторе и с использованием катализатора, описанного в примере 1. Гидрофторирование проводят при температуре 400°С и давлении 0,4 МПа; расход R122 составляет 0,3 моль/ч, расход фтористого водорода 1,2 моль/ч. Продукты гидрофторирования отмывают от кислых примесей, сушат дегидратированным хлоридом кальция и конденсируют в стеклянной ловушке, охлаждаемой смесью углекислоты и этанола.
Продолжительность опыта составляет 6 часов. Получают 164 г продукта, состав которого приведен в табл. 3.
Figure 00000003
Конверсия R122 составила 100%, селективность по R125 составила: S125=68,1/97,4*100=69,9%, по сумме продуктов R125, R124a, R123a: (68,1+26+0,4)/97,4*100=97%.
Пример 4
Очистку пентафторэтана от примеси R115 проводят на установке, включающей реактор с наружным электрообогревом объемом 30 см3, заполненный катализатором марки ГИАП-8 (фракция 1-2 мм), который представляет собой оксид никеля, диспергированный на поверхности α-оксида алюминия. Катализатор предварительно дегидратируют азотом и восстанавливают в токе водорода при 400°С. Очистку R125, полученного и выделенного по примеру 2, проводят при температуре 250°С, расходе R125 и водорода 0,08 моль/ч. Очищенный R125 отмывают от кислых примесей и анализируют хроматографическим методом. Получают R125 следующего состава (% мольн.): R125 - 99,2; R143b - 0,3; R134a - 0,3; R115 - 0,2. Степень очистки R125 от примеси R115 составляет 68%.
Пример 5
Очистку пентафторэтана от примеси R115 проводят на установке, описанной в примере 4, но в качестве катализатора используют промышленный отечественный катализатор марки АПК-2 (PdO/α-Al2O3). Катализатор предварительно дегидратируют азотом и восстанавливают в токе водорода при 400°С. Очистку R125 проводят при температуре 200°С, расходе R125 и водорода 0,08 моль/ч. Для опыта по очистке используют R125, полученный в примере 2. Очищенный R125 отмывают от кислых примесей и анализируют хроматографическим методом. Получают R125 следующего состава (% мольн.): R125 - 99,5; R143b - 0,3; R134a - 0,1; R115 - 0,08. Степень очистки R125 от примеси R115 составляет 81%.
Таким образом, предлагаемый способ характеризуется высокой конверсией исходного 1,1-дифторэтана и высокой селективностью по целевому пентафторэтану. Высокая конверсия достигается благодаря возврату полупродуктов в голову процесса, высокая селективность - благодаря разделению процесса на отдельные стадии, использованию активных катализаторов и разбавлению реагентов возвращаемыми полупродуктами. Первая стадия, получение R122, проводится без использования катализаторов, что увеличивает стабильность результатов на данной стадии во времени. Кроме того, использование катализаторов на основе α-Al2O3 на стадии очистки пентафторэтана от примеси пентафторхлорэтана позволит увеличить пробег катализатора благодаря его большей устойчивости в среде хлористого водорода, являющегося побочным продуктом на стадии очистки.

Claims (5)

1. Способ получения пентафторэтана, включающий синтез гидродифтортрихлорэтана (R 122) на первой стадии, контактирование R 122 с фтористым водородом в газовой фазе в присутствии хромсодержащего катализатора на второй стадии, разделение продуктов, полученных на второй стадии, с выделением пентафторэтана, отличающийся тем, что синтез R 122 проводят путем взаимодействия 1,1-дифторэтана с хлором при повышенной температуре и давлении, близком к атмосферному, продукты синтеза отделяют от хлористого водорода, выделяют фракцию, выкипающую ниже температуры кипения R 122, которую возвращают на хлорирование, и фракцию R 122, которую контактируют с фтористым водородом при температуре 320-420°C, давлении 0,1-0,5 МПа и времени контакта 10-60 с.
2. Способ по п. 1, отличающийся тем, что продукты синтеза R 122 отмывают водой от хлористого водорода, компримируют до 0,12-0,15 МПа и ректифицируют с выделением фракции продуктов, выкипающих ниже R 122, и фракции R 122.
3. Способ по п. 1, отличающийся тем, что продукты синтеза R 122 компримируют до 1,2-1,5 МПа и ректифицируют с выделением фракции хлористого водорода, фракции продуктов, выкипающих ниже R 122, и фракции R 122.
4. Способ по п. 1, отличающийся тем, что разделение продуктов, полученных на второй стадии, проводят путем ректификации при повышенном давлении с выделением фракции пентафторэтана и фракции продуктов, выкипающих при температуре выше пентафторэтана, которую возвращают на контактирование с фтористым водородом.
5. Способ по п. 2, отличающийся тем, что фракцию пентафторэтана дополнительно контактируют с водородом в газовой фазе при повышенной температуре в присутствии никеля или палладия, нанесенного на α-оксид алюминия.
RU2016130614A 2016-07-25 2016-07-25 Способ получения пентафторэтана RU2625451C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016130614A RU2625451C1 (ru) 2016-07-25 2016-07-25 Способ получения пентафторэтана

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016130614A RU2625451C1 (ru) 2016-07-25 2016-07-25 Способ получения пентафторэтана

Publications (1)

Publication Number Publication Date
RU2625451C1 true RU2625451C1 (ru) 2017-07-14

Family

ID=59495583

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016130614A RU2625451C1 (ru) 2016-07-25 2016-07-25 Способ получения пентафторэтана

Country Status (1)

Country Link
RU (1) RU2625451C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2069211C1 (ru) * 1994-06-10 1996-11-20 Акционерное общество открытого типа "Кирово-Чепецкий химический комбинат им.Б.П.Константинова" Способ получения 1,2-дифтортрихлорэтана
US5763707A (en) * 1994-04-06 1998-06-09 Imperial Chemical Industries Plc Production of pentafluoroethane
EP0811592B1 (en) * 1995-02-24 2001-07-18 Daikin Industries, Limited Process for producing pentafluoroethane and tetrafluorochloroethane
RU2526249C2 (ru) * 2012-12-25 2014-08-20 Общество с ограниченной ответственностью "ГалоПолимер Кирово-Чепецк" (ООО ГалоПолимер Кирово-Чепецк) Способ получения 1,1-дифторхлорэтанов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763707A (en) * 1994-04-06 1998-06-09 Imperial Chemical Industries Plc Production of pentafluoroethane
RU2069211C1 (ru) * 1994-06-10 1996-11-20 Акционерное общество открытого типа "Кирово-Чепецкий химический комбинат им.Б.П.Константинова" Способ получения 1,2-дифтортрихлорэтана
EP0811592B1 (en) * 1995-02-24 2001-07-18 Daikin Industries, Limited Process for producing pentafluoroethane and tetrafluorochloroethane
RU2526249C2 (ru) * 2012-12-25 2014-08-20 Общество с ограниченной ответственностью "ГалоПолимер Кирово-Чепецк" (ООО ГалоПолимер Кирово-Чепецк) Способ получения 1,1-дифторхлорэтанов

Similar Documents

Publication Publication Date Title
US8389779B2 (en) Process for the preparation of fluorinated compounds
US8921621B2 (en) Process for the production of HCFC-1233zd
EP2611761B1 (en) Continuous low-temperature process to produce trans-1-chloro-3,3,3-trifluoropropene
EP2341040B1 (en) Process for producing 1,3,3,3-tetrafluoropropene
US9227894B2 (en) Integrated process for the production of 1-chloro-3,3,3-trifluoropropene
EP2149543B1 (en) Process for producing 2,3,3,3-tetrafluoropropene
HUE030598T2 (en) Process for the preparation of 1,1,1,2-tetrafluoropropene
US8779217B2 (en) Method for preparing fluorine compounds
JP6668254B2 (ja) 1,1,3,3−テトラクロロプロペンからe−1−クロロ−3,3,3−トリフルオロプロペンを製造する方法
KR100854982B1 (ko) 1,1,1,2-테트라플루오로에탄 및/또는 펜타플루오로에탄의제조방법 및 그 용도
RU2625451C1 (ru) Способ получения пентафторэтана
EP2585424B1 (en) Process for the manufacture of fluorinated olefins
CN113527038B (zh) 制备顺式-1,3,3,3-四氟丙烯的方法
JP2016023145A (ja) トリフルオロエチレンの精製方法
KR100570802B1 (ko) 플루오로에탄의 제조 방법 및 제조된 플루오로에탄의 용도
RU2614442C1 (ru) Способ получения 1,1-дифторэтана
RU2224736C1 (ru) Способ получения гексафторэтана и/или октафторпропана
RU2213722C1 (ru) Способ получения 1,1,1,2,3,3,3-гептафторпропана
JP2009035522A (ja) シクロペンチルアルコール化合物の製造方法