RU2625094C1 - Способ определения пеленга и дальности до источника сигналов - Google Patents

Способ определения пеленга и дальности до источника сигналов Download PDF

Info

Publication number
RU2625094C1
RU2625094C1 RU2016119501A RU2016119501A RU2625094C1 RU 2625094 C1 RU2625094 C1 RU 2625094C1 RU 2016119501 A RU2016119501 A RU 2016119501A RU 2016119501 A RU2016119501 A RU 2016119501A RU 2625094 C1 RU2625094 C1 RU 2625094C1
Authority
RU
Russia
Prior art keywords
infrasound
arrival
signals
registration
point
Prior art date
Application number
RU2016119501A
Other languages
English (en)
Inventor
Анатолий Константинович Барышников
Ольга Владимировна Барышникова
Александр Николаевич Минеев
Original Assignee
Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") filed Critical Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА")
Priority to RU2016119501A priority Critical patent/RU2625094C1/ru
Application granted granted Critical
Publication of RU2625094C1 publication Critical patent/RU2625094C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Изобретение относится к измерительной технике, в частности к пеленгаторам. Техническим результатом, обеспечиваемым заявляемым изобретением, является уменьшение погрешности использования его на однопозиционном пункте наблюдения или на средстве передвижения и увеличение помехоустойчивости при наличии мешающих сигналов, приходящих во время прохождения инфразвуком расстояния от источника сигнала до пункта наблюдения. Технический результат достигается тем, что в способе определения пеленга и дальности до источника сигналов, заключающемся в том, что регистрируют время прихода электромагнитного излучения (ЭМИ) на однопозиционный пункт наблюдения с двумя точками регистрации инфразвука, а также время прихода инфразвука на две точки регистрации и определяют для каждой точки регистрации разность времени прихода ЭМИ и инфразвука, дополнительно, до прихода инфразвука на две точки регистрации, регистрируют магнитные компоненты сигнала ЭМИ двумя взаимно перпендикулярными в горизонтальной плоскости магнитными антеннами, ориентированными максимумами диаграмм направленности, соответственно, на Север-Юг и Запад-Восток, определяют по соотношению сигналов магнитных антенн азимут и определяют приближенную дальность до источника сигналов по изменению спектра сигнала ЭМИ в зависимости от пройденного ЭМИ расстояния, для чего определяют суммарный спектр сигналов двух магнитных антенн, определяют верхнюю и нижнюю частоты спектра и амплитуды сигналов на этих частотах, определяют отношение верхней частоты к нижней частоте спектра и отношение амплитуды нижней частоты к амплитуде верхней частоты спектра, по полученным отношениям, нижней частоте спектра, скорости света и азимуту определяют приближенные дальность до источника электромагнитного излучения и его местоположение, определяют по приближенному местоположению для каждой точки регистрации угол прихода сигнала между направлением на источник сигнала и прямой, соединяющей точки регистрации, определяют приближенное расстояние до источника сигнала и по заданной скорости инфразвука определяют ожидаемый интервал времени прихода инфразвука для каждой точки регистрации с учетом погрешности заданной скорости инфразвука и определения приближенной дальности и прекращают анализ сигналов до наступления ожидаемых интервалов времени прихода инфразвука, а в течение ожидаемых интервалов времени после прихода инфразвука и определения разности времени прихода ЭМИ и инфразвука для каждой точки регистрации, по углам прихода сигналов, известному расстоянию между точками регистрации и разностям времени прихода ЭМИ и инфразвука для каждой точки регистрации уточняют скорость инфразвука во время прохождения сигналов, по разностям времени прихода ЭМИ и инфразвука для каждой точки регистрации и уточненной скорости инфразвука во время прохождения сигналов уточняют значение дальности до источника сигналов, а по азимуту и уточненному значению дальности уточняют местоположение источника сигналов. 1 ил.

Description

Изобретение относится к измерительной технике, к пеленгаторам, и предназначается для определения пеленга и дальности до источников сигналов электромагнитного излучения (ЭМИ) и инфразвука искусственного и естественного происхождения (например, молниевых разрядов) и может быть использовано в метеорологии, в службе наблюдения за грозовой деятельностью, в морском транспорте и авиации.
Оценка местоположения или пеленга и дальности до источника сигналов при установке одного устройства на однопозиционном пункте наблюдения возможна с помощью способов, анализирующих соотношение параметров ЭМИ (амплитуд сигналов на приемниках ЭМИ с дипольными диаграммами направленности, взаимно перпендикулярными в горизонтальной плоскости) и изменение параметров принимаемого сигнала ЭМИ (длительность переднего фронта, длительность пика, отношение амплитуд частотных составляющих и др.) в зависимости от расстояния, пройденного сигналом. Для уменьшения погрешности оценки дальности устанавливают два устройства на расстоянии друг от друга (измерительная база) и применяют триангуляционный метод определения дальности. Способ заключается в том, что из двух пунктов наблюдения, расстояние между которыми известно, определяют углы прихода ЭМИ относительно линии, соединяющей пункты наблюдения, и решают геометрическую задачу нахождения сторон треугольника по известной стороне и двум измеренным углам [1]. Однако при малых углах относительно линии, соединяющей пункты наблюдения, применение способа дает большую погрешность [2].
Большинство регистрируемых явлений (грозовые разряды и др.) сопровождается сигналами, распространяющимися с низкой скоростью (например, инфразвук), но пеленгация с использованием этих сигналов не дает лучших результатов из-за зависимости скорости распространения этих сигналов от состояния среды распространения, т.е. из-за незнания точного значения скорости распространения в данный момент в данном месте, а также из-за мешающих сигналов других источников, возникающих за время прохождения инфразвука.
Однако использование обоих видов сигналов (например, электромагнитного излучения и инфразвука) на двухпозиционном пункте наблюдения дает новое качество, так как позволяет одновременно с пеленгом определить значение скорости распространения инфразвука в данный момент и, соответственно, более точно определить дальность до источника сигнала при известном расстоянии между точками регистрации. С другой стороны, использование разности времени прихода инфразвука на точки регистрации позволяет уменьшить размеры измерительной базы до однопозиционной за счет более низкой скорости распространения инфразвука по сравнению с ЭМИ.
Аналогично могут быть использованы акустические, сейсмические и ультразвуковые волны, сопровождающие регистрируемое явление.
Наиболее близким техническим решением к предлагаемому является способ, раскрытый в статье [3] (комбинированная система грозоопределения, состоящая из инфразвукового комплекса и электрической антенны), где пеленг и дальность до источника сигнала определяются после события по результатам дальнейшей обработки оператором записанных сигналов. Для определения азимута используются разности времени прихода инфразвуковых сигналов на не менее чем на три микробарометра, разнесенные друг от друга более чем на 90 метров (трехпозиционная система регистрации), а для определения дальности до источника сигнала используется разность времени прихода сигналов на электростатический флюксметр и инфразвуковой микрофон (или микробарометры).
При появлении двух или более инфразвуковых сигналов от аналогичных событий на рассмотренном пункте наблюдения во время прохождения инфразвуком расстояния от источника сигналов до микробарометра определить, какому источнику принадлежат сигналы, практически невозможно в рамках указанного способа.
Недостатками прототипа являются большая погрешность использования его на однопозиционном пункте наблюдения или на средстве передвижения, а также малая помехоустойчивость при наличии мешающих сигналов, приходящих во время прохождения инфразвуком расстояния от источника сигнала до пункта наблюдения.
Техническим результатом, обеспечиваемым заявляемым изобретением, является уменьшение погрешности использования его на однопозиционном пункте наблюдения или на средстве передвижения и увеличение помехоустойчивости при наличии мешающих сигналов, приходящих во время прохождения инфразвуком расстояния от источника сигнала до пункта наблюдения.
Технический результат достигается тем, что в способе определения пеленга и дальности до источника сигналов, заключающемся в том, что регистрируют время прихода электромагнитного излучения (ЭМИ) на однопозиционный пункт наблюдения с двумя точками регистрации инфразвука, а также время прихода инфразвука на две точки регистрации и определяют для каждой точки регистрации разность времени прихода ЭМИ и инфразвука, дополнительно, до прихода инфразвука на две точки регистрации, регистрируют магнитные компоненты сигнала ЭМИ двумя взаимно перпендикулярными в горизонтальной плоскости магнитными антеннами, ориентированными максимумами диаграмм направленности, соответственно, на Север-Юг и Запад-Восток, определяют по соотношению сигналов магнитных антенн азимут и определяют приближенную дальность до источника сигналов по изменению спектра сигнала ЭМИ в зависимости от пройденного ЭМИ расстояния, для чего определяют суммарный спектр сигналов двух магнитных антенн, определяют верхнюю и нижнюю частоты спектра и амплитуды сигналов на этих частотах, определяют отношение верхней частоты к нижней частоте спектра и отношение амплитуды нижней частоты к амплитуде верхней частоты спектра, по полученным отношениям, нижней частоте спектра, скорости света и азимуту определяют приближенные дальность до источника электромагнитного излучения и его местоположение, определяют по приближенному местоположению для каждой точки регистрации угол прихода сигнала между направлением на источник сигнала и прямой, соединяющей точки регистрации, определяют приближенное расстояние до источника сигнала и по заданной скорости инфразвука определяют ожидаемый интервал времени прихода инфразвука для каждой точки регистрации, с учетом погрешности заданной скорости инфразвука и определения приближенной дальности, и прекращают анализ сигналов до наступления ожидаемых интервалов времени прихода инфразвука, а в течение ожидаемых интервалов времени после прихода инфразвука и определения разности времени прихода ЭМИ и инфразвука для каждой точки регистрации, по углам прихода сигналов, известному расстоянию между точками регистрации и разностям времени прихода ЭМИ и инфразвука для каждой точки регистрации уточняют скорость инфразвука во время прохождения сигналов, по разностям времени прихода ЭМИ и инфразвука для каждой точки регистрации и уточненной скорости инфразвука во время прохождения сигналов уточняют значение дальности до источника сигналов, а по азимуту и уточненному значению дальности уточняют местоположение источника сигналов.
Способ иллюстрируется схемой, приведенной на чертеже.
Из схемы следует:
D=Δt1*V*cosγ+Δt2*V*cosβ;
Figure 00000001
Figure 00000002
где a, b - расстояния до источника сигналов,
γ, β - углы между направлением на источник сигналов и линией, соединяющей обе точки регистрации (точку 1 и точку 2),
V - скорость инфразвука,
Δt1 - разность времени между приходом ЭМИ и приходом инфразвука в точку 1,
Δt2 - разность времени между приходом ЭМИ и приходом инфразвука в точку 2,
D - известное расстояние между точками регистрации (база).
На практике достаточно определить направление на источник сигнала из любой одной точки регистрации на пункте наблюдения, определить угол между направлением на источник сигнала и базой и приближенную дальность от точки регистрации до источника сигнала по изменению параметров принимаемого сигнала ЭМИ и построить треугольник направлений с последующим уточнением дальности после прихода инфразвука.
Такой способ работоспособен и при малых углах, и при нулевых углах, когда источник сигнала расположен на линии, проходящей через точки регистрации.
Предлагаемый способ реализуется следующим образом.
Принимают сигналы ЭМИ на однопозиционном пункте наблюдения с двумя точками регистрации и размещенным на каждой точке микробарометром, а на одной из двух точек регистрации (например, на первой точке) с размещенными двумя взаимно перпендикулярными в горизонтальной плоскости магнитными антеннами, ориентированными максимумами диаграммы направленности, соответственно, на Север-Юг (ось X) и на Восток-Запад (ось Y), подключенными через усилители и аналого-цифровые преобразователи к вычислителю.
В случае превышения сигналом от любой из магнитных антенн заданного уровня начинают цикл обработки сигналов и отсчет времени задержки инфразвука для каждой из двух точек регистрации.
Определяют направление на источник сигнала, вычисляя отношение амплитуд сигналов двух взаимно перпендикулярных в горизонтальной плоскости антенн (X и Y) [4],
tgα=Ay/Ax,
где α - азимут;
Аx, Аy - амплитуды сигналов магнитных антенн, ориентированных максимумами диаграмм направленности, соответственно, на Север-Юг (ось X) и на Восток-Запад (ось Y).
Полученное направление соответствует углу γ прихода сигнала для первой точки регистрации.
Определяют суммарный спектр сигналов двух магнитных антенн, верхнюю и нижнюю частоты спектра и амплитуды сигнала на верхней и нижней частотах спектра.
Вычисляют отношение верхней частоты к нижней частоте спектра и отношение амплитуды нижней частоты к амплитуде верхней частоты спектра, по полученным отношениям, нижней частоте спектра и скорости света определяют приближенную дальность до источника электромагнитного излучения.
Приближенная оценка дальности проводится по формуле, учитывающей изменение спектра сигнала ЭМИ в зависимости от пройденного расстояния [5]:
Figure 00000003
,
где R - приближенное расстояние до источника сигналов, С - скорость света,
ω1, ω2 - соответственно верхняя и нижняя частоты спектра сигнала ЭМИ,
H1, Н2 - соответственно амплитуды сигналов нижней и верхней частоты спектра.
Принимают за приближенное местонахождение источника сигнала точку на расстоянии R в направлении на источник сигнала из первой точки регистрации и определяют приближенные угол прихода сигнала β1 и расстояние b1 до второй точки регистрации по известному расстоянию D между точками регистрации, приближенному расстоянию R и углу прихода сигнала γ на первую точку.
Для первой и второй точек регистрации определяют ожидаемый интервал времени прихода инфразвука по расстояниям R и b1 и заданной скорости инфразвука с началом интервала времени, вычисленным при максимальной скорости инфразвука и минимальных значениях R и b1.
Прекращают обработку сигналов до наступления ожидаемых интервалов времени прихода инфразвука на точки регистрации, а с наступлением указанных интервалов времени регистрируют время прихода инфразвука для первой и второй точек регистрации и вычисляют разности Δt1 и Δt2 времени прихода ЭМИ и инфразвука для двух точек регистрации.
По измеренным разностям времени прихода ЭМИ и инфразвука Δt1 и Δt2, по углам прихода сигналов β1 и γ на точки регистрации и по известному расстоянию D между точками регистрации определяют уточненное значение скорости инфразвука (1) во время прохождения сигналов и уточненную дальность (2) до источника сигналов.
По азимуту и уточненной дальности уточняют местоположение источника сигналов.
При необходимости, более точное местоположение источника сигналов определяют итерациями путем определения по уточненному местоположению источника сигналов новых значений β1, скорости инфразвука и дальности до источника сигналов.
Таким образом, за счет использования сигналов магнитных антенн с более низким уровнем шумов, а также за счет удаления помех, приходящих во время прохождения инфразвука до точек регистрации, повышена помехоустойчивость способа.
Используемые действия способа реализуются в реальном масштабе времени для инфразвука, сейсмических колебаний и других сопутствующих ЭМИ явлений, позволяют уменьшить погрешность использования его на однопозиционном пункте наблюдения или на средстве передвижения и увеличить помехоустойчивость при наличии мешающих сигналов, приходящих во время прохождения инфразвуком расстояния от источника сигнала до пункта наблюдения.
Источники информации
1. Караваев В.В., Сазонов В.В. Статистическая теория пассивной локации. - М.: Радио и связь, 1987, стр. 150.
2. Результаты моделирования триангуляционного способа определения дальности с применением двух и трех станций, Коровин Е.С. 2012 г. ОАО «Центральное конструкторское бюро автоматики», г. Омск, радиосеминар, доклад, стр. 1-33, http://radioseminar.omsu.ru/files/simulation/the%20simulation
%20results%20triangulation%20method%20of%20range%20with
%20the%20use%20of%20two%20or%20three%20stations.pdf
3. Электромагнитная акустическая система обнаружения грозовых разрядов, К.В. Вознесенская, А.В. Соловьев, И.С. Гибанов, Д.С. Провоторов, М.В. Чепчугов, А.А. Бочаров, Вестник науки Сибири. 2012. №5 (6), http://sjs.tpu.ru/journal/article/view/510/420, УДК 534.321.8.
4. Широкополосное двухкомпонентное приемное антенное устройство (патент РФ №2474014 C1, H01Q 7/04, 2011 г., опубл. 27.01.2013).
5. Способ и устройство штормового предупреждения (патент США №4672305, G01N 31/02, 1984 г., опубл. 09.07.1987 г.).

Claims (1)

  1. Способ определения пеленга и дальности до источника сигналов, заключающийся в том, что регистрируют время прихода электромагнитного излучения (ЭМИ) на однопозиционный пункт наблюдения с двумя точками регистрации инфразвука, а также время прихода инфразвука на две точки регистрации и определяют для каждой точки регистрации разность времени прихода ЭМИ и инфразвука, отличающийся тем, что дополнительно, до прихода инфразвука на две точки регистрации, регистрируют магнитные компоненты сигнала ЭМИ двумя взаимно перпендикулярными в горизонтальной плоскости магнитными антеннами, ориентированными максимумами диаграмм направленности, соответственно, на Север-Юг и Запад-Восток, определяют по соотношению сигналов магнитных антенн азимут и определяют приближенную дальность до источника сигналов по изменению спектра сигнала ЭМИ в зависимости от пройденного ЭМИ расстояния, для чего определяют суммарный спектр сигналов двух магнитных антенн, определяют верхнюю и нижнюю частоты спектра и амплитуды сигналов на этих частотах, определяют отношение верхней частоты к нижней частоте спектра и отношение амплитуды нижней частоты к амплитуде верхней частоты спектра, по полученным отношениям, нижней частоте спектра, скорости света и азимуту определяют приближенные дальность до источника электромагнитного излучения и его местоположение, определяют по приближенному местоположению для каждой точки регистрации угол прихода сигнала между направлением на источник сигнала и прямой, соединяющей точки регистрации, определяют приближенное расстояние до источника сигнала и по заданной скорости инфразвука определяют ожидаемый интервал времени прихода инфразвука для каждой точки регистрации, с учетом погрешности заданной скорости инфразвука и определения приближенной дальности, и прекращают анализ сигналов до наступления ожидаемых интервалов времени прихода инфразвука, а в течение ожидаемых интервалов времени после прихода инфразвука и определения разности времени прихода ЭМИ и инфразвука для каждой точки регистрации, по углам прихода сигналов, известному расстоянию между точками регистрации и разностям времени прихода ЭМИ и инфразвука для каждой точки регистрации уточняют скорость инфразвука во время прохождения сигналов, по разностям времени прихода ЭМИ и инфразвука для каждой точки регистрации и уточненной скорости инфразвука во время прохождения сигналов уточняют значение дальности до источника сигналов, а по азимуту и уточненному значению дальности уточняют местоположение источника сигналов.
RU2016119501A 2016-05-20 2016-05-20 Способ определения пеленга и дальности до источника сигналов RU2625094C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016119501A RU2625094C1 (ru) 2016-05-20 2016-05-20 Способ определения пеленга и дальности до источника сигналов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016119501A RU2625094C1 (ru) 2016-05-20 2016-05-20 Способ определения пеленга и дальности до источника сигналов

Publications (1)

Publication Number Publication Date
RU2625094C1 true RU2625094C1 (ru) 2017-07-11

Family

ID=59495467

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016119501A RU2625094C1 (ru) 2016-05-20 2016-05-20 Способ определения пеленга и дальности до источника сигналов

Country Status (1)

Country Link
RU (1) RU2625094C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111722177A (zh) * 2019-03-22 2020-09-29 成都信息工程大学 确定辐射源定向误差的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3937951A (en) * 1974-12-09 1976-02-10 United States Of America As Represented By The Secretary Of The Navy All-sky photoelectric lightning detector apparatus
SU777612A1 (ru) * 1979-01-22 1980-11-07 Предприятие П/Я Г-4421 Устройство дл регистрации молний
SU1223175A1 (ru) * 1984-05-31 1986-04-07 Главная геофизическая обсерватория им.А.И.Воейкова Фазовый анализатор местоположени гроз
RU2184983C2 (ru) * 2000-10-04 2002-07-10 Институт радиотехники и электроники РАН Способ местоопределения грозовых разрядов и устройство для его осуществления

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3937951A (en) * 1974-12-09 1976-02-10 United States Of America As Represented By The Secretary Of The Navy All-sky photoelectric lightning detector apparatus
SU777612A1 (ru) * 1979-01-22 1980-11-07 Предприятие П/Я Г-4421 Устройство дл регистрации молний
SU1223175A1 (ru) * 1984-05-31 1986-04-07 Главная геофизическая обсерватория им.А.И.Воейкова Фазовый анализатор местоположени гроз
RU2184983C2 (ru) * 2000-10-04 2002-07-10 Институт радиотехники и электроники РАН Способ местоопределения грозовых разрядов и устройство для его осуществления

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
А.В. Панюков, А.К. Богушов. Спектрально-статистический метод идентификации параметров положения дипольного источника электромагнитного поля. XII Всероссийское совещание по проблемам управления ВСПУ-2014. Москва 16-19 июня 2014, стр. 3115-3128. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111722177A (zh) * 2019-03-22 2020-09-29 成都信息工程大学 确定辐射源定向误差的方法

Similar Documents

Publication Publication Date Title
CN104316903B (zh) 一种三站时差定位性能试验评估方法
KR101240629B1 (ko) Ads-b 시스템이 탑재된 항공기를 이용한 미지신호 검출 및 발생원 위치 추정방법
CN102033223B (zh) 使用麦克风阵列对声源定位的方法
Lo et al. Broadband passive acoustic technique for target motion parameter estimation
US9001614B1 (en) System for self-localizing near field data processing
RU2559165C1 (ru) Устройство для определения направления и дальности до источника сигнала
CN107607943A (zh) 基于干涉相位辅助的延迟多普勒雷达高度表的测高方法
Lo et al. Aircraft flight parameter estimation using acoustic multipath delays
CN102997988A (zh) 大型潜标矢量水听器低频声学指向性的水池测试方法
RU2718737C1 (ru) Способ определения координат источников радиоизлучения
Sinitsyn et al. Determination of aircraft current location on the basis of its acoustic noise
RU2620925C1 (ru) Способ определения направления и дальности до источника сигналов
RU2625094C1 (ru) Способ определения пеленга и дальности до источника сигналов
KR101170723B1 (ko) 신호원 방향 탐지 장치
Salimi et al. Investigation of short base line lightning detection system by using time of arrival method
Wang et al. Pulse parabolic equation method for Loran-C ASF prediction over irregular terrain
EP3709055A2 (en) Consistent arrival time measurement and determination of discharge polarity
KR101480834B1 (ko) 다중 경로 음파 전달 모델 및 표적 식별을 이용한 표적 기동분석 방법
RU2624984C1 (ru) Способ определения местоположения источника сигналов
JP2007163271A (ja) 地中レーダ画像処理法
CN111157944B (zh) 基于双天线的测距装置、移动载体
Goseberg et al. Tracking of “Smart” debris location based on the RFID technique
Klungmontri et al. Acoustic underwater positioning system using fast fourier transform and trilateration algorithm
RU2552852C1 (ru) Устройство для определения направления и дальности до источника сигнала
RU165455U1 (ru) Устройство для определения местоположения источника сигналов