RU2620925C1 - Способ определения направления и дальности до источника сигналов - Google Patents

Способ определения направления и дальности до источника сигналов Download PDF

Info

Publication number
RU2620925C1
RU2620925C1 RU2016119500A RU2016119500A RU2620925C1 RU 2620925 C1 RU2620925 C1 RU 2620925C1 RU 2016119500 A RU2016119500 A RU 2016119500A RU 2016119500 A RU2016119500 A RU 2016119500A RU 2620925 C1 RU2620925 C1 RU 2620925C1
Authority
RU
Russia
Prior art keywords
infrasound
signal
arrival
signals
time
Prior art date
Application number
RU2016119500A
Other languages
English (en)
Inventor
Анатолий Константинович Барышников
Ольга Владимировна Барышникова
Игорь Евгеньевич Кремлев
Original Assignee
Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") filed Critical Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА")
Priority to RU2016119500A priority Critical patent/RU2620925C1/ru
Application granted granted Critical
Publication of RU2620925C1 publication Critical patent/RU2620925C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/802Systems for determining direction or deviation from predetermined direction
    • G01S3/808Systems for determining direction or deviation from predetermined direction using transducers spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

Способ относится к измерениям, в частности к пеленгу. Техническим результатом является уменьшение погрешности использования его на однопозиционном пункте наблюдения и увеличение помехоустойчивости при наличии мешающих сигналов, приходящих во время прохождения инфразвуком расстояния от источника сигнала до пункта наблюдения. Технический результат достигается тем, что отмечают время прихода электромагнитного излучения (ЭМИ), инфразвука и разность времени сигналов. До прихода инфразвука по сигналам от двух антенн, направленных в стороны света, находят азимут, дальность до источника - по высоте отражения от ионосферы, времени задержки сигнала, по трем ортогональным антеннам - угол. Фиксируют азимут и этот угол. Находят времена сигналов от земли и ионосферы. В последующих сигналах сравнивают их азимут с фиксированным и при близких значениях сличают углы. Далее находят: дальность до источника, координаты, угол между вектором на источник и прямой между датчиками. По скорости инфразвука находят время его прихода и погрешность, по углам, расстоянию между точками и времени - скорость инфразвука, дальность - по разностям времен сигналов и скорости инфразвука, координаты - по азимуту и дальности. 1 ил.

Description

Изобретение относится к измерительной технике, к пеленгаторам, и предназначается для местоопределения источников сигналов электромагнитного излучения (ЭМИ) и инфразвука искусственного и естественного происхождения (например, молниевых разрядов) и может быть использовано в метеорологии, в службе наблюдения за грозовой деятельностью, в морском транспорте и авиации.
Оценка направления и дальности до источника сигналов при установке одного устройства на однопозиционном пункте наблюдения возможна с помощью способов, анализирующих соотношение параметров ЭМИ (амплитуд сигналов на приемниках ЭМИ с дипольными диаграммами направленности, взаимно перпендикулярными в горизонтальной плоскости) и изменение параметров принимаемого сигнала ЭМИ (длительность переднего фронта, длительность пика, отношение амплитуд частотных составляющих и др.) в зависимости от расстояния, пройденного сигналом. Для уменьшения погрешности оценки дальности устанавливают два устройства на расстоянии друг от друга (измерительная база) и применяют триангуляционный метод определения дальности. Способ заключается в том, что из двух пунктов наблюдения, расстояние между которыми известно, определяют углы прихода ЭМИ относительно линии, соединяющей пункты наблюдения, и решают геометрическую задачу нахождения сторон треугольника по известной стороне и двум измеренным углам [1]. Однако при малых углах относительно линии, соединяющей пункты наблюдения, применение способа дает большую погрешность [2].
Большинство регистрируемых явлений (грозовые разряды и др.) сопровождается сигналами, распространяющимися с низкой скоростью (например, инфразвук), но пеленгация с использованием этих сигналов не дает лучших результатов из-за зависимости скорости распространения этих сигналов от состояния среды распространения, т.е. из-за незнания точного значения скорости распространения в данный момент в данном месте, а также из-за мешающих сигналов других источников, возникающих за время прохождения инфразвука.
Однако использование обоих видов сигналов (например, электромагнитного излучения и инфразвука) на двухпозиционном пункте наблюдения дает новое качество, так как позволяет одновременно с пеленгом определить значение скорости распространения инфразвука в данный момент и, соответственно, более точно определить дальность до источника сигнала при известном расстоянии между точками регистрации. С другой стороны, использование разности времени прихода инфразвука на точки регистрации позволяет уменьшить размеры измерительной базы до однопозиционной за счет более низкой скорости распространения инфразвука по сравнению с ЭМИ.
Аналогично могут быть использованы акустические, сейсмические и ультразвуковые волны, сопровождающие регистрируемое явление.
Наиболее близким техническим решением к предлагаемому является способ, раскрытый в статье [3] (комбинированная система грозоопределения, состоящая из инфразвукового комплекса и электрической антенны), где местоположение и дальность до источника сигнала определяются после события по результатам дальнейшей обработки оператором записанных сигналов. Для определения азимута используются разности времени прихода инфразвуковых сигналов на не менее чем три микробарометра, разнесенных друг от друга более чем на 90 метров (трехпозиционная система регистрации), а для определения дальности до источника сигнала используется разность времени прихода сигналов на электростатический флюксметр и инфразвуковой микрофон (или микробарометры).
При появлении двух или более инфразвуковых сигналов от аналогичных событий на рассмотренном пункте наблюдения во время прохождения инфразвуком расстояния от источника сигналов до микробарометра определить, какому источнику принадлежат сигналы, практически невозможно в рамках указанного способа.
Недостатками прототипа являются большая погрешность использования его на однопозиционном пункте наблюдения или на средстве передвижения, а также малая помехоустойчивость при наличии мешающих сигналов, приходящих во время прохождения инфразвуком расстояния от источника сигнала до пункта наблюдения.
Техническим результатом, обеспечиваемым заявляемым изобретением, является уменьшение погрешности использования его на однопозиционном пункте наблюдения или на средстве передвижения и увеличение помехоустойчивости при наличии мешающих сигналов, приходящих во время прохождения инфразвуком расстояния от источника сигнала до пункта наблюдения.
Технический результат достигается тем, что в способе определения направления и дальности до источника сигналов, заключающемся в том, что регистрируют время прихода электромагнитного излучения (ЭМИ) на однопозиционный пункт наблюдения с двумя точками регистрации инфразвука, а также время прихода инфразвука на две точки регистрации и определяют для каждой точки регистрации разность времени прихода ЭМИ и инфразвука, дополнительно, до прихода инфразвука на две точки регистрации регистрируют магнитные компоненты сигнала ЭМИ двумя взаимно перпендикулярными в горизонтальной плоскости магнитными антеннами, ориентированными максимумами диаграмм направленности соответственно на Север-Юг и Запад-Восток, определяют по соотношению сигналов магнитных антенн азимут и определяют приближенную дальность до источника сигналов по известной высоте отражающего слоя ионосферы и времени задержки ионосферного отраженного сигнала ЭМИ относительно сигнала ЭМИ земной волны, для чего регистрируют магнитную компоненту сигнала вертикальной третьей магнитной антенной, по полученным первичным сигналам трех ортогональных магнитных антенн определяют угол наклона магнитной составляющей сигнала относительно горизонтальной плоскости, запоминают значение азимута и угла наклона магнитной составляющей сигнала относительно горизонтальной плоскости в момент прихода первичных сигналов ЭМИ и начинают отсчет разности времени сигнала ЭМИ земной волны и ионосферного сигнала ЭМИ, для последующих сигналов ЭМИ сравнивают текущее значение азимута с запомненным, для последующих сигналов ЭМИ с азимутом прихода, близким к запомненному, сравнивают текущее значение угла наклона магнитной составляющей сигнала с запомненным и при отклонении от заданного значения разности углов наклона магнитной составляющей сигнала прекращают отсчет времени задержки ионосферного сигнала ЭМИ относительно сигнала ЭМИ земной волны, по полученному значению времени задержки ионосферного сигнала ЭМИ и азимуту определяют приближенные дальность до источника сигналов и его местоположение, определяют по приближенному местоположению для каждой точки регистрации угол прихода сигнала между направлением на источник сигнала и прямой, соединяющей точки регистрации, определяют приближенное расстояние до источника сигнала и по заданной скорости инфразвука определяют ожидаемый интервал времени прихода инфразвука для каждой точки регистрации с учетом погрешности заданной скорости инфразвука и определения приближенной дальности и прекращают анализ сигналов до наступления ожидаемых интервалов времени прихода инфразвука, а в течение ожидаемых интервалов времени после прихода инфразвука и определения разности времени прихода ЭМИ и инфразвука для каждой точки регистрации, по углам прихода сигналов, известному расстоянию между точками регистрации и разностям времени прихода ЭМИ и инфразвука для каждой точки регистрации уточняют скорость инфразвука во время прохождения сигналов, по разностям времени прихода ЭМИ и инфразвука для каждой точки регистрации и уточненной скорости инфразвука во время прохождения сигналов уточняют значение дальности до источника сигналов, а по азимуту и уточненному значению дальности уточняют местоположение источника сигналов.
Способ иллюстрируется схемой, приведенной на чертеже.
Из схемы следует:
Figure 00000001
Figure 00000002
где a, b - расстояния до источника сигналов, γ, β - углы между направлением на источник сигналов и линией, соединяющей обе точки регистрации (точку 1 и точку 2), V - скорость инфразвука, Δt1 - разность времени между приходом ЭМИ и приходом инфразвука в точку 1, Δt2 - разность времени между приходом ЭМИ и приходом инфразвука в точку 2, D - известное расстояние между точками регистрации (база), которое может быть уменьшено до нескольких метров.
На практике достаточно определить направление на источник сигнала из любой одной точки регистрации на пункте наблюдения, определить угол между направлением на источник сигнала и базой и приближенную дальность от точки регистрации до источника сигнала по изменению параметров принимаемого сигнала ЭМИ и построить треугольник направлений с последующим уточнением дальности после прихода инфразвука.
Такой способ работоспособен и при малых углах, и при нулевых углах, когда источник сигнала расположен на линии, проходящей через точки регистрации.
Предлагаемый способ реализуется следующим образом.
Принимают сигналы ЭМИ на однопозиционном пункте наблюдения с двумя точками регистрации и размещенным на каждой точке микробарометром, а на одной из двух точек регистрации (например, на первой точке) с размещенными двумя взаимно перпендикулярными в горизонтальной плоскости магнитными антеннами, ориентированными максимумами диаграммы направленности соответственно на Север-Юг (ось X) и на Восток-Запад (ось Y), и вертикальной магнитной антенной, установленной перпендикулярно плоскости XY (ось Z), подключенными через усилители и аналого-цифровые преобразователи к вычислителю.
В случае превышения сигналом от любой из магнитных антенн заданного уровня начинают цикл обработки сигналов и отсчет времени задержки инфразвука для каждой из двух точек регистрации.
Определяют направление на источник сигнала, вычисляя отношение амплитуд сигналов двух взаимно перпендикулярных в горизонтальной плоскости антенн (X и Y) [4],
tgα=Ay/Ax,
где α - азимут; Ax, Ay - амплитуды сигналов магнитных антенн, ориентированных максимумами диаграммы направленности соответственно на Север-Юг (ось X) и на Восток-Запад (ось Y).
Формируют и запоминают верхнее tgα1 и нижнее tgα2 допустимые значения, исходя из известных местных условий.
Полученное направление соответствует углу γ прихода сигнала для первой точки регистрации.
Вычисляют отношение квадратов амплитуд сигналов трех антенн
Figure 00000003
, формируют и запоминают верхнее tg2β1 и нижнее tg2β2 допустимые значения, исходя из известных местных условий.
Для всех последующих сигналов проверяют значение tgα, и, если оно не находится между верхним и нижним допустимыми значениями tgα1 и tgα2, сигнал не обрабатывается, отсеиваются помехи ЭМИ, приходящие с других азимутов α.
Для всех последующих сигналов с допустимыми значениями tgα проверяют значение tg2β и, если оно не находится между верхним и нижним допустимыми значениями tg2β1 a tg2β2, этим сигналом останавливают отсчет времени задержки ионосферного сигнала, так как с приходом отраженного от ионосферы сигнала изменяется угол β наклона магнитной составляющей сигнала.
По полученному времени задержки ионосферного сигнала, известной по местным условиям - высоте D-слоя ионосферы и по геометрии земного шара определяют расстояние до источника сигнала [5], [6].
Figure 00000004
где R - расстояние, проходимое земной волной до источника сигнала; RЗ - радиус Земли; τЗ - время задержки пространственной волны; h - эффективная высота ионосферного слоя D; с - скорость света.
Принимают за приближенное местонахождение источника сигнала точку на расстоянии R в направлении на источник сигнала из первой точки регистрации и определяют приближенные угол прихода сигнала β1 и расстояние b1 до второй точки регистрации по известному расстоянию D между точками регистрации, приближенному расстоянию R и углу прихода сигнала γ на первую точку.
Для первой и второй точек регистрации определяют ожидаемый интервал времени прихода инфразвука по расстояниям R и b1 и заданной скорости инфразвука с началом интервала времени, вычисленным при максимальной скорости инфразвука и минимальных значениях R и b1.
Прекращают обработку сигналов до наступления ожидаемых интервалов времени прихода инфразвука на точки регистрации, а с наступлением указанных интервалов времени регистрируют время прихода инфразвука для первой и второй точек регистрации и вычисляют разности Δt1 и Δt2 времени прихода ЭМИ и инфразвука для двух точек регистрации.
По измеренным разностям времени прихода ЭМИ и инфразвука Δt1 и Δt2, по углам прихода сигналов β1 и γ на точки регистрации и по известному расстоянию D между точками регистрации определяют уточненное значение скорости инфразвука (1) во время прохождения сигналов и уточненную дальность (2) до источника сигналов.
По азимуту и уточненной дальности уточняют местоположение источника сигналов.
При необходимости, более точное местоположение источника сигналов определяют итерациями путем определения по уточненному местоположению источника сигналов новых значений β1, скорости инфразвука и дальности до источника сигналов.
Таким образом, за счет использования сигналов магнитных антенн с более низким уровнем шумов, а также за счет удаления помех, приходящих во время прохождения инфразвука до точек регистрации, повышена помехоустойчивость способа.
Используемые действия способа реализуются в реальном масштабе времени для инфразвука, сейсмических колебаний и других сопутствующих ЭМИ явлений, позволяют уменьшить погрешность использования его на однопозиционном пункте наблюдения или на средстве передвижения и увеличить помехоустойчивость при наличии мешающих сигналов, приходящих во время прохождения инфразвуком расстояния от источника сигнала до пункта наблюдения.
Источники информации
1. Караваев В.В., Сазонов В.В. Статистическая теория пассивной локации. - М.: Радио и связь, 1987. стр. 150.
2. Результаты моделирования триангуляционного способа определения дальности с применением двух и трех станций. Коровин Е.С. 2012 г. ОАО «Центральное конструкторское бюро автоматики», г. Омск, радиосеминар, доклад, стр. 1-33,
Figure 00000005
3. Электромагнитная акустическая система обнаружения грозовых разрядов. К.В. Вознесенская, А.В. Соловьев, И.С. Гибанов, Д.С. Провоторов, М.В. Чепчугов, А.А. Бочаров. Вестник науки Сибири. 2012. №5 (6), http://sjs.tpu.ru/journal/article/view/510/420, УДК 534.321.8.
4. Широкополосное двухкомпонентное приемное антенное устройство (патент РФ №2474014 C1, H01Q 7/04, 2011 г., опубл. 27.01.2013).
5. Анализ методов и средств пассивной радиолокации грозовых очагов. П. Трусковский. Proceedings of International Conference RelStat'04, Part 3, Институт транспорта и связи, Ломоносова 1, Рига, LV-1019, Латвия, E-mail: truskovskis@tsi.lv http://www.tsi.lv/sites/default/files/editor/science/Research_journals/Tr_Tel/2005/V3/art10.pdf
6. Способ однопунктовой дальнометрии источников атмосфериков (Патент РФ №2138063 C1, G01S 13/95, G01S 11/00, 1998 г., опубл. 20.09.1999).

Claims (1)

  1. Способ определения направления и дальности до источника сигналов, заключающийся в том, что регистрируют время прихода электромагнитного излучения (ЭМИ) на однопозиционный пункт наблюдения с двумя точками регистрации инфразвука, а также время прихода инфразвука на две точки регистрации и определяют для каждой точки регистрации разность времени прихода ЭМИ и инфразвука, отличающийся тем, что дополнительно, до прихода инфразвука на две точки регистрации, регистрируют магнитные компоненты сигнала ЭМИ двумя взаимно перпендикулярными в горизонтальной плоскости магнитными антеннами, ориентированными максимумами диаграмм направленности соответственно на Север-Юг и Запад-Восток, определяют по соотношению сигналов магнитных антенн азимут и определяют приближенную дальность до источника сигналов по известной высоте отражающего слоя ионосферы и времени задержки ионосферного отраженного сигнала ЭМИ относительно сигнала ЭМИ земной волны, для чего регистрируют магнитную компоненту сигнала вертикальной третьей магнитной антенной, по полученным первичным сигналам трех ортогональных магнитных антенн определяют угол наклона магнитной составляющей сигнала относительно горизонтальной плоскости, запоминают значение азимута и угла наклона магнитной составляющей сигнала относительно горизонтальной плоскости в момент прихода первичных сигналов ЭМИ и начинают отсчет разности времени сигнала ЭМИ земной волны и ионосферного сигнала ЭМИ, для последующих сигналов ЭМИ сравнивают текущее значение азимута с запомненным, для последующих сигналов ЭМИ с азимутом прихода, близким к запомненному, сравнивают текущее значение угла наклона магнитной составляющей сигнала с запомненным и при отклонении от заданного значения разности углов наклона магнитной составляющей сигнала прекращают отсчет времени задержки ионосферного сигнала ЭМИ относительно сигнала ЭМИ земной волны, по полученному значению времени задержки ионосферного сигнала ЭМИ и азимуту определяют приближенные дальность до источника сигналов и его местоположение, определяют по приближенному местоположению для каждой точки регистрации угол прихода сигнала между направлением на источник сигнала и прямой, соединяющей точки регистрации, определяют приближенное расстояние до источника сигнала и по заданной скорости инфразвука определяют ожидаемый интервал времени прихода инфразвука для каждой точки регистрации с учетом погрешности заданной скорости инфразвука и определения приближенной дальности и прекращают анализ сигналов до наступления ожидаемых интервалов времени прихода инфразвука, а в течение ожидаемых интервалов времени после прихода инфразвука и определения разности времени прихода ЭМИ и инфразвука для каждой точки регистрации по углам прихода сигналов, известному расстоянию между точками регистрации и разностям времени прихода ЭМИ и инфразвука для каждой точки регистрации уточняют скорость инфразвука во время прохождения сигналов, по разностям времени прихода ЭМИ и инфразвука для каждой точки регистрации и уточненной скорости инфразвука во время прохождения сигналов уточняют значение дальности до источника сигналов, а по азимуту и уточненному значению дальности уточняют местоположение источника сигналов.
RU2016119500A 2016-05-20 2016-05-20 Способ определения направления и дальности до источника сигналов RU2620925C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016119500A RU2620925C1 (ru) 2016-05-20 2016-05-20 Способ определения направления и дальности до источника сигналов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016119500A RU2620925C1 (ru) 2016-05-20 2016-05-20 Способ определения направления и дальности до источника сигналов

Publications (1)

Publication Number Publication Date
RU2620925C1 true RU2620925C1 (ru) 2017-05-30

Family

ID=59032413

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016119500A RU2620925C1 (ru) 2016-05-20 2016-05-20 Способ определения направления и дальности до источника сигналов

Country Status (1)

Country Link
RU (1) RU2620925C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA035299B1 (ru) * 2018-05-16 2020-05-26 Общество с ограниченной ответственностью "Инженерно-технологический центр "КУБ" Устройство для диагностики и определения местоположения течей в магистральных трубопроводах
RU2737279C1 (ru) * 2020-04-03 2020-11-26 Федеральное государственное бюджетное учреждение "3 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации Способ определения дальности цели в двухпозиционном комплексе пассивной локации с использованием зондирующих сигналов ионосферной загоризонтной рлс

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2282866C1 (ru) * 2005-01-28 2006-08-27 Владимир Петрович Панов Способ определения пространственного положения объекта
US20070047743A1 (en) * 2005-08-26 2007-03-01 Step Communications Corporation, A Nevada Corporation Method and apparatus for improving noise discrimination using enhanced phase difference value
RU2319171C1 (ru) * 2006-07-17 2008-03-10 Институт проблем машиноведения Российской академии наук Система автоматического наведения радиотелескопа
US8174934B2 (en) * 2010-07-28 2012-05-08 Empire Technology Development Llc Sound direction detection
RU2559165C1 (ru) * 2014-05-08 2015-08-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Устройство для определения направления и дальности до источника сигнала

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2282866C1 (ru) * 2005-01-28 2006-08-27 Владимир Петрович Панов Способ определения пространственного положения объекта
US20070047743A1 (en) * 2005-08-26 2007-03-01 Step Communications Corporation, A Nevada Corporation Method and apparatus for improving noise discrimination using enhanced phase difference value
RU2319171C1 (ru) * 2006-07-17 2008-03-10 Институт проблем машиноведения Российской академии наук Система автоматического наведения радиотелескопа
US8174934B2 (en) * 2010-07-28 2012-05-08 Empire Technology Development Llc Sound direction detection
RU2559165C1 (ru) * 2014-05-08 2015-08-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Устройство для определения направления и дальности до источника сигнала

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA035299B1 (ru) * 2018-05-16 2020-05-26 Общество с ограниченной ответственностью "Инженерно-технологический центр "КУБ" Устройство для диагностики и определения местоположения течей в магистральных трубопроводах
RU2737279C1 (ru) * 2020-04-03 2020-11-26 Федеральное государственное бюджетное учреждение "3 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации Способ определения дальности цели в двухпозиционном комплексе пассивной локации с использованием зондирующих сигналов ионосферной загоризонтной рлс

Similar Documents

Publication Publication Date Title
US5615175A (en) Passive direction finding device
CN110703203A (zh) 基于多声学波浪滑翔机的水下脉冲声定位系统
JP4817665B2 (ja) 落雷位置標定方法及びシステム
Lo et al. Aircraft flight parameter estimation using acoustic multipath delays
CN110294080B (zh) 一种利用超短基线实现水下精确作业的方法
CN112379342B (zh) 一种星载测云雷达回波模拟及回波特征参数精度估算方法
RU2559165C1 (ru) Устройство для определения направления и дальности до источника сигнала
CN110703202B (zh) 基于多声学波浪滑翔机和水面无人艇的水下脉冲声定位系统
Spindel et al. A high-resolution pulse-Doppler underwater acoustic navigation system
RU2620925C1 (ru) Способ определения направления и дальности до источника сигналов
Sinitsyn et al. Determination of aircraft current location on the basis of its acoustic noise
EP3709055A2 (en) Consistent arrival time measurement and determination of discharge polarity
Wang et al. Pulse parabolic equation method for Loran-C ASF prediction over irregular terrain
Brundell et al. Validation of single-station lightning location technique
RU2625094C1 (ru) Способ определения пеленга и дальности до источника сигналов
Tsai et al. HF Radio Angle-of-Arrival Measurements and Ionosonde Positioning.
Li et al. Calibration of multibeam echo sounder transducer array based on focused beamforming
Lo et al. Flight path estimation using frequency measurements from a wide aperture acoustic array
Belova et al. Experimental research of the interference and phase structure of the power flux from a local source in shallow water
RU2624984C1 (ru) Способ определения местоположения источника сигналов
Nagano et al. Estimation of lightning location from single station observations of sferics
Dai et al. UAV-aided source localization in urban environments based on ray launching simulation
KR20170104100A (ko) 윈드프로파일러의 지형클러터 제거 시스템 및 그 방법
CN110865359A (zh) 一种基于接收信号强度的水声测距方法
Goseberg et al. Tracking of “Smart” debris location based on the RFID technique

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200521