RU2624873C1 - Способ получения остеопластического материала - Google Patents
Способ получения остеопластического материала Download PDFInfo
- Publication number
- RU2624873C1 RU2624873C1 RU2015156947A RU2015156947A RU2624873C1 RU 2624873 C1 RU2624873 C1 RU 2624873C1 RU 2015156947 A RU2015156947 A RU 2015156947A RU 2015156947 A RU2015156947 A RU 2015156947A RU 2624873 C1 RU2624873 C1 RU 2624873C1
- Authority
- RU
- Russia
- Prior art keywords
- granules
- layer
- fluidized bed
- hydroxyapatite
- polylactide glycolide
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/10—Ceramics or glasses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/831—Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon
- A61K6/838—Phosphorus compounds, e.g. apatite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/22—Polypeptides or derivatives thereof, e.g. degradation products
- A61L27/24—Collagen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/44—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
- A61L27/46—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Transplantation (AREA)
- Dermatology (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Ceramic Engineering (AREA)
- Plastic & Reconstructive Surgery (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Изобретение относится к медицине, в частности к способу получения остеопластического материала в виде многослойных гранул из рентгеноконтрастных β-трикальцийфосфата 20% и гидроксиапатита 80% в полилактидгликолидной матрице с добавлением во внутренний слой гиалуроновой кислоты, а во внешний слой - гидрокортизона, хлоргексидина и лидокаина. Способ получения остеопластического материала характеризуется тем, что процесс нанесения слоев осуществляют в грануляторе в псевдоожиженном слое за три этапа. Осуществление изобретения позволяет получить остеопластический материал в виде многослойных гранул, обладающих бактериостатическим и бактерицидным действием и пролонгированным выделением активных действующих веществ. 6 ил., 2 пр.
Description
Способ относится к области медицины, а именно стоматологии, и может быть использован для получения остеопластического материала, оптимизирующего регенерацию мягких и костных тканей в хирургической стоматологии, клинике общей и челюстно-лицевой хирургии, а также в травматологии и ортопедии для восстановления пародонтальных дефектов, десневой рецессии, а также при заполнении двух- или многостеночных внутрикостных дефектов, альвеолярной регенерации, аугментации атрофированной челюстной пазухи.
Известно, что для восстановления костной ткани используют аутогенные, аллогенные, ксеногенные и аллопластические материалы.
Недостатком аутогенных материалов является ограниченность объема материала, нанесение дополнительных травм пациенту и в некоторых случаях высокая скорость резорбции.
Наиболее значимым недостатком аллотрансплантатов является биологическая несовместимость тканей донора и реципиента, длительность сроков заготовки, возможность инфицирования вирусом гепатита, ВИЧ-инфекции, сложность юридического оформления.
Недостаток ксеногенных материалов определяется необходимостью тщательной обработки исходного сырья специальными растворителями, термообжигом или низкотемпературной заморозкой для предотвращения иммунологических реакций.
В настоящее время широко используется множество искусственно синтезированных аллопластических материалов в большинстве своем на основе фосфата кальция, главным образом, гидроксиапатита, который используют в реконструктивной костно-пластической хирургии с 20-х годов ХХ века.
Материалы на основе гидроксиапатита успешно используют в качестве компонента в пастах для пломбирования каналов корней зубов, для заполнения костных полостей после резекции верхушки корня зуба, а также в виде порошков, гранул или блоков в челюстно-лицевой и реконструктивной хирургии.
Так, например, способ получения синтетического аллопластического материала в виде гранул описан в патенте РФ №2132702 (опубликовано: 10.07.1999). Способ включает синтез стекла медицинского назначения из биоситаллов с содержанием гидроксиапатиата (ГАП) при следующем соотношении компонентов, мас.%: SiO2 26,0-33,4, P2O5 10,5-13,5, Al2O3 4,3-5,5, CaO 23,6-30,4, MgO 2,1-2,7, ZnO 3,5-4,5, гидроксиапатит (ГАП) 10,0-30,0, путем смешивания тонкодисперсионных порошков стекла и ГАП в соотношениях согласно заявляемому составу, приготовление пластической массы, изготовление гранулята, удаление связующих веществ, спекание гранул и выделение монокристаллического ГАП (в фазе даллита) в 30-60 об.%. С целью упрощения и экономичности способа стадия спекания при t=1450°C в течение 3 часов совмещена с одноступенчатым режимом направленной кристаллизации. Изобретение обеспечивает получение нового материала с повышенной механической прочностью, устойчивого к режиму термоциклирования, и изделий из него в виде гранул с оптимальной пористостью 100-120 мкм, обладающих повышенными эксплуатационными свойствами, расширяющее область использования остеозамещающих биоматериалов в стоматологии, челюстно-лицевой и реконструктивной хирургии.
Недостатком изобретения является то, что спекание гранул проводят при высокой температуре, что требует много времени и энергозатрат, влечет за собой использование дополнительного оборудования и операций в производственном технологическом цикле.
Известны резорбируемые кальций-фосфатные многослойные гранулы «Клипдент» с пролонгированным высвобождением активных действующих веществ. Основа гранулы состоит из рентгеноконтрастных β-трикальцийфосфата (20%) и гидроксиапатита (80%) в полилактидгликолидной матрице. Внутренний слой покрытия содержит гиалуронат натрия, который оказывает стимулирующее действие на рост клеток и способствует активации репаративного остеогенеза в области травмы, ускоряя процесс дифференциации новообразованной костной ткани, что выражается прежде всего в резком повышении удельного веса костной компоненты регенерата, а также в более интенсивном созревании костного вещества. Внешний слой покрытия включает в себя гидрокортизон, хлоргексидин и лидокаин, которые обладают антибактериальным действием по отношению к анаэробным простейшим и бактериям, ингибируют синтез белков в микроорганизмах, оказывая бактериостатическое и бактерицидное действие, активны в отношении широкого спектра вегетативных форм грамотрицательных и грамположительных микроорганизмов, дрожжей и липофильных вирусов. (Посохова В.Ф., Лыкова И.В., Чуев П.В., Чуев В.П. Остеопластические материалы от компании «ВладМиВа», ж. IndexDent №3, 2014 год).
Из уровня техники известно, что гранулы «Клипдент» изготавливают путем спекания синтетического сырья, не содержат веществ животного происхождения и при этом биологически совместимы с тканями организма. Высокая микро- и макропористость, а также межгранулярная пористость создают идеальные условия для восстановления кости. (Интернет-ссылка: http://www.vladmiva.ru/decatalog/product-17/)
Данный способ выбран за прототип. Недостатком указанного способа является высокая энергоемкость за счет высокой температуры спекания.
Разработка способов получения лекарственных средств с пролонгированным выделением биологически активных веществ, обеспечивающих достижение желаемого клинического результата, при наличии также желаемого равновесия между механическими свойствами, биостабильностью in vivo и применимостью в хирургии, при лечении в настоящее время является актуальной.
Задача изобретения – разработка способа получения остеопластического материала в виде многослойных гранул, обладающих бактериостатическим и бактерицидным действием и пролонгированным выделением активных действующих веществ, на основе гидроксиапатита синтетического происхождения и β-трикальцийфосфата с добавлением гиалуроната натрия.
Технический результат заключается в реализации назначения.
Задача решается предложенным способом, включающим получение остеопластического материала в виде многослойных гранул из рентгеноконтрастных β-трикальцийфосфата (20%) и гидроксиапатита (80%) в полилактидгликолидной матрице с добавлением во внутренний слой гиалуроновой кислоты, а во внешний слой - гидрокортизона, хлоргексидина и лидокаина, обладающих бактериостатическим и бактерицидным действием, в который внесены следующие новые признаки:
- процесс нанесения слоев осуществляют в грануляторе в псевдоожиженном слое, при этом:
- на первом этапе порошкообразный нанодисперсный гидроксиапатит предварительно подогревают до температуры 38-40°С и обрабатывают нагретым до 45°С очищенным воздухом в течение 30 минут, после чего через центральный канал распылительного устройства гранулятора подают 10%-ный раствор полилактидгликолида в этилацетате с t=38°C при давлении 2-3 МПа;
- на втором этапе полученный полуфабрикат обрабатывают в течение 30 минут 1% водной суспензией гиалуроната натрия с β-трикальцийфосфатом в соотношении 1:1, после чего наносят еще один слой полилактидгликолида, продолжая обработку гранул в псевдоожиженном слое до полного высушивания слоя полилактидгликолида;
- после каждого этапа гранулы обрабатывают в CO2-экстракторе диоксидом углерода в сверхкритическом состоянии при давлении 100 атм и температуре 40°С в течение 10 минут с последующим сбросом давления до атмосферного, что придает слою из полилактидгликолида пористую структуру с многочисленными отверстиями диаметром от 200 до 1000 мкм по всему объему, разделенными тонкими перегородками, в которых встречаются отверстия размером до 100 мкм. При этом после обработки на первом этапе слой полилактидгликолида содержит равномерно распределенные микрочастицы гидроксиапатита, а после обработки на втором этапе - микрочастицы β-трикальцийфосфата;
- на третьем этапе в грануляторе в псевдоожиженном слое при тех же параметрах, что на двух первых этапах, на гранулы наносят поверхностный слой путем обработки 10%-ным водным раствором поливинилпиролидона, содержащего дополнительно в сумме не более 2% гидрокортизона, хлоргексидина и лидокаина. Обработку гранул в псевдоожиженном слое проводят до полного высушивания.
Способ позволяет получать гранулы со структурой, гарантирующей постепенное и пролонгированное выделение активных действующих веществ. Готовый остеопластический материал представляет собой многослойные гранулы из рентгеноконтрастных β-трикальцийфосфата (20%) и гидроксиапатита (80%) в полилактидгликолидной матрице, содержащие слой гиалуроната натрия и внешний слой поливинилпиролидона, содержащего дополнительно гидрокортизон, хлоргексидин и лидокаин.
Поливинилпиролидон - основа внешнего слоя гранул - синтетический полимер, растворимый в воде. Используется как заменитель плазмы крови в медицине и фармацевтике.
Гидрокортизон - природное лекарственное средство широкого применения. В организме человека гидрокортизон секретируется корой надпочечников и в этом качестве обычно именуется как гормон кортизол. Фармакологическое действие - глюкокортикоидное, противошоковое, противовоспалительное, противоаллергическое, иммунодепрессивное, антиэкссудативное, противозудное. Тормозит реакции гиперчувствительности, пролиферативные и экссудативные процессы в соединительной ткани, в очаге воспаления. Уменьшает местную гиперемию и гипертермию кожи.
Хлоргексидин - антисептическое средство, активно в отношении вегетативных форм грамотрицательных и грамположительных бактерий, а также дрожжей, дерматофитов и липофильных вирусов.
Лидокаин - местный анестетик, используемый в качестве обезболивающего средства.
Таким образом, состав внешнего слоя гранул обеспечивает антибактериальное действие по отношению к анаэробным простейшим и бактериям, ингибирует синтез белков в микроорганизмах, оказывая бактериостатическое и бактерицидное действие, активность в отношении широкого спектра вегетативных форм грамотрицательных и грамположительных микроорганизмов, дрожжей и липофильных вирусов, что позволяет в начале лечения предотвратить инфицирование оперированной поверхности и снизить болевые ощущения.
После растворения внешнего слоя через пористый слой полилактидгликолида биологические жидкости организма легко проникают к слою на основе гиалуроната натрия с β-трикальцийфосфатом и далее к ядру из гидроксиапатита. Начинается процесс постепенного высвобождения гиалуроната натрия, оказывающего стимулирующее действие на рост клеток и способствующего активации репаративного остеогенеза в области травмы, ускоряя процесс дифференциации новообразованной костной ткани, что выражается прежде всего в повышении удельного веса костной компоненты регенерата, а также в более интенсивном созревании костного вещества.
Гиалуронат натрия (гиалуроновая кислота) - это присутствующий в природе водорастворимый полисахарид, который является основным компонентом внеклеточного матрикса и широко распространен в животных тканях, обладает превосходной биосовместимостью и не вызывает реакции на постороннее тело или аллергической реакции при имплантации субъекту.
β-трикальцийфосфат – разновидность фосфатов кальция, причем растворимость β-трикальцийфосфата на порядок выше, чем растворимость гидроксиапатита, что является основанием для использования именно его в слое, содержащем гиалуронат натрия.
Гидроксиапатит – фосфат кальция, являющийся основной минеральной составляющей костей (около 50% от общей массы кости) и зубов (96% в эмали), в предложенных гранулах выполняет роль наполнителя дефекта кости, при этом одновременно его остеотропные свойства активизируют дифференцировку остеогенных клеток, а его остеоинтегративное действие проявляется в образовании прочной химической связи с костью и последующей резорбцией с полным замещением костной тканью.
Полилактидгликолид – полимер, обычно используемый для производства резорбируемых нитей медицинского назначения, рассасывающихся в живом организме, в предложенном способе выполняет роль образователя гранул за счет двух физических процессов: комкования порошка гидроксиапатита при смачивании и слипания комков с последующей агломерацией, а пористая структура слоев из полилактидгликолида позволяет биологическим жидкостям организма легко проникать к слою на основе гиалуроната натрия с β-трикальцийфосфатом и далее к ядру из гидроксиапатита, что способствует постепенной резорбции гранул и обеспечивает скорость резорбции материала в соответствии со скоростью формирования естественной костной ткани.
Из уровня техники не выявлено способа получения остеопластического материала в виде многослойных гранул, обладающих бактериостатическим и бактерицидным действием на первом этапе лечения, с пролонгированным механизмом стимулирующего действия на рост клеток, что позволяет обеспечить скорость резорбции материала в соответствии со скоростью формирования естественной костной ткани.
Предложенное изобретение характеризуется следующими графическими изображениями.
На Фиг. 1 представлено фото многослойной гранулы в разрезе, полученное на сканирующем электронном микроскопе, Ув. ×50, где 1 - гидроксиапатит, 2 - слой полилактидгликолида, 3 - слой гиалуроната натрия с β-трикальцийфосфатом, 4 - слой поливинилпиролидона, содержащий гидрокортизон и хлоргексидин и лидокаин.
На Фиг. 2. представлено изображение слоя 2 изполилактидгликолида до обработки в CO2-экстракторе.
На Фиг. 3 - представлено изображение слоя 2 из полилактидгликолида после обработки в CO2-экстракторе.
На Фиг. 4 представлен срез слоя полилактидгликолидной матрицы, содержащей включения трикальцийфосфата.
На Фиг. 5 представлен срез слоя полилактидгликолидной матрицы, содержащей включения гидроксиапатита.
На Фиг. 6. представлена технологическая схема для осуществления предложенного способа.
Пример осуществления предложенного способа.
Для получения многослойных гранул по предлагаемому способу используют кольцевой гранулятор 1 Solilab1D, снабженный сетчатой перфорированной нижней пластиной 2 и CO2-экстрактор 3 - реактор высокого давления, находящийся в термостате. Отличительной особенностью является то, что образование и рост гранул происходит в псевдоожиженном слое, т.е. обрабатываемый материал непрерывно находится в движении.
На первом этапе в кольцевой гранулятор 1, снабженный сетчатой перфорированной нижней пластиной 2, загружают 1 кг порошкообразного нанодисперсного гидроксиапатита и подогревают до температуры 38-40°С, затем подают через клапан 4 поток воздуха, предварительно очищенный и подогретый до температуры 45°С, пропуская его через слой гидроксиапатита. Поддерживают порошок в виде кипящего слоя, активно перемешивая его потоком воздуха в течение 30 минут.
Через центральный канал распылительного устройства 5 со скоростью 100 г/час при давлении на фильтре 2-3 МПа, подают в гранулятор 1 раствор полилактидгликолида в этилацетате концентрацией 10%, нагретый до t=38°C, благодаря чему порошкообразный гидроксиапатит превращается в гранулы в виде ядра из гидроксиапатита, покрытого слоем полилактидгликолида. Образование и рост гранул в псевдоожиженном слое происходит за счет двух физических процессов: комкования при смачивании и слипания с последующей агломерацией. Процесс гранулирования в псевдоожиженном слое происходит одновременно с сушкой получаемых гранул горячим воздухом, в течение которой гранулы затвердевают. Все технологические операции происходят в одном аппарате непрерывно, в результате чего получают гранулы округлой формы с улучшенной сыпучестью, более сбалансированного фракционного состава. Высушенные гранулы высыпают в накопитель 6, из которого их перемещают в CO2-экстрактор 2, где выдерживают гранулы в течение 10 минут в среде жидкого диоксида углерода в сверхкритическом состоянии при давлении 100 атм и температуре 40°С в течение 10 минут с последующим сбросом давления до атмосферного. При этой обработке слой покрытия из полилактидгликолида приобретает пористую структуру с включениями микрочастиц гидроксиапатита (фиг. 5)
На втором этапе охлажденные гранулы из CO2-экстрактора 3 вновь помещают в гранулятор 1, где в течение 30 минут обрабатывают сначала нагретой до 38°С 1% водной суспензией гиалуроната натрия с β-трикальцийфосфатом в соотношении 1:1, после чего, так же как на первом этапе, наносят еще один слой полилактидгликолида и продолжают обработку гранул в псевдоожиженном слое до полного высушивания слоя полилактидгликолида.
Повторяют обработку гранул в CO2-экстракторе 2 для придания второму слою из полилактидгликолида пористой структуры с многочисленными отверстиями диаметром от 200 до 1000 мкм по всему объему, разделенными тонкими перегородками, в которых встречаются отверстия размером до 100 мкм. При этом после обработки в CO2-экстракторе 2 на втором этапе слой полилактидгликолида содержит равномерно распределенные микрочастицы β-трикальцийфосфата (фиг. 4).
На третьем этапе в грануляторе 1 в псевдоожиженном слое в течение 30 минут на гранулы наносят поверхностный слой путем обработки 10%-ным водным раствором поливинилпиролидона, содержащего дополнительно в сумме не более 2% гидрокортизона, хлоргексидина и лидокаина. Обработку гранул в псевдоожиженном слое проводят до полного высушивания.
Гранулы, полученные в псевдоожиженном слое, имеют ряд преимуществ перед гранулами, полученными механическим гранулированием с увлажнением: отличаются большой прочностью и лучшей сыпучестью, более правильной геометрической формой гранул, приближающейся к шарообразной. При этом образуются более мягкие и пористые агломераты, чем при получении гранул влажной грануляцией, где образуются крупные агломераты, подлежащие последующему измельчению.
Использование данного средства может быть рекомендовано при замещении значительных по протяженности костных дефектов, где уместно наличие остеопластического материала в течение длительного срока.
Пример
Больная Г., 56 лет, обратилась с жалобами на припухлость и дискомфорт в области бокового отдела верхней челюсти слева. Со слов, больна около 1,5 лет. На ортопантомограмме в проекции корней 22, 23, 24, 25 определяется очаг разрежения костной ткани с четким контуром, размер образования 30×20 мм. Локальный статус: определяется гиперемия и выбухание слизистой оболочки в проекции корней 22, 23, 24, 25. Пальпация переходной складки и перкуссия зубов 22, 23, 24, 25 безболезненна. Диагноз: Радикулярная киста верхней челюсти слева. Лечение: цистэктомия проведена по общепринятой методике. Пропитанные кровью пациента гранулы, полученные по предложенному способу, внесены в полученный костный дефект, рана изолирована двуслойной мембраной «БиопластДент», наложены глухие швы лавсаном. Течение послеоперационного периода без особенностей. Швы были сняты на 9-е сутки, пациентка была выписана с улучшением на десятые сутки послеоперационного периода. Контрольная компьютерная томография проводилась через месяц после вмешательства, через полгода и спустя год после вмешательства. Спустя шесть месяцев наблюдается уменьшение размера образования, частичная резорбция остеопластического материала. Участки повышенной плотности чередуются с участками невысокой плотности, соответствующие новообразованной кости. Спустя один год после оперативного вмешательства наблюдается полное замещение дефекта костной тканью высокой плотности. В проекции верхушки корня 24 определяется конгломерат повышенной плотности – нерезорбированный остеопластический материал. Его плотность, по данным денситометрии, близка к 2000 HU, что является очень высоким показателем. Исход данного клинического случая благоприятен: костная ткань восстановлена в полном объеме уже к шестому месяцу исследования.
Таким образом, поставленная задача – разработка способа получения остеопластического материала в виде многослойных гранул, обладающих бактериостатическим и бактерицидным действием и пролонгированным выделением активных действующих веществ, на основе гидроксиапатита синтетического происхождения и β-трикальцийфосфата с добавлением гиалуроната натрия, решена.
Claims (1)
- Способ получения остеопластического материала, включающий получение многослойных гранул из рентгеноконтрастных β-трикальцийфосфата 20% и гидроксиапатита 80% в полилактидгликолидной матрице с добавлением во внутренний слой гиалуроновой кислоты, а во внешний слой - гидрокортизона, хлоргексидина и лидокаина, отличающийся тем, что процесс нанесения слоев осуществляют в грануляторе в псевдоожиженном слое за три этапа: на первом этапе порошкообразный нанодисперсный гидроксиапатит предварительно подогревают до температуры 38-40°С и обрабатывают нагретым до 45°С очищенным воздухом в течение 30 минут, после чего через центральный канал распылительного устройства гранулятора подают 10%-ный раствор полилактидгликолида в этилацетате с t=38°C при давлении 2-3 МПа; на втором этапе полученный полуфабрикат обрабатывают в течение 30 минут 1%-ной водной суспензией гиалуроната натрия с β-трикальцийфосфатом в соотношении 1:1, после чего наносят еще один слой полилактидгликолида, продолжая обработку гранул в псевдоожиженном слое до полного высушивания слоя полилактидгликолида; после каждого этапа гранулы обрабатывают в CO2-экстракторе диоксидом углерода в сверхкритическом состоянии при давлении 100 атм и температуре 40°С в течение 10 минут с последующим сбросом давления до атмосферного, на третьем этапе в грануляторе в псевдоожиженном слое при тех же параметрах, что на двух первых этапах, на гранулы наносят поверхностный слой путем обработки 10%-ным водным раствором поливинилпиролидона, содержащего дополнительно в сумме не более 2% гидрокортизона, хлоргексидина и лидокаина, продолжая обработку гранул в псевдоожиженном слое до полного высушивания.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015156947A RU2624873C1 (ru) | 2015-12-30 | 2015-12-30 | Способ получения остеопластического материала |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015156947A RU2624873C1 (ru) | 2015-12-30 | 2015-12-30 | Способ получения остеопластического материала |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2624873C1 true RU2624873C1 (ru) | 2017-07-07 |
Family
ID=59312537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015156947A RU2624873C1 (ru) | 2015-12-30 | 2015-12-30 | Способ получения остеопластического материала |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2624873C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2765850C1 (ru) * | 2020-10-26 | 2022-02-03 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Ставропольский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО СтГМУ Минздрава России) | Остеопластическая композиция для ремоделирования периимплантной зоны челюстной кости |
RU2818675C1 (ru) * | 2023-01-20 | 2024-05-03 | федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный медико-стоматологический университет имени А.И. Евдокимова" Министерства здравоохранения Российской Федерации (ФГБОУ ВО МГМСУ им. А.И. Евдокимова Минздрава России) | Нанобиокомпозиция для заполнения костных дефектов и стимуляции регенерации |
-
2015
- 2015-12-30 RU RU2015156947A patent/RU2624873C1/ru active
Non-Patent Citations (2)
Title |
---|
US 2014314849 A1; 23.10.2014. * |
Гурин А.Н. Сравнительная оценка влияния различных остеопластических материалов на основе фосфатов кальция на заживление костных дефектов. Дис. к.м.н. Москва, 2009 г.. Остеопластические материалы в стоматологии: прошлое, настоящее, будущее. Горбань С.А., Илык Р.Р., Shterenberg A. / Современная стоматология, 4/2008, с. 103-109. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2765850C1 (ru) * | 2020-10-26 | 2022-02-03 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Ставропольский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО СтГМУ Минздрава России) | Остеопластическая композиция для ремоделирования периимплантной зоны челюстной кости |
RU2818675C1 (ru) * | 2023-01-20 | 2024-05-03 | федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный медико-стоматологический университет имени А.И. Евдокимова" Министерства здравоохранения Российской Федерации (ФГБОУ ВО МГМСУ им. А.И. Евдокимова Минздрава России) | Нанобиокомпозиция для заполнения костных дефектов и стимуляции регенерации |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhu et al. | Bone regeneration with micro/nano hybrid-structured biphasic calcium phosphate bioceramics at segmental bone defect and the induced immunoregulation of MSCs | |
Jazayeri et al. | A current overview of materials and strategies for potential use in maxillofacial tissue regeneration | |
JP5759370B2 (ja) | 組織工学および骨の再生のための、構造化された多孔率を有するモネタイトの三次元マトリクス、および、当該三次元マトリクスの調製方法 | |
Kao et al. | A review of bone substitutes | |
JP5792633B2 (ja) | モネタイトと他の生物活性カルシウムの複合物及びシリコン化合物に基づく骨再生材料 | |
US20030180344A1 (en) | Bioresorbable osteoconductive compositions for bone regeneration | |
Castro et al. | Bone remodeling, biomaterials and technological applications: revisiting basic concepts | |
Li et al. | Controllable synthesis of biomimetic hydroxyapatite nanorods with high osteogenic bioactivity | |
CN108670505A (zh) | 一种3d打印的椎间融合器及其制备方法 | |
Leng et al. | Material-based therapy for bone nonunion | |
CN108553691B (zh) | 可注射自固化人工骨修复材料及其制备方法 | |
Choi et al. | Development and evaluation of tetrapod-shaped granular artificial bones | |
KR101379894B1 (ko) | 형질전환 돼지 뼈를 이용한 골 이식용 세라믹 입자, 그 제조방법 및 상기 입자를 포함하는 생체의료용 세라믹재료 | |
CN107683130A (zh) | 包括氧固醇的植入物和使用方法 | |
JP2007508075A (ja) | 骨移植物のための複合生体材料 | |
Barone et al. | Current use of calcium sulfate bone grafts | |
Tibeică et al. | Bone regeneration influence in the success of periimplant surgery | |
RU2624873C1 (ru) | Способ получения остеопластического материала | |
CN108283732B (zh) | 一种用于牙槽骨骨增量的植骨复合材料 | |
Chen et al. | Calcium phosphate bone cements: their development and clinical applications | |
Ayoub et al. | Biomaterials in the Reconstruction of the Oral and Maxillofacial Region | |
CN106267359B (zh) | 抗感染硫酸钙/载药丝素微球/矿化丝素纳米纤维骨修复材料的制备方法 | |
CN114533950A (zh) | 一种用于骨缺损修复的生物陶瓷-金属组合体及其制备方法 | |
CN112842623A (zh) | 一种羟基磷灰石表面修饰3d生物打印可降解人工肋骨的方法 | |
CN1158109C (zh) | 生物复合人工骨及其制备工艺 |