RU2624062C1 - Kochetov's safety destructable structure for buildings fencing - Google Patents

Kochetov's safety destructable structure for buildings fencing Download PDF

Info

Publication number
RU2624062C1
RU2624062C1 RU2016120915A RU2016120915A RU2624062C1 RU 2624062 C1 RU2624062 C1 RU 2624062C1 RU 2016120915 A RU2016120915 A RU 2016120915A RU 2016120915 A RU2016120915 A RU 2016120915A RU 2624062 C1 RU2624062 C1 RU 2624062C1
Authority
RU
Russia
Prior art keywords
building
rods
protective screen
collapsing
destructible
Prior art date
Application number
RU2016120915A
Other languages
Russian (ru)
Inventor
Олег Савельевич Кочетов
Original Assignee
Олег Савельевич Кочетов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Савельевич Кочетов filed Critical Олег Савельевич Кочетов
Priority to RU2016120915A priority Critical patent/RU2624062C1/en
Application granted granted Critical
Publication of RU2624062C1 publication Critical patent/RU2624062C1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

FIELD: fire safety.
SUBSTANCE: in a safety destructible fence construction containing reinforced concrete panels 6000×1800 mm in size, the panel consists of destructible and non-destructible parts. The non-destructible part is made in the form of carrying ribs placed along the contour of the destructible part, and the destructible part is made in the form of at least two coaxially located depressions in the building wall, one of which, external, is formed by the planes of a regular quadrilateral truncated pyramid with a rectangular base, and the other, internal, represents two inclined surfaces connected by an edge, with formation of a groove. The wall thickness from the edge to the outer surface of the building fence must be no less than δ=20 mm. When exposed to an impact explosive load, this wall section can be divided into separate parts, and there is a protective screen against the collapsing part, from the outside of the building fence, the screen is made of high-strength material, for example, armour-piercing material, which is fixed to at least three rods located horizontally and perpendicular to the building fences, at the ends of which disks are fixed, and which pass through the holes in the protective screen. The disks located on the right side of the rods are immured in the building fence, and the discs on the left side of the rods rest against the elastic elements supporting the protective screen to the building fence. The protective screen is made in the form of a three-dimensional body with an internal cavity and surfaces that equidistant to the surfaces of the destructable part of the panel, made in the form of coaxially located niches in the building wall. Its internal cavity is filled with a disperse air-lead system, and lead is made in the form of a spherical crumb. To fix the limit position of the protective screen, an elastic damping element is attached to the ends of the supporting elastic rods with discs directed towards the protective screen. The elastic damping element is made in the form of a damping plate, to which a buffer device is attached, made in the form of a cone, the vertex of which is directed towards the protective screen.
EFFECT: increased reliability of destructible explosion-proof devices operation during an emergency explosion at the facility.
3 dwg

Description

Изобретение относится к защитным устройствам, применяющимся во взрывоопасных и радиоактивных объектах, таких как легкосбрасываемые панели и кровли, противовзрывные ограждения и заслонки, клапаны избыточного давления.The invention relates to protective devices used in explosive and radioactive objects, such as easily erasable panels and roofs, explosion-proof fences and dampers, overpressure valves.

Известно устройство противовзрывных панелей (заявка DE №19638658, МПК Е04В 1/92 от 16.04.1998), где возможность поднятия и опускания панели на прежнее место при взрыве осуществляется действием пружин, вставленных в патрубки-опоры.A device for explosion-proof panels is known (application DE No. 19638658, IPC Е04В 1/92 dated 04/16/1998), where the possibility of raising and lowering the panel to its original place in the explosion is carried out by the action of springs inserted into the support pipes.

Наиболее близким техническим решением к заявляемому объекту является противовзрывная панель по патенту РФ №2334063, Кл. Е04В 1/92, Б.И. №28 от 20.09.2008 (прототип), состоящая из бронированного металлического каркаса с бронированной металлической обшивкой и наполнителем - свинцом. В покрытии объекта у проема заделаны четыре опорных стержня, телескопически вставленные в неподвижные патрубки-опоры, заделанные в панели. Для фиксации предельного положения панели к торцам опорных стержней приварены листы-упоры.The closest technical solution to the claimed object is an explosion-proof panel according to the patent of the Russian Federation No. 2334063, Cl. EB04 1/92, B.I. No. 28 dated 09/20/2008 (prototype), consisting of an armored metal frame with armored metal casing and a filler - lead. In the coating of the object near the opening, four support rods are embedded that are telescopically inserted into fixed support pipes embedded in the panel. To fix the limit position of the panel, stop plates are welded to the ends of the support rods.

Технически достижимый результат - повышение надежности срабатывания разрушающихся взрывозащитных устройств при аварийном взрыве на объекте.A technically achievable result is an increase in the reliability of the operation of collapsing explosion-proof devices during an emergency explosion at the facility.

Это достигается тем, что в предохранительной разрушающейся конструкции ограждения, содержащей железобетонные панели размером 6000×1800 мм, панель состоит из разрушающейся и неразрушающейся частей, при этом неразрушающаяся часть выполнена в виде несущих ребер, размещенных по контуру разрушающейся части, а разрушающаяся часть выполнена в виде по крайней мере двух коаксиально расположенных углублений в стене здания, одна из которых, внешняя, образована плоскостями правильной четырехугольной усеченной пирамиды с прямоугольным основанием, а другая - внутренняя, представляет собой две наклонные поверхности, соединенные ребром, с образованием паза, при этом толщина стены от ребра до внешней поверхности ограждения здания должна быть не менее δ=20 мм, при этом при воздействии ударной взрывной нагрузки этот участок стены может быть разделен на отдельные части, а напротив разрушающейся части, с внешней стороны ограждения здания, расположен защитный экран из материала повышенной прочности, например бронебойного материала, который закреплен на по крайней мере трех горизонтально расположенных и перпендикулярных ограждению здания стержнях, по концам которых закреплены диски и которые проходят сквозь отверстия в защитном экране, причем диски, расположенные с правой стороны стержней, замурованы в ограждения здания, а в диски с левой стороны стержней упираются упругие элементы, подпирающие защитный экран к ограждению зданий.This is achieved by the fact that in the safety collapsing design of the enclosure containing reinforced concrete panels of 6000 × 1800 mm in size, the panel consists of collapsing and non-collapsing parts, while the non-collapsing part is made in the form of load-bearing ribs placed along the contour of the collapsing part, and the collapsing part is made in the form at least two coaxially located recesses in the wall of the building, one of which, the outer one, is formed by the planes of a regular quadrangular truncated pyramid with a rectangular base, and the other is internal, it consists of two inclined surfaces connected by a rib to form a groove, while the wall thickness from the rib to the outer surface of the building enclosure should be at least δ = 20 mm, while under the influence of shock explosive load this wall section can be divided on separate parts, and opposite the collapsing part, on the outside of the building’s enclosure, there is a protective shield made of high-strength material, such as armor-piercing material, which is fixed to at least three horizontally rods laid and perpendicular to the building barrier, at the ends of which the disks are fixed and which pass through the holes in the protective shield, the disks located on the right side of the rods are walled into the building barriers, and the elastic elements supporting the protective screen against the disks on the left side of the rods fencing of buildings.

На фиг. 1 представлена общая схема предохранительной разрушающейся конструкции ограждения зданий, на фиг. 2 - схема расположения защитного экрана, на фиг. 3 - характер изменения давления Δр от времени τ при горении горючих смесей внутри помещения.In FIG. 1 shows a general diagram of a collapsing safety structure for a building enclosure; FIG. 2 is a diagram of an arrangement of a protective screen; FIG. 3 - the nature of the change in pressure Δp from time τ during the combustion of combustible mixtures indoors.

Предохранительная разрушающаяся конструкция ограждения (фиг. 1) безфонарных зданий (организованно разрушающаяся конструкция - ОРК), в которых отсутствуют оконные проемы, состоит из железобетонных панелей 1 размером 6000×1800 мм. Панель состоит из разрушающейся и неразрушающейся частей. Неразрушающаяся часть выполнена в виде несущих ребер 9 (200×150 мм), размещенных по контуру ОРК. Разрушающаяся часть выполнена в виде по крайней мере двух коаксиально расположенных ниш (углублений в стене здания), одна из которых, внешняя, образована плоскостями 2, 3, 4, 5 правильной четырехугольной усеченной пирамиды с прямоугольным основанием, а другая – внутренняя, представляет собой две наклонные поверхности 6 и 7, соединенные ребром 8, с образованием паза, при этом толщина стены от ребра 8 до внешней поверхности ограждения здания должна быть не менее δ=20 мм. За счет этих пазов в стене здания при воздействии ударной взрывной нагрузки этот участок стены может быть разделен на отдельные части. Соединение разрушающихся частей панели в пазах производится арматурой (не показано) с таким расчетом, чтобы плиты не деформировались при перевозке, монтаже и ветровой нагрузке.The safety collapsing construction of the fence (Fig. 1) of phononless buildings (organized collapsing construction - ORK), in which there are no window openings, consists of reinforced concrete panels 1 with a size of 6000 × 1800 mm. The panel consists of collapsing and non-collapsing parts. The nondestructive part is made in the form of bearing ribs 9 (200 × 150 mm), placed along the contour of the ORC. The collapsing part is made in the form of at least two coaxially located niches (recesses in the wall of the building), one of which, the outer one, is formed by the planes 2, 3, 4, 5 of the regular quadrangular truncated pyramid with a rectangular base, and the other is the inner one, is two inclined surfaces 6 and 7, connected by a rib 8, with the formation of a groove, while the wall thickness from the rib 8 to the outer surface of the building enclosure should be at least δ = 20 mm. Due to these grooves in the wall of the building under the influence of shock explosive load, this section of the wall can be divided into separate parts. The collapsing parts of the panel in the grooves are connected by fittings (not shown) in such a way that the plates do not deform during transportation, installation and wind load.

Напротив разрушающейся части, с внешней стороны ограждения здания, расположен защитный экран 10 (фиг. 2) из материала повышенной прочности, например бронебойного материала, который закреплен на по крайней мере трех горизонтально расположенных и перпендикулярных ограждению здания стержнях 11, по концам которых закреплены диски 12 и 13 и которые проходят сквозь отверстия 14, выполненные в защитном экране, причем диски 13, расположенные с правой стороны стержней, замурованы в ограждения здания, а в диски 12, расположенные с левой стороны стержней 11, упираются упругие элементы 15, подпирающие защитный экран 10 к ограждению зданий.Opposite the collapsing part, on the outside of the building enclosure, there is a protective shield 10 (Fig. 2) of increased strength material, such as armor-piercing material, which is fixed to at least three rods 11 horizontally and perpendicular to the building enclosure, at the ends of which disks 12 are fixed and 13 and which pass through holes 14 made in the protective shield, the disks 13 located on the right side of the rods being walled up in the building fencing, and in the disks 12 located on the left side of the rods 11, abut elastic elements 15, supporting the protective screen 10 to the enclosure of buildings.

Возможен вариант, когда защитный экран 10 (фиг. 2) выполнен в виде объемного тела с внутренней полостью (не показано) и поверхностями, эквидистантными поверхностям разрушающейся часть панели 1, выполненной в виде коаксиально расположенных ниш 6 в стене здания, при этом его внутренняя полость заполнена дисперсной системой воздух-свинец, а свинец выполнен в виде крошки шарообразной формы.It is possible that the protective screen 10 (Fig. 2) is made in the form of a volumetric body with an internal cavity (not shown) and surfaces equidistant to the surfaces of the collapsing part of the panel 1, made in the form of coaxially located niches 6 in the wall of the building, while its internal cavity filled with a dispersed air-lead system, and lead is made in the form of spherical crumbs.

При взрывном движении защитного экрана 10 по стержням 11 он встречает на своем пути упругие элементы 15, при взаимодействии с которыми происходит эффективное гашение энергии взрыва за счет повышенной демпфирующей способности дисперсной системы воздух-свинец, расположенной во внутренней полости защитного экрана 10.During the explosive movement of the protective shield 10 along the rods 11, he encounters elastic elements 15 on his way, when interacting with which, the explosive energy is effectively damped due to the increased damping ability of the dispersed air-lead system located in the inner cavity of the protective shield 10.

Возможен вариант (фиг. 2), когда для фиксации предельного положения защитного экрана 10 к торцам опорных упругих стержней 11 с дисками 12 прикреплен упругодемпфирующий элемент 16 (фиг. 2), расположенный между упругими элементами 15 и защитным экраном 10.A variant is possible (Fig. 2) when, to fix the limit position of the protective shield 10, an elastic-damping element 16 is attached to the ends of the supporting elastic rods 11 with disks 12 (Fig. 2) located between the elastic elements 15 and the protective screen 10.

Упругодемпфирующий элемент 16 направлен в сторону защитного экрана 10, т.е. навстречу движению защитного экрана 10 во время взрыва.The elastic damping element 16 is directed towards the protective screen 10, i.e. towards the movement of the protective shield 10 during the explosion.

Упругодемпфирующий элемент 16 выполнен в виде объемного тела с внутренней полостью и поверхностями, эквидистантными поверхностям защитного экрана 10, при этом его внутренняя полость заполнена дисперсной системы воздух-свинец, а свинец выполнен в виде крошки шарообразной формы.The elastic-damping element 16 is made in the form of a volumetric body with an internal cavity and surfaces equidistant to the surfaces of the protective screen 10, while its internal cavity is filled with a dispersed air-lead system, and lead is made in the form of crumbs of a spherical shape.

Возможен вариант, когда упругодемпфирующий элемент 16 выполнен в виде демпфирующей пластины, к которой прикреплено буферное устройство 17, выполненное в виде конуса, вершина которого направлена в сторону защитного экрана 10.A variant is possible when the elastic damping element 16 is made in the form of a damping plate to which a buffer device 17 is made, made in the form of a cone, the apex of which is directed towards the protective screen 10.

Предохранительная разрушающаяся конструкция зданий работает следующим образом.Safety collapsible construction of buildings works as follows.

Для большинства газовоздушных смесей (ГВС) максимальное давление взрыва в замкнутом объеме рmах при μ=1 составляет 0,7÷1,0 МПа, т.е. в 6÷9 раз превышает атмосферное давление (фиг. 3). Такое давление создает нагрузку, существенно превышающую несущую способность конструкций (стен, перекрытий) промышленных зданий. Очевидно, что такое большое давление допускать нельзя. Для этого при разработке проекта производства предусматриваются проемы. На фиг. 3 представлен характер изменения давления Δр от времени τ при горении горючих смесей внутри помещения: Δрвск - давление, вызывающее вскрытие предохранительных конструкций (ПК); Δрдоп - допускаемое давление в помещении (Δрдоп=5 кПа); 18 - динамика изменения давления для помещений с проемами; 17 - динамика изменения давления для помещений с ПК.For most gas-air mixtures (DHW), the maximum explosion pressure in a closed volume p max at μ = 1 is 0.7 ÷ 1.0 MPa, i.e. 6 ÷ 9 times higher than atmospheric pressure (Fig. 3). Such pressure creates a load significantly exceeding the bearing capacity of structures (walls, floors) of industrial buildings. Obviously, such a lot of pressure should not be allowed. To do this, when developing a production project, openings are provided. In FIG. Figure 3 shows the nature of the change in pressure Δр versus time τ during combustion of combustible mixtures indoors: Δр вск - - pressure that causes the opening of safety structures (PC); Δp add - allowable pressure in the room (Δp add = 5 kPa); 18 - dynamics of pressure changes for rooms with openings; 17 - dynamics of pressure changes for rooms with a PC.

Рассмотрим основные сценарии, приводящие к возгоранию горючих систем (ГС) для сжатых газов - разгерметизация оборудования с образованием газовоздушных смесей; для ЛВЖ - аварийный разлив жидкости с образованием паровоздушных смесей; для пылей - скопление пыли на поверхностях конструкций и оборудования с образованием пылевоздушных смесей.Consider the main scenarios leading to the ignition of combustible systems (HS) for compressed gases - depressurization of equipment with the formation of gas-air mixtures; for LVH - emergency liquid spill with formation of vapor-air mixtures; for dusts - dust accumulation on the surfaces of structures and equipment with the formation of dusty air mixtures.

На практике для отвода энергии в процессе горения широко используются предохранительные конструкции. Для этого необходимо в нарушенных ограждающих конструкциях зданий иметь такое количество отверстий, которые смогли бы обеспечить пропуск требуемого количества как сгоревшего, так и холодного газа. Эти отверстия принято называть сбросными, а конструкции, их ограждающие, - предохранительными конструкциями (ПК). Предохранительные конструкции вскрываются при сравнительно небольшом избыточном давлении и тем самым обеспечивают возможность интенсивного истечения газа (продуктов горения и непрореагировавшей части ГС) через образовавшиеся проемы из помещения в наружную атмосферу. Истечение газа в атмосферу приводит к снижению избыточного давления в помещении. Степень снижения давления зависит от площади ПК, закономерностей их вскрытия, вида ГС, характера загазованности помещения, его объемно-планировочного решения и других факторов. Весьма интересное применение в качестве ПК получили стекла, остекления помещений. Стекла, используемые в качестве ПК, могут устанавливаться как в стенах здания (в виде застекленных оконных переплетов), так и в фонарях (фонарных надстройках), монтируемых на покрытии сооружения. В последнем случае может использоваться не только вертикальное остекление, но и наклонное и горизонтальное остекления. Образование проемов в застекленных оконных переплетах и фонарях (фонарных надстройках) происходит в результате разрушения стекол под действием избыточного давления, возникающего в помещении при взрывном горении ГС. Закономерности вскрытия остекления в значительной степени зависят от размеров стекол, их толщины, условий закрепления и вида остекления (одинарное, двойное или тройное).In practice, safety structures are widely used to divert energy during combustion. For this, it is necessary to have such a number of holes in the disturbed building envelopes that would allow the passage of the required amount of both burnt and cold gas. These holes are usually called discharge, and the structures that enclose them are called safety structures (PC). The safety structures are opened at a relatively small excess pressure and thereby provide the possibility of intensive outflow of gas (combustion products and unreacted parts of the gas supply system) through the formed openings from the room to the outside atmosphere. The outflow of gas into the atmosphere leads to a decrease in overpressure in the room. The degree of pressure reduction depends on the area of the PC, the patterns of their opening, the type of HS, the nature of the gas contamination of the room, its space-planning solution, and other factors. A very interesting application as a PC was glass, glazing. Glasses used as PCs can be installed both in the walls of the building (in the form of glazed window frames) and in the lanterns (lantern superstructures) mounted on the roof of the structure. In the latter case, not only vertical glazing can be used, but also inclined and horizontal glazing. The formation of openings in glazed window frames and lanterns (lamp superstructures) occurs as a result of the destruction of glasses under the influence of excess pressure arising in the room during explosive burning of gas. The patterns of opening the glazing largely depend on the size of the glass, their thickness, fixing conditions and the type of glazing (single, double or triple).

В покрытиях сооружения ПК могут устраиваться в виде облегченных плит, перекрывающих заранее предусмотренные проемы. Освобождение этих проемов осуществляется в результате подъема плит под действием нагрузки, возникающей при взрывном горении ГС. Значительный интерес представляют организованно разрушающиеся конструкции (ОРК). Вскрытие ОРК происходят в результате разрушения плит при взрывном горении. Разрушение плит происходит в местах размещения специальных пазов. Толщина слоя бетона в пазу δ=20 мм. Рассмотренные типы ОРК при действии нагрузок быстро разрушаются, не образуя при этом обломков, хорошо сохраняют тепло в отапливаемых зданиях и изготавливаются с использованием существующей технологической оснастки. ОРК представляют собой железобетонные панели размером 6000×1800 мм. Панель состоит из разрушающейся и неразрушающейся частей. Неразрушающаяся часть выполнена в виде несущих ребер (200×150 мм), размещенных по контуру. Плиты имеют ослабленные участки за счет прямолинейных треугольных в поперечном сечении пазов. За счет этих пазов плита при воздействии нагрузки может быть разделена на отдельные части. Соединение разрушающихся частей панели в пазах производится арматурой с таким расчетом, чтобы плиты не деформировались при перевозке, монтаже и ветровой нагрузке.In the coatings of the building, PCs can be arranged in the form of lightweight slabs that overlap the previously provided openings. The release of these openings is carried out as a result of lifting the plates under the action of the load arising from the explosive combustion of the horizontal well. Organizable collapsing structures (ORCs) are of considerable interest. Autopsy of ORCs occurs as a result of the destruction of plates during explosive combustion. The destruction of the plates occurs in the placement of special grooves. The thickness of the concrete layer in the groove is δ = 20 mm. Under the influence of loads, the considered types of ORC are rapidly destroyed without forming debris, they retain heat well in heated buildings and are manufactured using existing technological equipment. ORK are reinforced concrete panels measuring 6000 × 1800 mm. The panel consists of collapsing and non-collapsing parts. The nondestructive part is made in the form of bearing ribs (200 × 150 mm), placed along the contour. Plates have weakened areas due to rectilinear grooves in the cross section. Due to these grooves, under the influence of the load, the plate can be divided into separate parts. The collapsing parts of the panel in the grooves are joined by fittings so that the plates do not deform during transportation, installation and wind load.

Получена формула для определения потребной площади таких проемов:A formula is obtained for determining the required area of such openings:

Figure 00000001
Figure 00000001

где Vo - свободный объем помещения, м3;where Vo is the free volume of the room, m 3 ;

α - коэффициент интенсификации горения;α is the coefficient of intensification of combustion;

wн - нормальная скорость распространения пламени в смеси стехиометрического состава, м/с;w n - normal flame propagation velocity in a mixture of stoichiometric composition, m / s;

ρ - плотность газов, истекающих из проемов, кг/м3;ρ is the density of gases flowing from the openings, kg / m 3 ;

ε - степень теплового расширения продуктов сгорания;ε is the degree of thermal expansion of the combustion products;

Δрдоп - допускаемое давление в помещении (5 кПа).Δр add - allowable room pressure (5 kPa).

Использование предложенного технического решения позволяет осуществить предотвращение взрывоопасных объектов от разрушения и снижение поступления вредных веществ в атмосферу при аварийном взрыве.Using the proposed technical solution allows the prevention of explosive objects from destruction and the reduction of harmful substances into the atmosphere during an accidental explosion.

Claims (9)

Предохранительная разрушающаяся конструкция для ограждения зданий, содержащая железобетонные панели размером 6000×1800 мм, панель состоит из разрушающейся и неразрушающейся частей, при этом неразрушающаяся часть выполнена в виде несущих ребер, размещенных по контуру разрушающейся части, а разрушающаяся часть выполнена в виде по крайней мере двух коаксиально расположенных углублений в стене здания, одна из которых, внешняя, образована плоскостями правильной четырехугольной усеченной пирамиды с прямоугольным основанием, а другая - внутренняя, представляет собой две наклонные поверхности, соединенные ребром, с образованием паза, при этом толщина стены от ребра до внешней поверхности ограждения здания должна быть не менее δ=20 мм, при этом при воздействии ударной взрывной нагрузки этот участок стены может быть разделен на отдельные части, а площадь разрушающейся части проемов вычисляется по формуле:A collapsible safety structure for enclosing buildings containing reinforced concrete panels of 6000 × 1800 mm in size, the panel consists of collapsing and non-collapsing parts, while the non-collapsing part is made in the form of load-bearing ribs placed along the contour of the collapsing part, and the collapsing part is made in the form of at least two coaxially located recesses in the wall of the building, one of which, the outer one, is formed by the planes of a regular quadrangular truncated pyramid with a rectangular base, and the other inside it consists of two inclined surfaces connected by an edge to form a groove, while the wall thickness from the edge to the outer surface of the building fence must be at least δ = 20 mm, while under the influence of shock explosive load this wall section can be divided into separate parts, and the area of the collapsing part of the openings is calculated by the formula:
Figure 00000002
Figure 00000002
где Vo - свободный объем помещения, м3;where Vo is the free volume of the room, m 3 ; α - коэффициент интенсификации горения;α is the coefficient of intensification of combustion; wн - нормальная скорость распространения пламени в смеси стехиометрического состава, м/с;w n - normal flame propagation velocity in a mixture of stoichiometric composition, m / s; ρ - плотность газов, истекающих из проемов, кг/м3;ρ is the density of gases flowing from the openings, kg / m 3 ; ε - степень теплового расширения продуктов сгорания;ε is the degree of thermal expansion of the combustion products; Δрдоп - допускаемое давление в помещении (5 кПа),Δp add - allowable room pressure (5 kPa), а напротив разрушающейся части, с внешней стороны ограждения здания, расположен защитный экран из материала повышенной прочности, например бронебойного материала, который закреплен на по крайней мере трех горизонтально расположенных и перпендикулярных ограждению здания стержнях, по концам которых закреплены диски и которые проходят сквозь отверстия в защитном экране, причем диски, расположенные с правой стороны стержней, замурованы в ограждения здания, а в диски с левой стороны стержней упираются упругие элементы, подпирающие защитный экран к ограждению зданий, отличающаяся тем, что защитный экран выполнен в виде объемного тела с внутренней полостью и поверхностями, эквидистантными поверхностям разрушающейся часть панели, выполненной в виде коаксиально расположенных ниш в стене здания, при этом его внутренняя полость заполнена дисперсной системой воздух-свинец, а свинец выполнен в виде крошки шарообразной формы, причем для фиксации предельного положения защитного экрана к торцам опорных упругих стержней с дисками прикреплен упругодемпфирующий элемент, направленный в сторону защитного экрана, при этом упругодемпфирующий элемент выполнен в виде демпфирующей пластины, к которой прикреплено буферное устройство, выполненное в виде конуса, вершина которого направлена в сторону защитного экрана.and on the contrary to the collapsing part, on the outside of the building’s enclosure, there is a protective shield made of high-strength material, such as armor-piercing material, which is fixed to at least three rods horizontally located and perpendicular to the building’s enclosure, at the ends of which the disks are fixed and which pass through the holes in the protective screen, and the disks located on the right side of the rods are walled up in the fencing of the building, and the elastic elements supporting the protective abut against the disks on the left side of the rods the screen to the building enclosure, characterized in that the protective screen is made in the form of a three-dimensional body with an internal cavity and surfaces equidistant to the surfaces of the collapsing part of the panel, made in the form of coaxially located niches in the wall of the building, while its internal cavity is filled with a dispersed air-lead system and lead is made in the form of crumbs of a spherical shape, moreover, to fix the limit position of the protective shield, an elastic-damping element is attached to the ends of the supporting elastic rods with disks, directed first in the direction of the shield, the elastic-damping element is a damper plate to which is attached a buffering device configured as a cone whose vertex is directed toward the shield.
RU2016120915A 2016-05-27 2016-05-27 Kochetov's safety destructable structure for buildings fencing RU2624062C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016120915A RU2624062C1 (en) 2016-05-27 2016-05-27 Kochetov's safety destructable structure for buildings fencing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016120915A RU2624062C1 (en) 2016-05-27 2016-05-27 Kochetov's safety destructable structure for buildings fencing

Publications (1)

Publication Number Publication Date
RU2624062C1 true RU2624062C1 (en) 2017-06-30

Family

ID=59312311

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016120915A RU2624062C1 (en) 2016-05-27 2016-05-27 Kochetov's safety destructable structure for buildings fencing

Country Status (1)

Country Link
RU (1) RU2624062C1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19638658A1 (en) * 1996-09-20 1998-04-16 Siemens Ag Shock-load absorber fixture surface on wall of power station
RU2012135103A (en) * 2012-08-16 2014-02-27 Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) EXPLOSION PANEL
RU2532961C2 (en) * 2012-08-16 2014-11-20 Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) Rupture structure of cladding
RU2563754C1 (en) * 2014-12-25 2015-09-20 Олег Савельевич Кочетов Kochetov(s system for simulating emergency situations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19638658A1 (en) * 1996-09-20 1998-04-16 Siemens Ag Shock-load absorber fixture surface on wall of power station
RU2012135103A (en) * 2012-08-16 2014-02-27 Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) EXPLOSION PANEL
RU2532961C2 (en) * 2012-08-16 2014-11-20 Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) Rupture structure of cladding
RU2563754C1 (en) * 2014-12-25 2015-09-20 Олег Савельевич Кочетов Kochetov(s system for simulating emergency situations

Similar Documents

Publication Publication Date Title
RU131757U1 (en) EXPLOSIVE DESTRUCTIVE DESTRUCTIVE BUILDING PROTECTION DESIGN
RU2548427C1 (en) Kochetov's method of explosion protection of industrial buildings
RU2471936C2 (en) Method of explosion proofing of production buildings
RU2532961C2 (en) Rupture structure of cladding
RU148516U1 (en) EXPLOSIVE DESTRUCTIVE DESTRUCTING BUILDING Fencing
RU2558822C1 (en) Explosion-proof damaged structure of building enclosure
RU2528360C1 (en) Method of explosion protection of production buildings
RU2459912C1 (en) Safety breaking structure for enclosure of buildings
RU2549624C1 (en) Protective collapsible structure of building guard
RU2520662C1 (en) Method of explosion protection of industrial buildings
RU2522841C1 (en) Explosion-proof destructive construction of building guards
RU2522842C1 (en) Explosion-proof destructive construction of building guards
RU2558820C1 (en) Explosion-proof damaged structure of building enclosure by kochetov
RU2579828C1 (en) Kochetov explosion protection device of industrial buildings
RU2545196C1 (en) Explosion-proof destructive construction for fencing specially hazardous industrial facilities
RU2624062C1 (en) Kochetov's safety destructable structure for buildings fencing
RU2600239C1 (en) Kochetov method for explosion protection of explosive objects
RU2624060C1 (en) Kochetov's safety construction with protective screen
RU2558036C1 (en) Explosion-proof damageable structure of fencing of buildings
RU2646254C1 (en) Buildings enclosure explosion-proof breakable structure
RU2592291C1 (en) Explosion-proof kochetov collapsible building enclosure
RU2517418C1 (en) Safety collapsible guard of buildings
RU152721U1 (en) EXPLOSIVE DESTRUCTIVE DESTRUCTIVE BUILDING PROTECTION DESIGN
RU2656427C1 (en) Buildings enclosure explosion-proof breakable structure
RU2622269C1 (en) Method of kochetov's explosive protection of industrial buildings