RU2623778C1 - Устройство высокого давления с алмазными наковальнями - Google Patents

Устройство высокого давления с алмазными наковальнями Download PDF

Info

Publication number
RU2623778C1
RU2623778C1 RU2016102852A RU2016102852A RU2623778C1 RU 2623778 C1 RU2623778 C1 RU 2623778C1 RU 2016102852 A RU2016102852 A RU 2016102852A RU 2016102852 A RU2016102852 A RU 2016102852A RU 2623778 C1 RU2623778 C1 RU 2623778C1
Authority
RU
Russia
Prior art keywords
membrane
cryostat
piston
cylinder
anvils
Prior art date
Application number
RU2016102852A
Other languages
English (en)
Inventor
Альберт Павлович Новиков
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт физики высоких давлений им. Л.Ф. Верещагина Российской академии наук (ИФВД РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт физики высоких давлений им. Л.Ф. Верещагина Российской академии наук (ИФВД РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт физики высоких давлений им. Л.Ф. Верещагина Российской академии наук (ИФВД РАН)
Priority to RU2016102852A priority Critical patent/RU2623778C1/ru
Application granted granted Critical
Publication of RU2623778C1 publication Critical patent/RU2623778C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Изобретение относится к технике высоких давлений и может быть использовано для исследования физико-химических свойств вещества при высоких давлениях и низких температурах. Устройство высокого давления с алмазными наковальнями содержит прямоугольную силовую раму, состоящую из двух скрепленных винтами плит, в одной из которых выполнено резьбовое отверстие, в которое ввернута промежуточная гайка, и цилиндр, размещенный внутри промежуточной гайки, внутри которого размещены поршень, опоры с алмазными наковальнями, в которых выполнены сквозные отверстия в форме раструба, гаскета для образца, газовый капилляр и мембрана. В поршне выполнено отверстие, в котором размещен толкатель, упирающийся в подвижную платформу, выполненную между двух плит силовой рамы. Мембрана размещена на подвижной платформе и второй плите. Ширина мембраны ограничена диаметром криостата, а длина мембраны может превышать диаметр криостата в несколько раз. На мембране закреплен ниппель, соединенный с газовым капилляром, который размещен в отверстии, выполненном во второй плите. На торце силовой рамы выполнено глухое резьбовое отверстие, в которое ввернута штанга для крепления устройства в криостате. Изобретение обеспечивает экономическую эффективность и расширение технических возможностей. 1 з.п. ф-лы, 1 табл., 1 ил.

Description

Изобретение относится к технике высоких давлений и может быть использовано для исследования физико-химических свойств вещества при высоких давлениях и низких температурах в устройствах высокого давления с алмазными наковальнями, которые характеризуются высокой твердостью и прозрачностью.
Благодаря исключительной твердости алмаза, в наковальнях, изготовленных из алмаза, могут быть достигнуты давления до нескольких миллионов атмосфер, а прозрачность алмаза в широкой области спектра позволяет изучать образцы с помощью целого ряда методов.
Прозрачность алмазных наковален позволяет исследовать системы с жидкими и газообразными фазами в гидростатических и псевдогидостатических условиях при высоких давлениях.
К настоящему времени известны рычажные и винтовые конструкции устройств с алмазными наковальнями, а также устройства, в которых усилие на наковальнях создают посредством давления жидкости или газа, которые закачивают в цилиндр с поршнем либо в металлическую тороидальную мембрану или сильфон.
В рычажных устройствах сближение наковален осуществляют с помощью рычага, приводимого в действие винтом.
В винтовых устройствах усилие для сближения наковален создается при затягивании винтов с использованием специальных передаточных механизмов. Для придания алмазам устойчивости при нагрузке в том и другом случае усилие передается через поршень, размещенный в цилиндре. Для размещения образца в устройстве высокого давления используют металлическую пластину-гаскету с отверстием. В гаскете с отверстием, размещенной между алмазными наковальнями, образуют замкнутый рабочий объем-камеру.
Изучение объектов при низких температурах, использование устройств с алмазными наковальнями затруднено и усложнено. Поскольку устройство находится в криостате, размеры его ограничены диаметром криостата, а механизмы, передающие нагрузку на наковальни, должны иметь малую площадь сечения, чтобы уменьшить приток тепла в криостат.
Существует два способа создания нагрузки на наковальни. Первый - когда давление в камере создают вне криостата и затем камеру на штанге помещают в криостат. Второй - когда давление в камере создают непосредственно в криостате при помощи механических систем или легко деформирующейся металлической кольцевой мембраны или сильфона, в которых создают давление газом и таким образом нагружают наковальни непосредственно в криостате.
Для создания нагрузки на наковальни непосредственно в криостате в качестве рабочей среды, создающей давление в металлической легко деформирующейся мембране, может быть использован только газ гелий.
Известно, что при давлении меньше 25 атм гелий остается жидким вплоть до абсолютного нуля температур. В этой связи создавать усилие на наковальни при температуре ниже 5 К можно только давлением гелия в мембране до 25 атм. Из этого следует, что для создания необходимого усилия на наковальнях металлическая деформирующаяся мембрана должна иметь большую площадь, соответственно требуется и криостат надлежащего диаметра. А это увеличивает расход гелия и усложняет конструкцию устройства.
Большинство устройств размещены в криостате так, чтобы ось криостата проходила через ось наковален или их оси были параллельны. Такое размещение устройства позволяет в полной мере использовать площадь сечения криостата и иметь мембрану максимальной площади.
Известно устройство для создания высокого давления, состоящее из верхней и нижней плит с котировочными винтами, опорных вкладышей с алмазными наковальнями, тарельчатых пружин и направляющих колонок, закрепленных в нижней плите, причем верхняя плита снабжена расположенным симметрично оси наковальни цилиндрическим выступом, со свободно установленными на ней центральной шестерней с приводным червяком, направляющие колонки, установленные симметрично оси наковален и равно удалены одна от другой, а в верхней части снабжены резьбами, на которые навернуты гайки-шестерни, входящие в зацепление с центральной шестерней. Устройство позволяет повысить уровень рабочего давления (а.с. СССР №1639734 А1, приоритет от 21.04.1988, МПК B01J 3/06).
Недостатком устройства является ограничение в использовании при исследовании физических и химических свойств веществ и отсутствие возможности создавать нагрузки на наковальни непосредственно в криостате при низких температурах.
Известна алмазная камера для деформации сдвигом твердых тел при давлении до 8,7 ГПа (журнал «Приборы и техника эксперимента», Академия наук СССР №2, Москва, 1987 г., стр. 176-177), в которой обе алмазные наковальни, установленные на шаровых опорах, котировочные винты позволяют выводить центры наковален на ось вращения и установку площадок наковален параллельно друг другу. Нагрузку камеры осуществляют винтом через тарельчатые пружины, предусмотрена возможность создания фиксированной нагрузки от внешнего пресса, используя поршень и кольцо. Давление определяли по люминесценции рубина. Описанная камера позволяет пластически деформировать твердые тела под высоким давлением, однако ее возможности ограничены в исследованиях при низких температурах. К недостаткам этой камеры следует отнести также сложность ее изготовления и ограничение в применении.
Известно также устройство, выполненное R.J. Chen и В.А. Weinstein (Журнал Rev. Sci. Instrum., Vol., 67 No. (8), August 1996 г., стр. 2883-2889). Это устройство позволяет создавать нагрузку на наковальни непосредственно в криостате. Авторы достигли увеличения нагрузки на наковальни за счет двух деформирующихся металлических сильфонов, установленных последовательно в металлическом стакане. Вторая особенность этого устройства состоит в том, что нагрузку к наковальням передают через длинный толкатель.
Недостатками устройства являются сложность в изготовлении и сборки, а наличие штанги и других деталей, передающих нагрузку к наковальням, усложняет сборку устройства и требует дополнительного расхода гелия при охлаждении устройства.
Наиболее близким техническим решением к заявляемому является устройство для излучения X-ray структуры и спектральных исследований при высоком давлении. Журнал “Nuclear Instruments and Methods in Physics Research”, A359 (1995) 225-227, в нем описано устройство, содержащее камеру высокого давления с алмазными наковальнями, закрепленными на опорах из карбида вольфрама, со сквозными отверстиями в виде раструба, между алмазными наковальнями расположена гаскета с образцом. Через капилляр от газового баллона подают газ под давлением в круглую металлическую мембрану, с помощью которой создают давление в алмазных наковальнях. Камеру высокого давления помещают в криостат, заполненный гелием. Мембрана выполнена из тонкой металлической пластины. Недостатком этого устройства является ограниченное использование для работы при низких температурах, так как максимальное давление, полученное авторами, - 12 кбар достигается при давлении в мембране порядка 50 бар.
Задачей заявляемого технического решения является исключение вышеуказанных недостатков, расширение технических возможностей устройства, увеличение давления в камере, увеличение рабочего объема камеры, работа в криостате при низких температурах.
Поставленная задача достигается тем, что устройство высокого давления с алмазными наковальнями, содержащее опоры со сквозным отверстием в виде раструба, с алмазными наковальнями, с гаскетой для образца, газовый капилляр и мембрану, снабжено прямоугольной силовой рамой, состоящей из двух скрепленных винтами плит. В одной из плит выполнено резьбовое отверстие, в которое ввинчена промежуточная гайка с размещенным внутри гайки цилиндром и поршнем внутри цилиндра.
Промежуточная гайка выполнена с выступом во внутренней части для фиксации поршня в цилиндре. В поршне выполнено отверстие для размещения в нем толкателя, который упирается в подвижную платформу, подвижная платформа размещена между двух плит силовой рамы. Между подвижной платформой и плитой, не имеющей резьбового отверстия, размещена мембрана, ширина которой ограничена диаметром криостата, а длина может превышать диаметр криостата в несколько раз. Это дает возможность увеличить площадь мембраны и соответственно нагрузку на наковальни. На мембране закреплен ниппель, соединенный с газовым капилляром, который размещен в отверстии, выполненном во второй плите. На торце силовой рамы выполнено глухое резьбовое соединение, в которое ввинчена штанга для закрепления устройства в криостате. Мембрана может быть выполнена прямоугольной, овальной формы или в форме вытянутого бублика и состоять из двух или нескольких герметически скрепленных тонких металлических пластин. Цилиндр снабжен окнами для удобства обслуживания и получения информации о происходящем в камере. В цилиндре на опорах размещены алмазные наковальни и поршень с толкателем. Между мембраной и плитой с резьбовым отверстием размещена подвижная плита, через которую усилие, создаваемое давлением газа в мембране, передается на толкатель, поршень и алмазные наковальни.
На чертеже представлено устройство высокого давления с алмазными наковальнями, которое состоит из цилиндра 1, внутри которого на опорах 13 и 14 размещены алмазные наковальни 2 и гаскета 3 с отверстием.
В цилиндре размещен поршень 4, на котором с одной стороны закреплена опора 14 с алмазной наковальней с другой, поршень имеет глухое углубление, в которое входит толкатель 5, размещенный на подвижной платформе 6. По всей длине поршня, с внешней стороны, выполнен паз, в который входит стопорный винт 7, предотвращающий проворачивание поршня при заполнении отверстия гаскеты гелием. С внешней стороны цилиндр 1 имеет резьбу, на которую навинчена промежуточная гайка 8. Внутренняя часть гайки имеет выступ, в который упирается поршень. Выступ сдерживает перемещение поршня при заполнении отверстия гаскеты газом. На подвижной платформе 6 размешена мембрана 9. Промежуточная гайка 8 связана резьбовым соединением с прямоугольной силовой рамой, которая выполнена из двух плит 10а и 10б, скрепленных между собой винтами 11. Между плитами 10а и 10б размещена подвижная платформа 6, одна сторона которой через толкатель 5 упирается в поршень, а на другой размещена мембрана 9. При увеличении давления в мембране она деформируется (раздувается), а создаваемое ей усилие через подвижную плиту 6, толкатель 5, поршень 4, опору 14 передается на наковальни, создавая давление в камере, непосредственно в криостате. Газ в мембрану поступает через капилляр 12. В криостате устройство закреплено на штанге (на чертеже не показано). Штангу и силовую раму соединяет резьбовое соединение 15, выполненное в торце силовой рамы. Капилляр 12 закреплен ниппелем 16 на мембране и соединен через контроллер, систему вентилей и датчиков контроля давления с гелиевым баллоном. Стабилизация газового давления и его изменение в мембране осуществляют известными способами, в нашем случае посредством контроллера модели Diacell iGM Controller
Устройство работает следующим образом.
На алмазную наковальню, закрепленную на поршне, устанавливают гаскету с отверстием, в котором размещают исследуемый образец, кристаллы рубина и алмаза для контроля давления в камере. Поршень размещают в цилиндре 1 и фиксируют гайкой 8. Эту сборку помещают в сосуд высокого давления (на чертеже не показано), в котором создают давление гелия до 3 кбар и таким образом производят заполнение камеры гелием. Завинчивая гайку 8 непосредственно в сосуде высокого давления, сдавливают гаскету 3, и заполненное газом отверстие становится закрытым. Стравив газ из сосуда высокого давления, сборку из деталей 1, 2, 3, 4, 7, 8 извлекают из сосуда и ввинчивают в резьбовое соединение плиты 10а. В поршень перед этим устанавливают толкатель 5. На толкатель устанавливают подвижную прямоугольную платформу 6. На подвижной платформе размещают мембрану 9 и прямоугольную плиту 10б и всю сборку стягивают винтами 11. Устройство при помощи отверстия 15 навинчивают на штангу и помещают в криостат. Капилляр 12 через крышку криостата соединяют через контроллер, систему вентилей и датчиков контроля давления с гелиевым баллоном. Стабилизацию газового давления и его изменение в мембране производит контроллер Diacell iGM Controller.
Камеру с исследуемым образцом выставляют на лазерный луч. При необходимости изменения давления в камере увеличивают или уменьшают давление газа в мембране.
Экономическую эффективность устройства обеспечивают тем, что в криостатах с малым внутренним диаметром можно размещать устройства высокого давления, способные создавать большие усилия на алмазные наковальни, и использовать в работе наковальни с площадками больших диаметров, экономить расходные материалы - гелий, азот. Это значительно упрощает изготовление деталей устройства, а также позволяет проводить исследования объектов при высоком давлении в гелиевой среде при очень низких температурах. Мембрана, изготовленная из двух скрепленных герметично по периметру пластин, позволяет увеличить сжимающий ход наковален.
В таблице приведены результаты работы алмазной камеры с площадкой диаметром - 315 миктон и мембраной диаметром - 28 мм. Получены зависимости нагрузки на наковальни от давления газа в мембране и давления в камере от давления газа в мембране.
Figure 00000001
Диаметр мембраны - 28 мм.
Ход мембраны - 0,4 мм. Площадь мембраны - 6,3 см2.
Теоретическая нагрузка, создаваемая мембраной, - 760 кг при давлении
газа в мембране - 120 атм.
Реальная нагрузка, создаваемая мембраной при давлении газа в мембране - 120 атм, - 420 кг.

Claims (2)

1. Устройство высокого давления с алмазными наковальнями, содержащее цилиндр, внутри которого размещены опоры с алмазными наковальнями, с гаскетой для образца, газовый капилляр и мембрана, в опорах выполнены сквозные отверстия в форме раструба, отличающееся тем, что в устройстве выполнена прямоугольная силовая рама, состоящая из двух скрепленных винтами плит, в одной из них выполнено резьбовое отверстие, в которое ввернута промежуточная гайка с размещенным внутри нее цилиндром и поршнем внутри цилиндра, при этом промежуточная гайка выполнена с выступом во внутренней части для фиксации поршня в цилиндре, по всей длине поршня с внешней стороны выполнен паз параллельно оси поршня, в поршне также выполнено отверстие, в котором размещен толкатель, который упирается в подвижную платформу, выполненную между двух плит силовой рамы, а на подвижной платформе и второй плите выполнена мембрана, ширина которой ограничена диаметром криостата, а длина может превышать диаметр криостата в несколько раз, на мембране закреплен ниппель, соединенный с газовым капилляром, который размещен в отверстии, выполненном во второй плите, причем на торце силовой рамы выполнено глухое резьбовое отверстие, в которое ввернута штанга для крепления устройства в криостате.
2. Устройство по п. 1, отличающееся тем, что мембрана выполнена прямоугольной или овальной формы или в форме вытянутого бублика и выполнена из двух или нескольких герметически скрепленных тонких металлических пластин.
RU2016102852A 2016-01-29 2016-01-29 Устройство высокого давления с алмазными наковальнями RU2623778C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016102852A RU2623778C1 (ru) 2016-01-29 2016-01-29 Устройство высокого давления с алмазными наковальнями

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016102852A RU2623778C1 (ru) 2016-01-29 2016-01-29 Устройство высокого давления с алмазными наковальнями

Publications (1)

Publication Number Publication Date
RU2623778C1 true RU2623778C1 (ru) 2017-06-29

Family

ID=59312314

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016102852A RU2623778C1 (ru) 2016-01-29 2016-01-29 Устройство высокого давления с алмазными наковальнями

Country Status (1)

Country Link
RU (1) RU2623778C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107870106A (zh) * 2017-10-20 2018-04-03 金华职业技术学院 一种在低温高压条件下合成气体聚合物并原位测试的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1030005A1 (ru) * 1982-05-04 1983-07-23 Институт экспериментальной минералогии АН СССР Аппарат сверхвысокого давлени
SU1639734A1 (ru) * 1988-04-21 1991-04-07 Институт геологии и геофизики СО АН СССР Устройство дл создани высокого давлени
SU1646098A1 (ru) * 1989-06-01 1994-04-15 Институт физики металлов Уральского отделения АН УССР Аппарат сверхвысокого давления
RU95400U1 (ru) * 2010-02-04 2010-06-27 Учреждение Российской академии наук Институт кристаллографии им. А.В. Шубникова РАН Симметричная немагнитная камера высокого давления с алмазными наковальнями
JP2010142743A (ja) * 2008-12-19 2010-07-01 Nihon Univ 高温高圧発生装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1030005A1 (ru) * 1982-05-04 1983-07-23 Институт экспериментальной минералогии АН СССР Аппарат сверхвысокого давлени
SU1639734A1 (ru) * 1988-04-21 1991-04-07 Институт геологии и геофизики СО АН СССР Устройство дл создани высокого давлени
SU1646098A1 (ru) * 1989-06-01 1994-04-15 Институт физики металлов Уральского отделения АН УССР Аппарат сверхвысокого давления
JP2010142743A (ja) * 2008-12-19 2010-07-01 Nihon Univ 高温高圧発生装置
RU95400U1 (ru) * 2010-02-04 2010-06-27 Учреждение Российской академии наук Институт кристаллографии им. А.В. Шубникова РАН Симметричная немагнитная камера высокого давления с алмазными наковальнями

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. *
JP 2010-142743 A, 01.07.2010 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107870106A (zh) * 2017-10-20 2018-04-03 金华职业技术学院 一种在低温高压条件下合成气体聚合物并原位测试的方法

Similar Documents

Publication Publication Date Title
Imre et al. Thermodynamics of negative pressures in liquids
CN102507618B (zh) 原位中子衍射用对顶砧高压装置
Mills et al. Procedure for loading diamond cells with high‐pressure gas
RU2623778C1 (ru) Устройство высокого давления с алмазными наковальнями
RU2364853C1 (ru) Стенд для исследования энергообмена в массиве горных пород
CN105723190B (zh) 可逆力测量设备
JPWO2019073971A1 (ja) 極低温冷凍機の装着構造および装着方法
US4548713A (en) Pulse damper
US20090151465A1 (en) Miniature high pressure cell for sample characterization
Petrova et al. High-pressure helium gas apparatus and hydrostatic toroid cell for low-temperatures applications
US5307684A (en) Stop mechanism for a diaphragm pressure transducer
Kobayashi Diamond‐anvil high‐pressure cell for optical spectroscopy at low temperature
CN109883848A (zh) 一种全液压非伺服岩石蠕变试验装置及方法
US5693345A (en) Diamond anvil cell assembly
CN210086843U (zh) 一种索支木梁的张力调整装置
Heard et al. A triaxial deformation apparatus for service at 77≤ T≤ 273 K
US3158020A (en) Porosimeter
US10215723B2 (en) System for determining the adiabatic stress derivative of temperature for rock
Fang et al. Excess enthalpy for the (benzene+ cyclohexane) mixture over a wide range of temperature and pressure
CN102537615B (zh) 用于低线胀系数材料低温实验的可调节支撑架及设计方法
JPS6018741A (ja) 疲労試験機
Kawamura et al. Diamond anvil cell for cryogenic temperature with optical measurement system
CN116718489B (zh) 深地多场与复杂应力耦合剪切试验系统及方法
Kratzer et al. High pressure μ SR studies
CN110029822B (zh) 一种索支木梁的张力调整装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200130