RU2620583C2 - Экстракционная смесь для извлечения актинидов из азотнокислых растворов - Google Patents

Экстракционная смесь для извлечения актинидов из азотнокислых растворов Download PDF

Info

Publication number
RU2620583C2
RU2620583C2 RU2015150199A RU2015150199A RU2620583C2 RU 2620583 C2 RU2620583 C2 RU 2620583C2 RU 2015150199 A RU2015150199 A RU 2015150199A RU 2015150199 A RU2015150199 A RU 2015150199A RU 2620583 C2 RU2620583 C2 RU 2620583C2
Authority
RU
Russia
Prior art keywords
mol
extraction
distribution coefficients
nitric acid
extraction mixture
Prior art date
Application number
RU2015150199A
Other languages
English (en)
Other versions
RU2015150199A (ru
Inventor
Василий Александрович Бабаин
Михаил Юрьевич Аляпышев
Иван Геннадьевич Воронаев
Михаил Васильевич Логунов
Юрий Аркадьевич Ворошилов
Илья Геннадьевич Трефилов
Original Assignee
Акционерное общество "Радиевый институт имени В.Г. Хлопина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Радиевый институт имени В.Г. Хлопина" filed Critical Акционерное общество "Радиевый институт имени В.Г. Хлопина"
Priority to RU2015150199A priority Critical patent/RU2620583C2/ru
Publication of RU2015150199A publication Critical patent/RU2015150199A/ru
Application granted granted Critical
Publication of RU2620583C2 publication Critical patent/RU2620583C2/ru

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing

Abstract

Изобретение относится к области химической технологии выделения и концентрирования радионуклидов из азотнокислых растворов и может быть использовано в экстракционных процессах при переработке жидких радиоактивных отходов. Экстракционная смесь для извлечения актинидов из азотнокислых растворов, включающая экстрагент, состоящий из нейтрального органического соединения, и разбавитель на основе производных фторированных спиртов, отличающаяся тем, что в качестве разбавителя она содержит карбонаты фторированных спиртов. Изобретение позволяет повысить растворимость экстрагента и исключить токсичные компоненты из состава экстракционной смеси. 6 з.п. ф-лы, 31 пр., 32 табл.

Description

Изобретение относится к области химической технологии выделения и концентрирования радионуклидов из азотнокислых растворов и может быть использовано в экстракционных процессах при переработке жидких радиоактивных отходов.
Известна экстракционная смесь для выделения радионуклидов (актинидов в степени окисления +4 и +6) на основе трибутилфосфата в предельных углеводородах (н-додекане; углеводородах, содержащих 12-14 атомов углерода; керосине; сульфированном синтине) (Reactor Handbook, Sec. Edition, Ed. S.M. Stoller, R.B. Richards, v. 2 Fuel reprocessing, p. 101 (1961) Interscience publ. Inc., NY). Основным недостатком смеси на основе трибутилфосфата в углеводородном разбавителе является низкая температура вспышки, а также образование, накопление и неконтролируемое разложение в заводских аппаратах продуктов деградации трибутилфосфата и углеводородного разбавителя, что приводит к взрывам и пожарам.
Известна экстракционная смесь для извлечения актинидов в степени окисления +4 и +6 на основе трибутилфосфата в четыреххлористом углероде (Химическая технология облученного ядерного горючего. Учебное пособие для вузов / Под ред. В.Б. Шевченко. - М.: Атомиздат, 1971, с. 147-154). Недостатком смеси является токсичность четыреххлористого углерода, применяемого в качестве разбавителя.
Известна экстракционная смесь для извлечения актинидов в степени окисления +4 и +6 на основе трибутилфосфата в гексахлорбутадиене (ГХБД) (Волк В.И., Бахрушин А.Ю., Мамаев С.Л. Экстракция урана и тория из фторидно-азотнокислых сред // Радиохимия, 1999, Т. 41, №2, с. 116-118). Недостатком данной смеси является высокая токсичность ГХБД, относящегося к вредным веществам 1 класса опасности.
Известна экстракционная смесь для выделения актинидов в степени окисления +3 на основе диамидов дигликолевой кислоты в предельных углеводородах (додекан, гидрированный тетерапропилен) (S.A. Ansari, et al. N,N,N',N'-Tetraoctyl Diglycolamide (TODGA): A Promising Extractant for Actinide-Partitioning from High-Level Waste (HLW) / Solvent Extraction and Ion Exchange, 23: 463 479, 2005). Недостатком смеси является низкая растворимость сольватов металлов диамидов дигликолевой кислоты в углеводородах и необходимость добавления модификаторов (октанол, изобутанол) для предотвращения образования третьей фазы.
Известна экстракционная смесь для выделения актинидов в степени окисления +3 на основе амидов фенантролинкарбоновой кислоты в хлороформе (H. Shiwaku, S. Suzuki, Y. Okamoto // Method for selective separation of trivalent and tetravalent actinoids from trivalent lanthanoide using hybrid donor-type extracting agent having functional group carrying active oxygen and nitrogen atoms // European patent EP 2128871 A1). Недостатком смеси является низкая температура кипения хлороформа.
Известна экстракционная смесь для выделения актинидов в степени окисления +3 на основе карбамоилфосфиноксидов в предельных углеводородах (E.P. Horwitz, et al. The Truex Process and the Management of Liquid Tru Uwaste // Separation Science And Technology, 23(12&13), pp. 1191-1210, 1988). Недостатком смеси является низкая растворимость карбамоилфосфиноксидов в углеводородах и необходимость использования соллюбилизаторов для увеличения емкости экстрагента.
Известна экстракционная смесь для выделения актинидов в степени окисления +3 на основе карбамоилфосфиноксидов в тяжелом нитроароматическом разбавителе - мета-нитробензотрифториде (V.N. Romanovskiy, I.V. Smirnov, A.Yu. Shadrin, A.A. Murzin, B.F. Myasoedov, M.K. Chmutova, M.V. Logunov, V.A. Mezentcev, A.K. Polunin / Use of modified TRUEX-process for reprocessing of HLW at "Mayak" PA" // Proc. Int. Conf. Spectrum '98, Denver, USA, Sept. 13-18, 1998. - P. 576-5800). Недостатком смеси является высокая токсичность мета-нитробензотрифторида, относящегося к вредным веществам 1 класса опасности, а также высокая растворимость мета-нитробензотрифторида в водных растворах (Растворимость в HNO3 3 моль/л составляет 1,37 г/л).
Недостатком вышеуказанных способов является образование большого количества вторичных отходов, продуктов деградации экстрагентов, которые образуют прочные комплексы с металлами, что впоследствии представляет собой определенную проблему на стадиях реэкстракции и регенерации экстрагента.
Наиболее близким техническим решением к заявляемой смеси по совокупности признаков является экстракционная смесь для извлечения актинидов (в степени окисления +4 и +6) на основе трибутилфосфата в формалях фторированных спиртов, выбран в качестве прототипа (Бабаин В.А., Баторшин Г.Ш., Ворошилов Ю.А. и др. Экстрагент для извлечения актинидов в степени окисления +4 и +6 из азотнокислых растворов // Патент RU 2400281 от 27.09.2010).
Недостатком этой экстракционной смеси является использование в качестве разбавителя формаля октафторамилового спирта, который обладает высокой вязкостью (вязкость при 20°C более 13 мПа⋅с). Кроме этого формали фторированных спиртов ограниченно растворяют сольваты металлов с тетраоктилдиамидом дигликолевой кислоты и карбамоилфосфиноксидом.
Задачей изобретения являются снижение вязкости экстракционной смеси и обеспечение возможности использования одного и того же разбавителя как для трибутилфосфата (для извлечения актинидов в степени окисления +4 и +6), так и для других нейтральных экстрагентов (для извлечения актинидов в степени окисления +3), а также исключение токсичных компонентов из состава экстракционных смесей.
Решение поставленной задачи достигается тем, что для извлечения актинидов используется экстракционная смесь, включающая нейтральный органический экстрагент в карбонатах фторированных спиртов. Карбонаты фторированных спиртов относятся к веществам 4 класса опасности. Таким образом, исключается токсичность экстракционной смеси.
В качестве разбавителей используются: карбонат тетрафторпропилового спирта (БК-1), карбонат октафторамилового спирта (БК-2), физико-химические показатели которых представлены в таблице 1.
Figure 00000001
Помимо снижения токсичности и вязкости, экстракционные смеси на основе трибутилфосфата в карбонатах фторированных спиртов демонстрируют высокую радиационную устойчивость. Коэффициенты распределения металлов до и после поглощения дозы 0,5 МГр сопоставимы в пределах погрешности измерений.
Экстракционные смеси на основе трибутилфосфата с концентрацией от 1,0 до 1,5 моль/л или фенилоктил-N,N-диизобутилкарбамоилфосфиноксида с концентрацией от 0,05 до 0,15 моль/л или разнорадикального фосфиноксида с содержанием от 20 до 40% или N,N,N',N'-тетрагексилдиамида дигликолевой кислоты с концентрацией от 0,01 до 0,2 моль/л в карбонатах фторированных спиртов обладают высокой экстракционной способностью по отношению к америцию и редкоземельным элементам в азотнокислой среде, а также характеризуются высокой емкостью по извлекаемым металлам.
Сопоставительный анализ с прототипом позволяет сделать вывод о том, что заявленные составы экстракционных смесей отличаются от известных тем, что в качестве разбавителя для трибутилфосфата, карбамоилфосфиноксида, тетрагексилдиамида дигликолевой кислоты, разнорадикального фосфиноксида используют новый класс разбавителей - карбонаты фторированных спиртов. Таким образом, заявленные экстракционные системы соответствуют требованию «новизна».
В литературных источниках не найдено информации об использовании карбонатов фторированных спиртов как разбавителей трибутилфосфата, карбамоилфосфиноксида, тетрагексилдиамид дигликолевой кислоты, разнорадикального фосфиноксида в радиохимических процессах.
Предлагаемые примеры иллюстрируют возможности применения экстракционной смеси.
Пример 1. Растворы, содержащие от 0,5 моль/л до 6 моль/л азотной кислоты, контактируют с раствором, содержащим 40% трибутилфосфата, растворенного в карбонате тетрафторпропилового спирта. Фазы разделяют и определяют коэффициенты распределения кислоты. Коэффициенты распределения представлены в таблице 2.
Figure 00000002
Пример 2. Растворы, содержащие от 0,5 моль/л до 6 моль/л азотной кислоты, контактируют с раствором, содержащим 40% трибутилфосфата, растворенного в карбонате октафторамилового спирта. Фазы разделяют и определяют коэффициенты распределения кислоты. Коэффициенты распределения представлены в таблице 3.
Figure 00000003
Пример 3. Растворы, содержащие от 0,5 моль/л до 6 моль/л азотной кислоты, уран, плутоний, нептуний, контактируют с раствором, содержащим 30% трибутилфосфата, растворенного в карбонате октафторамилового спирта. Фазы разделяют и определяют коэффициенты распределения урана, плутония, нептуния. Коэффициенты распределения представлены в таблице 4.
Figure 00000004
Пример 4. Растворы, содержащие от 0,1 моль/л до 5 моль/л азотной кислоты, уран, плутоний, нептуний, контактируют с раствором, содержащим 30% трибутилфосфата, растворенного в карбонате тетрафторпропилового спирта. Фазы разделяют и определяют коэффициенты распределения урана, плутония, нептуния. Коэффициенты распределения представлены в таблице 5.
Figure 00000005
Пример 5. Растворы, содержащие 3 моль/л азотной кислоты, от 0,005 моль/л до 0,6 моль/л урана, контактируют с раствором, содержащим 30% трибутилфосфата, растворенного в карбонате тетрафторпропилового спирта. Фазы разделяют и определяют коэффициенты распределения урана. Коэффициенты распределения представлены в таблице 6.
Figure 00000006
Пример 6. Растворы, содержащие 3 моль/л азотной кислоты, от 0,02 моль/л до 0,7 моль/л урана, контактируют с раствором, содержащим 30% трибутилфосфата, растворенного в карбонате октафторамилового спирта. Фазы разделяют и определяют коэффициенты распределения урана. Коэффициенты распределения представлены в таблице 7.
Figure 00000007
Пример 7. Растворы, содержащие 3 моль/л азотной кислоты, от 0,004 моль/л до 0,7 моль/л урана, контактируют с раствором, содержащим 40% трибутилфосфата, растворенного в карбонате тетрафторпропилового спирта. Фазы разделяют и определяют коэффициенты распределения урана. Коэффициенты распределения представлены в таблице 8.
Figure 00000008
Пример 8. Растворы, содержащие 3 моль/л азотной кислоты, от 0,03 моль/л до 0,8 моль/л урана, контактируют с раствором, содержащим 40% трибутилфосфата, растворенного в карбонате октафторамилового спирта. Фазы разделяют и определяют коэффициенты распределения урана. Коэффициенты распределения представлены в таблице 9.
Figure 00000009
Пример 9. Растворы, содержащие от 0,5 моль/л до 6 моль/л азотной кислоты, технеций, контактируют с раствором, содержащим 40% трибутилфосфата, растворенного в карбонате тетрафторпропилового спирта. Фазы разделяют и определяют коэффициенты распределения технеция. Коэффициенты распределения представлены в таблице 10.
Figure 00000010
Пример 10. Растворы, содержащие от 0,5 моль/л до 5 моль/л азотной кислоты, технеций, контактируют с раствором, содержащим 40% трибутилфосфата, растворенного в карбонате октафторамилового спирта. Фазы разделяют и определяют коэффициенты распределения технеция. Коэффициенты распределения представлены в таблице 11.
Figure 00000011
Пример 11. Растворы, содержащие от 0,1 моль/л до 5 моль/л азотной кислоты, плутоний, контактируют с раствором, содержащим 40% трибутилфосфата, растворенного в карбонате октафторамилового спирта. Фазы разделяют и определяют коэффициенты распределения плутония. Коэффициенты распределения представлены в таблице 12.
Figure 00000012
Figure 00000013
Пример 12. Растворы, содержащие от 1 моль/л до 6 моль/л азотной кислоты, плутоний, контактируют с раствором, содержащим 40% трибутилфосфата, растворенного в карбонате тетрафторпропилового спирта. Фазы разделяют и определяют коэффициенты распределения плутония. Коэффициенты распределения представлены в таблице 13.
Figure 00000014
Пример 13. Растворы, содержащие от 1 моль/л до 5 моль/л азотной кислоты, в каждом по 10-5 моль/л нитрата европия и индикаторные количества америция-241 или европия-152, контактируют с раствором 0,2 моль/л фенилоктил-N,N-ди-изобутил-карбамоилфосфиноксида, растворенного в карбонате тетрафторпропилового спирта. Фазы разделяют и определяют коэффициенты распределения металлов. Коэффициенты распределения представлены в таблице 14.
Figure 00000015
Пример 14. Раствор, содержащий 3 моль/л азотной кислоты, по 10-5 моль/л нитрата европия и индикаторные количества америция-241 или европия-152, контактируют с растворами, содержащими от 0,05 моль/л до 0,2 моль/л фенилоктил-N,N-ди-изобутил-карбамоилфосфиноксида, растворенного в карбонате тетрафторпропилового спирта. Фазы разделяют и определяют коэффициенты распределения металлов. Коэффициенты распределения представлены в таблице 15.
Figure 00000016
Пример 15. Растворы, содержащие от 1 моль/л до 6 моль/л азотной кислоты, иттрий, лантан, церий, празеодим, неодим, самарий, европий, гадолиний, контактируют с раствором, содержащим 0,2 моль/л фенилоктил-N,N-ди-изобутил-карбамоилфосфиноксида, растворенного в карбонате тетрафторпропилового спирта. Фазы разделяют и определяют коэффициенты распределения металлов. Коэффициенты распределения представлены в таблице 16.
Figure 00000017
Пример 16. Растворы, содержащие 0,5 моль/л азотной кислоты, лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, туллий, иттербий, лютеций, контактируют с раствором, содержащим 0,1 моль/л фенилоктил-N,N-ди-изобутил-карбамоилфосфиноксида, растворенного в карбонате тетрафторпропилового спирта. Фазы разделяют и определяют коэффициенты распределения металлов. Коэффициенты распределения представлены в таблице 17.
Figure 00000018
Пример 17. Растворы, содержащие 1 моль/л азотной кислоты, лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, туллий, иттербий, лютеций, контактируют с раствором, содержащим 0,1 моль/л фенилоктил-N,N-ди-изобутил-карбамоилфосфиноксида, растворенного в карбонате тетрафторпропилового спирта. Фазы разделяют и определяют коэффициенты распределения металлов. Коэффициенты распределения представлены в таблице 18.
Figure 00000019
Пример 18. Растворы, содержащие 2 моль/л азотной кислоты, лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, туллий, иттербий, лютеций, контактируют с растворами, содержащими от 0,05 моль/л до 0,15 моль/л фенилоктил-N,N-ди-изобутил-карбамоилфосфиноксида, растворенного в карбонате тетрафторпропилового спирта. Фазы разделяют и определяют коэффициенты распределения металлов. Коэффициенты распределения представлены в таблице 19.
Figure 00000020
Пример 19. Растворы, содержащие 3 моль/л азотной кислоты, лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, туллий, иттербий, лютеций, контактируют с растворами, содержащими от 0,05 моль/л до 0,15 моль/л фенилоктил-N,N-ди-изобутил-карбамоилфосфиноксида, растворенного в карбонате тетрафторпропилового спирта. Фазы разделяют и определяют коэффициенты распределения металлов. Коэффициенты распределения представлены в таблице 20.
Figure 00000021
Пример 20. Растворы, содержащие 2 моль/л азотной кислоты, молибден, цирконий, железо, палладий, контактируют с растворами, содержащими от 0,05 моль/л до 0,15 моль/л фенилоктил-N,N-ди-изобутил-карбамоилфосфиноксида, растворенного в карбонате тетрафторпропилового спирта. Фазы разделяют и определяют коэффициенты распределения металлов. Коэффициенты распределения представлены в таблице 21.
Figure 00000022
Figure 00000023
Пример 21. Растворы, содержащие 3 моль/л азотной кислоты, молибден, цирконий, железо, палладий, контактируют с растворами, содержащими 0,05; 0,075; 0,1; 0,15 моль/л фенилоктил-N,N-ди-изобутил-карбамоилфосфиноксида, растворенного в карбонате тетрафторпропилового спирта. Фазы разделяют и определяют коэффициенты распределения металлов. Коэффициенты распределения представлены в таблице 22.
Figure 00000024
Пример 22. Растворы, содержащие от 0,1 моль/л до 3 моль/л азотной кислоты, в каждом по 10-5 моль/л нитрата европия и индикаторные количества америция-241 или европия-152, контактируют с раствором, содержащим 40% разнорадикального фосфиноксида, растворенного в карбонате тетрафторпропилового спирта. Фазы разделяют и определяют коэффициенты распределения металлов. Коэффициенты распределения представлены в таблице 23.
Figure 00000025
Пример 23. Растворы, содержащие 0,5 моль/л азотной кислоты, лантан, церий, празеодим, неодим, самарий, европий, гадолиний, с суммарной концентрацией металлов 0,001 моль/л, контактируют с раствором, содержащим 20% разнорадикального фосфиноксида, растворенного в карбонате тетрафторпропилового спирта. Фазы разделяют и определяют коэффициенты распределения металлов. Коэффициенты распределения представлены в таблице 24.
Figure 00000026
Пример 24. Растворы, содержащие 0,5 моль/л азотной кислоты, лантан, церий, празеодим, неодим, самарий, европий, гадолиний, с суммарной концентрацией металлов 0,001 моль/л, контактируют с раствором, содержащим 30% разнорадикального фосфиноксида, растворенного в карбонате тетрафторпропилового спирта. Фазы разделяют и определяют коэффициенты распределения металлов. Коэффициенты распределения представлены в таблице 25.
Figure 00000027
Пример 25. Растворы, содержащие 0,5 моль/л азотной кислоты, лантан, церий, празеодим, неодим, самарий, европий, гадолиний, с суммарной концентрацией металлов 0,001 моль/л, контактируют с раствором, содержащим 40% разнорадикального фосфиноксида, растворенного в карбонате тетрафторпропилового спирта. Фазы разделяют и определяют коэффициенты распределения металлов. Коэффициенты распределения представлены в таблице 26.
Figure 00000028
Пример 26. Растворы, содержащие 3 моль/л азотной кислоты, по 10-5 моль/л нитрата европия и индикаторные количества америция-241 или европия-152, контактируют с растворами, содержащими от 0,04 моль/л до 0,1 моль/л N,N,N',N'-тетрагексилдиамида дигликолевой кислоты, растворенного в карбонате тетрафторпропилового спирта. Фазы разделяют и определяют коэффициенты распределения металлов. Коэффициенты распределения представлены в таблице 27.
Figure 00000029
Пример 27. Растворы, содержащие от 1 моль/л до 5 моль/л азотной кислоты, в каждом по 10-5 моль/л нитрата европия и индикаторные количества америция-241 или европия-152, контактируют с раствором 0,2 моль/л N,N,N',N'-тетрагексилдиамида дигликолевой кислоты, растворенного в карбонате тетрафторпропилового спирта. Фазы разделяют и определяют коэффициенты распределения металлов. Коэффициенты распределения представлены в таблице 28.
Figure 00000030
Пример 28. Растворы, содержащие 0,5 моль/л и 1 моль/л азотной кислоты, лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, туллий, иттербий, лютеций, контактируют с раствором, содержащим 0,1 моль/л N,N,N',N'-тетрагексилдиамида дигликолевой кислоты, растворенного в карбонате тетрафторпропилового спирта. Фазы разделяют и определяют коэффициенты распределения металлов. Коэффициенты распределения представлены в таблице 29.
Figure 00000031
Пример 29. Растворы, содержащие от 0,5 моль/л до 3 моль/л азотной кислоты, лантан, церий, празеодим, неодим, самарий, европий, гадолиний, иттрий, с суммарной концентрацией металлов 0,001 моль/л, контактируют с раствором, содержащим 0,1 моль/л N,N,N',N'-тетрагексилдиамида дигликолевой кислоты, растворенного в карбонате тетрафторпропилового спирта. Фазы разделяют и определяют коэффициенты распределения металлов. Коэффициенты распределения представлены в таблице 30.
Figure 00000032
Figure 00000033
Пример 30. Растворы, содержащие от 0,5 моль/л до 3 моль/л азотной кислоты, лантан, церий, празеодим, неодим, самарий, европий, гадолиний, иттрий, америций, с суммарной концентрацией металлов 0,005 моль/л, контактируют с раствором, содержащим 0,1 моль/л N,N,N',N'-тетрагексилдиамида дигликолевой кислоты, растворенного в карбонате тетрафторпропилового спирта. Фазы разделяют и определяют коэффициенты распределения металлов. Коэффициенты распределения представлены в таблице 31.
Figure 00000034
Пример 31. Растворы, содержащие от 0,5 моль/л до 3 моль/л азотной кислоты, лантан, церий, неодим, европий, гадолиний, с суммарной концентрацией металлов 0,00025 моль/л, контактируют с раствором, содержащим 0,1 моль/л N,N,N',N'-тетрагексилдиамида дигликолевой кислоты, растворенного в карбонате тетрафторпропилового спирта. Фазы разделяют и определяют коэффициенты распределения металлов. Коэффициенты распределения представлены в таблице 32.
Figure 00000035
Приведенные примеры доказывают возможность применения предложенной экстракционной смеси для извлечения актинидов из высокоактивных отходов.
Карбонаты тетрафторпропилового и октафторамилового спиртов являются потенциальными разбавителями для трибутилфосфата при извлечении актинидов из азотной кислоты. Отмечена высокая емкость по урану, при этом не наблюдается образование третьей фазы.
Предлагаемые экстракционные системы: фенилоктил-N,N-ди-изобутил-карбамоилфосфиноксида в карбонате тетрафторпропилового спирта; N,N,N',N'-тетрагексилдиамид дигликолевой кислоты в карбонате тетрафторпропилового спирта, фосфиноксид разнорадикальный в карбонате тетрафторпропилового спирта обладают высокой экстракционной способностью по отношению к америцию и редкоземельным элементам в азотнокислой среде.
Таким образом, показано, что по сравнению с прототипом предлагаемые варианты экстракционных смесей характеризуются высокой емкостью по извлекаемым металлам, обладают пониженной вязкостью и не образуют третьей фазы. Эти системы перспективны для дальнейшей разработки процессов фракционирования высокоактивных отходов.
Дополнительным преимуществом применения карбонатов фторированных спиртов в качестве разбавителей является возможность их использования, как в первом цикле переработки топлива, так и для фракционирования отходов.

Claims (7)

1. Экстракционная смесь для извлечения актинидов из азотнокислых растворов, включающая экстрагент, состоящий из нейтрального органического соединения, и разбавитель на основе производных фторированных спиртов, отличающаяся тем, что в качестве разбавителя она содержит карбонаты фторированных спиртов.
2. Экстракционная смесь по п. 1, отличающаяся тем, что в качестве нейтрального органического экстрагента она содержит триалкилфосфат.
3. Экстракционная смесь по п. 2, отличающаяся тем, что в качестве триалкилфосфата она содержит трибутилфосфат с концентрацией от 1,0 до 1,5 моль/л.
4. Экстракционная смесь по п. 1, отличающаяся тем, что в качестве нейтрального органического соединения она содержит фосфиноксид.
5. Экстракционная смесь по п. 4, отличающаяся тем, что в качестве фосфиноксида она содержит фенилоктил-N,N-ди-изобутил-карбамоилфосфиноксид с концентрацией от 0,05 до 0,15 моль/л, либо разнорадикальный фосфиноксид с концентрацией 20-40%.
6. Экстракционная смесь по п. 1, отличающаяся тем, что в качестве нейтрального органического соединения она содержит тетраалкилдиамид дигликолевой кислоты.
7. Экстракционная смесь по п. 6, отличающаяся тем, что в качестве тетраалкилдиамида дигликолевой кислоты она содержит N,N,N',N'-тетрагексилдиамид дигликолевой кислоты с концентрацией от 0,01 до 0,2 моль/л.
RU2015150199A 2015-11-23 2015-11-23 Экстракционная смесь для извлечения актинидов из азотнокислых растворов RU2620583C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015150199A RU2620583C2 (ru) 2015-11-23 2015-11-23 Экстракционная смесь для извлечения актинидов из азотнокислых растворов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015150199A RU2620583C2 (ru) 2015-11-23 2015-11-23 Экстракционная смесь для извлечения актинидов из азотнокислых растворов

Publications (2)

Publication Number Publication Date
RU2015150199A RU2015150199A (ru) 2017-05-26
RU2620583C2 true RU2620583C2 (ru) 2017-05-29

Family

ID=58873992

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015150199A RU2620583C2 (ru) 2015-11-23 2015-11-23 Экстракционная смесь для извлечения актинидов из азотнокислых растворов

Country Status (1)

Country Link
RU (1) RU2620583C2 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0389801A2 (en) * 1989-03-31 1990-10-03 General Electric Company Method of regulating a purex solvent extraction process
RU2180868C2 (ru) * 1999-12-07 2002-03-27 Государственное унитарное предприятие Научно-производственное объединение "Радиевый институт им. В.Г. Хлопина" Способ экстракционного выделения цезия, стронция, технеция, редкоземельных и актинидных элементов из жидких радиоактивных отходов
RU2234549C2 (ru) * 2002-01-28 2004-08-20 ФГУП "Производственное объединение "Маяк" Способ извлечения и разделения урана и четырехвалентных актинидов из азотнокислых растворов
RU2400281C1 (ru) * 2009-01-11 2010-09-27 Федеральное государственное унитарное предприятие "Производственное объединение "Маяк" Экстрагент для извлечения актинидов в степени окисления +4 и +6 из азотнокислых растворов
US8158088B2 (en) * 2008-11-10 2012-04-17 Battelle Energy Alliance, Llc Extractant compositions for co-extracting cesium and strontium, a method of separating cesium and strontium from an aqueous feed, and calixarene compounds

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0389801A2 (en) * 1989-03-31 1990-10-03 General Electric Company Method of regulating a purex solvent extraction process
RU2180868C2 (ru) * 1999-12-07 2002-03-27 Государственное унитарное предприятие Научно-производственное объединение "Радиевый институт им. В.Г. Хлопина" Способ экстракционного выделения цезия, стронция, технеция, редкоземельных и актинидных элементов из жидких радиоактивных отходов
RU2234549C2 (ru) * 2002-01-28 2004-08-20 ФГУП "Производственное объединение "Маяк" Способ извлечения и разделения урана и четырехвалентных актинидов из азотнокислых растворов
US8158088B2 (en) * 2008-11-10 2012-04-17 Battelle Energy Alliance, Llc Extractant compositions for co-extracting cesium and strontium, a method of separating cesium and strontium from an aqueous feed, and calixarene compounds
RU2400281C1 (ru) * 2009-01-11 2010-09-27 Федеральное государственное унитарное предприятие "Производственное объединение "Маяк" Экстрагент для извлечения актинидов в степени окисления +4 и +6 из азотнокислых растворов

Also Published As

Publication number Publication date
RU2015150199A (ru) 2017-05-26

Similar Documents

Publication Publication Date Title
Alyapyshev et al. Recovery of minor actinides from high-level wastes: modern trends
JP5948639B2 (ja) 酸性水相または有機相に存在するアメリシウムを他の金属元素から分離する方法及びそのアプリケーション
Alyapyshev et al. Extraction of actinides with heterocyclic dicarboxamides
JP4524394B2 (ja) 酸性溶液中に存在するアメリシウム及びネオジムの抽出方法
Quach et al. Supercritical fluid extraction and separation of uranium from other actinides
Sreenivasulu et al. Solvent extraction studies with some fission product elements from nitric acid media employing tri-iso-amyl phosphate and tri-n-butyl phosphate as extractants
Alyapyshev et al. New polar fluorinated diluents for diamide extractants
Evsiunina et al. Solvent extraction systems for separation of An (III) and Ln (III): overview of static and dynamic tests
JP2017504013A (ja) 少なくとも1種のアクチニド(iv)からこのアクチニド(iv)を錯化することによりウラン(vi)を除染するための工程を含む、使用済み核燃料を処理する方法
Mincher Radiation chemistry in the reprocessing and recycling of spent nuclear fuels
Mossini et al. Effects of gamma irradiation on the extraction properties of innovative stripping solvents for i-SANEX/GANEX processes
Sarkar et al. Alpha and gamma degradation behavior of tri-n-alkyl phosphates and tris (2-methylbutyl) phosphate: a comparative study
Babain et al. Extraction of actinides with tributyl phosphate in carbonates of fluorinated alcohols
Nayak et al. Studies on the feasibility of using completely incinerable reagents for the single-cycle separation of americium (III) from simulated high-level liquid waste
Rout Separation of plutonium from other actinides and fission products in ionic liquid medium
RU2620583C2 (ru) Экстракционная смесь для извлечения актинидов из азотнокислых растворов
Sasaki et al. Actinide separation with a novel tridentate ligand, di-glycolic amide for application to partitioning process
JP5354586B2 (ja) N,n,n’,n’−テトラアルキル−3,6−ジオキサオクタン−1,8−ジアミド及びn,n,n’,n’−テトラアルキル−3,6−ジオキサオクタン−1,8−ジアミドからなる高レベル放射性廃液からアクチニド元素及びランタニド元素を溶媒抽出する抽出剤
Metwally et al. Extraction of europium (III) and cobalt (II) by N, N, N’, N’-tetraoctyldiglycolamide and N, N, N’, N’-tetrahexyldiglycolamide from aqueous acid solutions
Paviet-Hartmann et al. Overview of reductants utilized in nuclear fuel reprocessing/recycling
Boyarintsev et al. Liquid–liquid extraction of trivalent americium from carbonate and carbonate–peroxide aqueous solutions by methyltrioctylammonium carbonate in toluene
JP4036357B2 (ja) 三座配位子を含むアクチノイド抽出溶媒の改質法
Tkachenko et al. Dynamic test of extraction process for americium partitioning from the PUREX raffinate
Antonya et al. Separation of trivalent actinides from high-active waste
Uhnak et al. Functionalized Dipicolinic Acid Derivatives as TALSPEAK-MME Stripping Agents