RU2619769C1 - Способ измерения поляризационной матрицы рассеяния объекта - Google Patents

Способ измерения поляризационной матрицы рассеяния объекта Download PDF

Info

Publication number
RU2619769C1
RU2619769C1 RU2016117569A RU2016117569A RU2619769C1 RU 2619769 C1 RU2619769 C1 RU 2619769C1 RU 2016117569 A RU2016117569 A RU 2016117569A RU 2016117569 A RU2016117569 A RU 2016117569A RU 2619769 C1 RU2619769 C1 RU 2619769C1
Authority
RU
Russia
Prior art keywords
signals
polarization
radio signals
radio
filters
Prior art date
Application number
RU2016117569A
Other languages
English (en)
Inventor
Вячеслав Викторович Андросов
Дмитрий Николаевич Кривченков
Юрий Игоревич Компаниец
Сергей Юрьевич Татарников
Николай Александрович Шашин
Original Assignee
Акционерное общество "Государственный Рязанский приборный завод"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Государственный Рязанский приборный завод" filed Critical Акционерное общество "Государственный Рязанский приборный завод"
Priority to RU2016117569A priority Critical patent/RU2619769C1/ru
Application granted granted Critical
Publication of RU2619769C1 publication Critical patent/RU2619769C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Abstract

Изобретение относится к области радиолокации и может быть использовано в радиолокационных системах с зондирующими сигналами, кодированными по фазе (фазокодоманипулированными сигналами), для измерения поляризационной матрицы рассеяния объекта. Достигаемый технический результат - повышение точности измерения поляризационной матрицы рассеяния объекта за счет устранения влияния боковых лепестков сигналов, сжатых согласованными фильтрами, а также за счет устранения влияния взаимно корреляционных составляющих, обусловленных прохождением сигналов через несогласованные фильтры. Технический результат достигается тем, что в способе измерения поляризационной матрицы рассеяния объекта при зондировании на одной несущей частоте на ортогональных поляризациях одновременно излучают соответствующие ортогональные по структуре радиосигналы, затем принимают одновременно все ортогонально поляризованные составляющие отраженных от объекта радиосигналов, выходные радиосигналы каждого соответствующего по поляризации канала приемника подают на фильтры, каждый из которых согласован с одним из излученных радиосигналов, измерение осуществляют за два или более периода зондирования, при этом в качестве излучаемых радиосигналов на ортогональных поляризациях используют пару сигналов, кодированных дополнительными последовательностями, которые изменяют от периода к периоду зондирования таким образом, что обе дополнительные последовательности разворачиваются, а одна из них кроме этого инвертируется, затем сжатые согласованными фильтрами в каждом из периодов зондирования радиосигналы объединяют и по параметрам объединенных радиосигналов определяют соответствующие элементы поляризационной матрицы рассеяния объекта. 1 ил.

Description

Изобретение относится к области радиолокации и может быть использовано в радиолокационных системах с зондирующими сигналами, кодированными по фазе (фазокодоманипулированными сигналами), для измерения поляризационной матрицы рассеяния объекта.

Известен способ подавления боковых лепестков автокорреляционной функции широкополосного сигнала [Патент RU №2335782, МПК: G01S 7/36, опубликован 10.10.2008], в котором в каждом периоде зондирования излучают один из двух, согласованных друг с другом фазокодоманипулированных (ФКМ) сигналов. При приеме отраженных сигналов производят их сжатие (оптимальную фильтрацию) отдельно для каждого периода повторения зондирующих импульсов, после чего суммируют результаты сжатия отраженных сигналов с задержкой первого результата относительно второго на период зондирования, в соответствии с временным положением ФКМ сигналов. При этом если результаты сжатия имеют амплитуды боковых лепестков, равные по модулю, но противоположные по знаку, а также равные амплитуды их основных пиков, то уровень боковых лепестков результата суммирования будет равен нулю, а полезный сигнал (основной пик) увеличится в два раза.

В данном способе в качестве зондирующих сигналов используют дополнительные сигналы, кодированные в соответствии с дополнительными последовательностями [Теория сложных сигналов. Л.Е. Варакин. - М.: Советское радио, 1970, с. 367], которые также возможно использовать для измерения поляризационной матрицы рассеяния объекта.

Недостаток данного способа заключается в невозможности измерения всех элементов поляризационной матрицы рассеяния объекта.

В качестве прототипа для заявляемого способа выбран способ измерения поляризационной матрицы рассеяния объекта [Патент RU №2204842, МПК: G01S 13/00, опубликован 20.05.2003], заключающийся в том, что при зондировании на одной несущей частоте на ортогональных поляризациях одновременно излучают соответствующие ортогональные по структуре радиосигналы, затем принимают одновременно все ортогонально поляризованные составляющие отраженных от объекта радиосигналов. Выходные радиосигналы каждого соответствующего по поляризации канала приемника подают на фильтры, каждый из которых согласован с одним из излученных ортогональных по структуре радиосигналов. После этого измеряют параметры выходного радиосигнала каждого согласованного фильтра, определяющие соответствующие элементы поляризационной матрицы рассеяния объекта.

В данном способе недостатком является то, что сжатые согласованными фильтрами сигналы имеют боковые лепестки, влияющие на точность измерения. Сжатый согласованным фильтром сигнал с точностью до постоянного множителя повторяет задержанную во времени копию автокорреляционной функции сигнала и содержит в своем составе основной пик и боковые лепестки. Основной пик является полезным сигналом, а боковые лепестки являются помехами, которые маскируют основные пики сжатых сигналов с меньшей энергией. Кроме этого боковые лепестки могут быть приняты за ложные сигналы.

Технический результат, на который направлено заявляемое изобретение, заключается в повышении точности измерения поляризационной матрицы рассеяния объекта за счет устранения влияния боковых лепестков сигналов, сжатых согласованными фильтрами, а также за счет устранения влияния взаимно корреляционных составляющих, обусловленных прохождением сигналов через несогласованные фильтры.

Технический результат достигается тем, что в способе измерения поляризационной матрицы рассеяния объекта при зондировании на одной несущей частоте на ортогональных поляризациях одновременно излучают соответствующие ортогональные по структуре радиосигналы, затем принимают одновременно все ортогонально поляризованные составляющие отраженных от объекта радиосигналов. Выходные радиосигналы каждого соответствующего по поляризации канала приемника подают на фильтры, каждый из которых согласован с одним из излученных радиосигналов. Измерение осуществляют за два или более периода зондирования. При этом в качестве излучаемых радиосигналов на ортогональных поляризациях используют пару сигналов, кодированных дополнительными последовательностями, которые изменяют от периода к периоду зондирования таким образом, что обе дополнительные последовательности разворачиваются, а одна из них кроме этого инвертируется. После чего сжатые согласованными фильтрами в каждом из периодов зондирования радиосигналы объединяют и по параметрам объединенных радиосигналов определяют соответствующие элементы поляризационной матрицы рассеяния объекта.

Сущность заявляемого способа измерения поляризационной матрицы рассеяния объекта состоит в том, что при зондировании на одной несущей частоте на ортогональных поляризациях одновременно излучают соответствующие ортогональные по структуре радиосигналы (осуществляют облучение объекта). После этого принимают одновременно все (четыре) ортогонально поляризованные составляющие отраженных от объекта радиосигналов двумя, соответствующими по поляризации, каналами приемника. Для разделения ортогональных по структуре одинаково поляризованных составляющих отраженных радиосигналов выходные радиосигналы каждого соответствующего по поляризации канала приемника подают на фильтры, каждый из которых согласован с одним из излученных ортогональных по структуре радиосигналов. При этом в качестве излучаемых радиосигналов на ортогональных поляризациях (например, горизонтальной и вертикальной) используют пару сигналов, кодированных дополнительными последовательностями (дополнительных сигналов).

Измерение поляризационной матрицы рассеяния объекта осуществляют за два или более периода зондирования. В каждом периоде зондирования излучают одновременно на ортогональных поляризациях пару дополнительных сигналов. При этом каждый из фильтров, на которые подают выходные радиосигналы каналов приемника, согласуют с одним дополнительным сигналом из пары использованных.

Кодирующие дополнительные последовательности пары излучаемых сигналов изменяют от периода к периоду зондирования по следующему правилу.

Если известна пара дополнительных последовательностей длины N, используемая в нечетных периодах зондирования: {а i} и {bi}, значения символов которых a i є {-1, 1}, bi є {-1, 1}, где i=0, .., N-1, то измененную пару дополнительных последовательностей {сi} и {di}, используемую в четных периодах зондирования, получают с помощью одного из соотношений:

Figure 00000001
или
Figure 00000002
где i=0, .., N-1.

Согласно приведенным соотношениям обе дополнительные последовательности разворачиваются, а одна из них кроме этого инвертируется.

Если измерение выполняют, например, за два периода зондирования, то пару сигналов, кодированных дополнительными последовательностями {а i} и {bi} используют в первом (нечетном) периоде, а пару сигналов, кодированных дополнительными последовательностями {сi}, используют во втором (четном) периоде зондирования. При этом дополнительные последовательности и {di} используются для кодирования радиосигналов, излучаемых на одной поляризации, а дополнительные последовательности {bi} и {di} - на другой ортогональной поляризации.

Измененные таким образом излучаемые сигналы не теряют свойств дополнительных сигналов, что позволяет в процессе их обработки при осуществлении измерения поляризационной матрицы рассеяния объекта избавиться от боковых лепестков, а также устранить взаимно корреляционные составляющие, обусловленные прохождением сигналов через несогласованные фильтры.

Сжатые согласованными фильтрами в каждом из периодов зондирования радиосигналы объединяют, после чего по параметрам объединенных радиосигналов определяют соответствующие элементы поляризационной матрицы рассеяния объекта.

В простейшем случае объединение реализуемо при суммировании результатов сжатия, полученных в двух периодах зондирования, в соответствии с временным положением зондирующих сигналов.

На чертеже представлена структурная схема устройства обработки принятых ортогонально поляризованных составляющих отраженных от объекта сигналов для двух периодов зондирования.

Данное устройство состоит из первого 1 и второго 2 одинаковых по структуре каналов обработки, соответствующих ортогональным поляризациям, и включает в себя первый управляемый оптимальный фильтр первого канала (УОФ11) 3, второй управляемый оптимальный фильтр первого канала (УОФ12) 4, первый элемент памяти первого канала (ЭП11) 5, второй элемент памяти первого канала (ЭП12) 6, первый сумматор первого канала (С11) 7, второй сумматор первого канала (С12) 8, первый управляемый оптимальный фильтр второго канала (УОФ21) 9, второй управляемый оптимальный фильтр второго канала (УОФ22) 10, первый элемент памяти второго канала (ЭП21) 11, второй элемент памяти второго канала (ЭП22) 12, первый сумматор второго канала (С21) 13 и второй сумматор второго канала (С22) 14.

Входы УОФ11 3 и УОФ12 4 соединены с первым входом устройства. Выход УОФ11 3 соединен с входом ЭП11 5 и со вторым входом С11 7, первый вход которого соединен с выходом ЭП11 5. Выход УОФ12 4 соединен с входом ЭП12 6 и со вторым входом С12 8, первый вход которого соединен с выходом ЭП12 6. Выходы С11 7 и С12 8 являются соответственно первым и вторым выходами устройства.

Входы УОФ21 9 и УОФ22 10 соединены со вторым входом устройства. Выход УОФ21 9 соединен с входом ЭП21 11 и со вторым входом С21 13, первый вход которого соединен с выходом ЭП21 11. Выход УОФ22 10 соединен с входом ЭП22 12 и со вторым входом С22 14, первый вход которого соединен с выходом ЭП22 12. Выходы С21 13 и С22 14 являются соответственно третьим и четвертым выходами устройства.

Работает устройство следующим образом.

В первом периоде зондирования излучается пара дополнительных сигналов на ортогональных поляризациях, принимаются все ортогонально поляризованные составляющие отраженных от объекта сигналов, выходные радиосигналы двух ортогональных по поляризации каналов приемника поступают на первый и второй входы представленного устройства обработки. При этом УОФ11 3 и УОФ21 9 согласованы с первым дополнительным сигналом из пары, а УОФ12 4 и УОФ22 10 согласованы со вторым дополнительным сигналом из пары. УОФ11 3, УОФ12 4, УОФ21 9 и УОФ22 10 осуществляют сжатие принятых отраженных от объекта сигналов. После этого полученные результаты сжатия поступают соответственно в ЭП11 5, ЭП12 6, ЭП21 11, ЭП22 12 и сохраняются в них.

Во втором периоде зондирования используемая пара дополнительных сигналов изменяется в соответствии с предлагаемым правилом (обе кодирующие их дополнительные последовательности разворачиваются, одна из них кроме этого инвертируется). После этого измененная пара дополнительных сигналов излучается на ортогональных поляризациях, принимаются все ортогонально поляризованные составляющие отраженных от объекта сигналов, выходные радиосигналы двух ортогональных по поляризации каналов приемника поступают на первый и второй входы устройства обработки. При этом УОФ11 3 и УОФ21 9 согласованы с первым дополнительным сигналом из пары, а УОФ12 4 и УОФ22 10 согласованы со вторым дополнительным сигналом из пары. УОФ11 3, УОФ12 4, УОФ21 9 и УОФ22 10 осуществляют сжатие принятых отраженных от объекта сигналов, после чего полученные результаты сжатия поступают соответственно в ЭП11 5, ЭП12 6, ЭП21 11, ЭП22 12, а также на вторые входы С11 7, С12 8, С21 13 и С22 14. При этом на первые входы всех сумматоров поступают задержанные на период зондирования отсчеты сигналов, сжатых в предыдущем периоде зондирования. На выходе каждого из сумматоров будет присутствовать радиосигнал, полученный после объединения отсчетов сигналов, сжатых в двух периодах зондирования.

Результаты суммирования на первом, втором, третьем и четвертом выходах устройства будут соответствовать четырем ортогонально поляризованным составляющим отраженных от объекта радиосигналов, которые определяют поляризационную матрицу рассеяния объекта.

Управляемые оптимальные фильтры, использованные в схеме данного устройства, представляют собой обычные оптимальные фильтры, каждый из которых настроен на сигнал, используемый в текущем периоде зондирования. Поскольку подаваемый на схему зондирующий сигнал изменяется, то существует необходимость изменять характеристики оптимального фильтра вслед за изменением зондирующего сигнала. Именно этот факт отражает определение оптимального фильтра как управляемого.

Элементы памяти устройства задерживают отчеты сжатых сигналов на период зондирования, тем самым обеспечивая согласование их временного положения относительно результатов сжатия сигналов, принятых в соседних периодах зондирования. В данном устройстве обработки используются элементы памяти типа FIFO (First In, First Out), в которых обработка данных производится в том же порядке, что и поступление.

Таким образом, использование пары дополнительных сигналов в качестве излучаемых одновременно на двух ортогональных поляризациях с изменением их кодирующих дополнительных последовательностей от периода к периоду зондирования позволяет существенно повысить точность измерения поляризационной матрицы рассеяния объекта.

Промышленная применимость данного способа возможна, исходя из того, что все используемые операции практически реализуемы в цифровой технике, а также программным способом в вычислительной технике.

Claims (1)

  1. Способ измерения поляризационной матрицы рассеяния объекта, заключающийся в том, что при зондировании на одной несущей частоте на ортогональных поляризациях одновременно излучают соответствующие ортогональные по структуре радиосигналы, принимают одновременно все ортогонально поляризованные составляющие отраженных от объекта радиосигналов, выходные радиосигналы каждого соответствующего по поляризации канала приемника подают на фильтры, каждый из которых согласован с одним из излученных ортогональных по структуре радиосигналов, отличающийся тем, что измерение осуществляют за два или более периода зондирования, при этом в качестве излучаемых радиосигналов на ортогональных поляризациях используют пару сигналов, кодированных дополнительными последовательностями, которые изменяют от периода к периоду зондирования таким образом, что обе дополнительные последовательности разворачиваются, а одна из них кроме этого инвертируется, после чего сжатые согласованными фильтрами в каждом из периодов зондирования радиосигналы объединяют и по параметрам объединенных радиосигналов определяют соответствующие элементы поляризационной матрицы рассеяния объекта.
RU2016117569A 2016-05-04 2016-05-04 Способ измерения поляризационной матрицы рассеяния объекта RU2619769C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016117569A RU2619769C1 (ru) 2016-05-04 2016-05-04 Способ измерения поляризационной матрицы рассеяния объекта

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016117569A RU2619769C1 (ru) 2016-05-04 2016-05-04 Способ измерения поляризационной матрицы рассеяния объекта

Publications (1)

Publication Number Publication Date
RU2619769C1 true RU2619769C1 (ru) 2017-05-18

Family

ID=58715820

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016117569A RU2619769C1 (ru) 2016-05-04 2016-05-04 Способ измерения поляризационной матрицы рассеяния объекта

Country Status (1)

Country Link
RU (1) RU2619769C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329286A (en) * 1993-06-29 1994-07-12 The United States Of America As Represented By The Secretary Of The Air Force Method for two dimensional doppler imaging of radar targets
EP0690315A2 (en) * 1994-07-01 1996-01-03 Hughes Aircraft Company RF sensor and radar for automotive speed and collision avoidance applications
US5896098A (en) * 1992-12-30 1999-04-20 Advanced Displays Corporation Self-contained multifunctional LCD flight indicator
RU2204842C2 (ru) * 2001-05-04 2003-05-20 Белгородский государственный университет Способ и устройство для измерения поляризационной матрицы рассеяния объекта
RU2296345C2 (ru) * 2004-12-30 2007-03-27 Открытое акционерное общество "Корпорация "Фазотрон-Научно-исследовательский институт радиостроения" Способ разрешения целей по дальности радиолокационной станцией и импульсная радиолокационная станция со сжатием импульсов и восстановлением сигналов
RU2368918C1 (ru) * 2008-04-07 2009-09-27 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Рязанский государственный радиотехнический университет Способ формирования трехмерного изображения поверхности на базе бортового радиотеплолокатора

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5896098A (en) * 1992-12-30 1999-04-20 Advanced Displays Corporation Self-contained multifunctional LCD flight indicator
US5329286A (en) * 1993-06-29 1994-07-12 The United States Of America As Represented By The Secretary Of The Air Force Method for two dimensional doppler imaging of radar targets
EP0690315A2 (en) * 1994-07-01 1996-01-03 Hughes Aircraft Company RF sensor and radar for automotive speed and collision avoidance applications
RU2204842C2 (ru) * 2001-05-04 2003-05-20 Белгородский государственный университет Способ и устройство для измерения поляризационной матрицы рассеяния объекта
RU2296345C2 (ru) * 2004-12-30 2007-03-27 Открытое акционерное общество "Корпорация "Фазотрон-Научно-исследовательский институт радиостроения" Способ разрешения целей по дальности радиолокационной станцией и импульсная радиолокационная станция со сжатием импульсов и восстановлением сигналов
RU2368918C1 (ru) * 2008-04-07 2009-09-27 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Рязанский государственный радиотехнический университет Способ формирования трехмерного изображения поверхности на базе бортового радиотеплолокатора

Similar Documents

Publication Publication Date Title
JP6208710B2 (ja) 距離ゲートを用いたホログラフィックレーダおよびホログラフィックレーダセンサ
Hutchins et al. Coded waveforms for optimised air-coupled ultrasonic nondestructive evaluation
US20160274226A1 (en) Optical distance measurement device
US20160238694A1 (en) Radar device
US5151702A (en) Complementary-sequence pulse radar with matched filtering following doppler filtering
JP4200135B2 (ja) 近距離レーダー測定用のマルチスタティックセンサ装置およびこのセンサ装置の駆動方法
Kânoğlu et al. Initial value problem solution of nonlinear shallow water-wave equations
DE60312702T2 (de) Vorrichtung zur unterwassersortung
Pal et al. Coprime sampling and the MUSIC algorithm
Rickett Amplitude-modulated noise-an empirical model for the radio radiation received from pulsars
DE69934142T2 (de) Determination der zeitverzögerung und determination der signalverschiebung
CN106537170A (zh) 雷达系统中的分布式雷达信号处理
ES2700935T3 (es) Radar operation with increased Doppler capability
US5644314A (en) Portable geophysical system using an inverse collocation-type metehodology
US9128182B2 (en) Radar device
Sira et al. Adaptive waveform design for improved detection of low-RCS targets in heavy sea clutter
US4443801A (en) Direction finding and frequency identification method and apparatus
CN107064881B (en) Frequency modulation scheme for FMCW radar
US9268022B2 (en) Underwater detection device and underwater detecting method
CN102313614B (zh) 提高延迟线型声表面波传感器检测精度的方法及系统
Helton et al. FPGA-based 1.2 GHz bandwidth digital instantaneous frequency measurement receiver
EP1802994A1 (en) Systems and methods for improved imaging
US4704574A (en) Phase difference measurement apparatus and method
US20100283659A1 (en) Monobit Based Low Cost High Performance Radar Warning Receiver
Hao et al. Persymmetric adaptive detection and range estimation of a small target