RU2619408C1 - Опорный сегментный подшипник скольжения - Google Patents
Опорный сегментный подшипник скольжения Download PDFInfo
- Publication number
- RU2619408C1 RU2619408C1 RU2016112996A RU2016112996A RU2619408C1 RU 2619408 C1 RU2619408 C1 RU 2619408C1 RU 2016112996 A RU2016112996 A RU 2016112996A RU 2016112996 A RU2016112996 A RU 2016112996A RU 2619408 C1 RU2619408 C1 RU 2619408C1
- Authority
- RU
- Russia
- Prior art keywords
- bearing
- segment
- segments
- channels
- oil
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/02—Sliding-contact bearings for exclusively rotary movement for radial load only
- F16C17/03—Sliding-contact bearings for exclusively rotary movement for radial load only with tiltably-supported segments, e.g. Michell bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/06—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
Landscapes
- Sliding-Contact Bearings (AREA)
Abstract
Изобретение относится к области турбо- и компрессоростроения, в частности к устройству опорных сегментных подшипников скольжения, используемых для роторов высокооборотных машин. Опорный сегментный подшипник скольжения содержит корпус с каналами подвода смазки и сливной полостью и с размещенным в нем вкладышем (2) из двух полувкладышей с кольцевой канавкой (3) и каналами (4) индивидуального подвода смазки в них к размещенным в плавающем сепараторе (5) самоустанавливающимся сегментам (7) с установочными шипами и с распределительными осевыми канавками для подвода смазки на входных и слива масла на выходных кромках, одна из которых, у входной кромки, соединена радиальными каналами с полостью под сегментом (7). Индивидуальный подвод смазки осуществлен под выполненные с окружной канавкой на спинке (13) сегменты (7), которые размещены в окнах сепаратора (5) с дросселирующими торцевыми и окружными зазорами с обеспечением при этом максимального качания крайних точек несущих рабочих поверхностей сегмента (7) в пределах, соответствующих возможности перемещения цапфы вала (8) в пределах диаметрального зазора между цапфой вала (8) и внутренней расточкой подшипника. Технический результат: повышение виброустойчивости и несущей способности опорного сегментного подшипника скольжения путем повышения его демпфирующих свойств, снижение расхода смазки и оптимизация теплового режима работы подшипника. 4 ил.
Description
Изобретение относится к области турбо- и компрессоростроения, в частности к устройству опорных сегментных подшипников скольжения, используемых для роторов высокооборотных машин.
При работе центробежных компрессоров, паровых и газовых турбин при высоких частотах вращения их роторов нередко возникают низкочастотные вибрации, обусловленные гидродинамическим и газодинамическим возбуждением, и в этом случае находят применение подшипники скольжения сегментного (колодочного) типа, обеспечивающие высокую вибрационную надежность. При проектировании высокооборотных турбокомпрессорных агрегатов одним из основных требований является обеспечение надежности их работы, которая в значительной степени определяется безотказной работой опорных подшипников, так как их повреждение приводит к останову агрегата и значительным экономическим потерям. Обеспечение надежной работы в подшипниках достигается повышением их несущей способности, демпфирующих свойств и виброустойчивости, снижением расхода смазки и оптимизации теплового режима работы подшипников.
Известен опорный сегментный подшипник, где снижения усилий на опору со стороны ротора турбоагрегата добиваются за счет выполнения сегмента подвижным с возможностью изменения его положения электронно-гидравлической управляющей системой, получающей сигналы о возникающих на валу вибрационных нагрузках. Подшипник состоит из верхнего и нижнего полувкладышей, внутри которых установлены опорные сегменты, съемные опорные вставки, установленные в опорных сегментах и корпусе вкладыша. К недостаткам рассматриваемого подшипника в первую очередь следует отнести существующую инерционность гидравлической системы, а также возможные отказы электронного устройства, что может приводить к запаздыванию слежения сегментов за цапфой вала и выходу их из строя при пусках и аварийных остановах (см., например, патент Японии №1944976C, F16C 17/03).
Известен вкладыш опорного сегментного подшипника скольжения, в котором обеспечено снижение общего расхода потребляемой смазки с одновременным обеспечением оптимального теплового режима и повышения виброустойчивости при надежном маслоснабжении. Вкладыш состоит из двух полувкладышей, в которых установлены опорные сегменты, зафиксированные в осевом направлении втулками, установленными с торцевых сторон в теле сегментов и вкладышей так, что создают гарантированный торцевой зазор между сегментами и вкладышами. Во вкладыше выполнен внутренний кольцевой карман, соединенный с каналом подвода смазки, осевые и радиальные каналы для подвода смазки к сегментам. Во втулках и сегментах выполнены осевые и радиальные каналы индивидуального подвода к маслораздаточным полостям сегментов. Вкладыш снабжен также масляными уплотнениями с подвижными уплотняющими элементами. Недостатками такого вкладыша является то, что установленные в теле сегментов и вкладышей втулки затрудняют самоустановку сегментов при их качании относительно точки опоры, что в свою очередь затрудняет формирование масляного клина на несущих рабочих поверхностях сегментов, а также то, что маслораздаточные полости на этих поверхностях сегментов имеют малые осевые размеры, что приводит к недостаточно равномерному распределению смазки по ширине сегмента и уменьшению несущей способности подшипника (см., например, патент RU №2361126 C11, F16C 17/03; 32/06, 22.11.2011 г.).
Известен опорный подшипниковый узел, содержащий корпус с каналами подвода смазки и сливной полостью, цапфу вала, охватывающие цапфу вала самоустанавливающиеся колодки (сегменты) с выполненным в центральной части несущей рабочей поверхности колодки радиальным отверстием. У входной и выходной кромок колодок подшипниковый узел содержит распределительные канавки, одна из которых, у входной кромки, соединена через каналы в теле колодки с каналами подвода смазки, а другая, у выходной кромки, выполнена сквозной и расположена параллельно продольной оси подшипникового узла, включающего также фиксирующие винты и маслосъемные скребки. В нижней колодке установлена вставка в виде замыкающего скребка, а между колодок установлены маслосъемные скребки. При этом нижняя колодка имеет большую окружную протяженность по отношению к двум другим колодкам. На несущей рабочей поверхности колодок выполнена эллиптическая «лимонная» расточка. К недостаткам рассматриваемой конструкции можно отнести то, что:
1. Отбор масла из масляного слоя самоустанавливающейся колодки с помощью выполненного в центральной части несущей поверхности радиального отверстия вследствие протечек приводит к снижению давления в масляном слое и снижению несущей способности подшипника, снижающейся также из-за эллиптической «лимонной» расточки, уменьшающей окружную протяженность масляного слоя.
2. Выполнение наружного диаметра колодки равным диаметру расточки вкладыша затрудняет качание и самоустановку сегментных колодок (см., например, патент РФ №2193123 С2, F16C 32/06, F16C 17/03, 24.04.2000 г.) - прототип.
Задачей, на реализацию которой направлено предлагаемое техническое решение, является повышение виброустойчивости и несущей способности опорного сегментного подшипника скольжения путем повышения его демпфирующих свойств, снижения расхода смазки и оптимизации теплового режима работы подшипника.
Указанный технический результат достигается тем, что в предлагаемом опорном сегментном подшипнике скольжения, содержащем корпус с каналами подвода смазки и сливной полостью и с размещенным в нем вкладышем из двух полувкладышей с наружной кольцевой канавкой и каналами индивидуального подвода смазки в них к размещенным в плавающем сепараторе самоустанавливающимся сегментам с установочными шипами и с распределительными осевыми канавками для подвода смазки на входных и слива масла на выходных кромках, одна из которых, у входной кромки, соединена радиальными каналами с полостью под сегментом, согласно изобретению индивидуальный подвод смазки осуществлен под выполненные с окружной канавкой на спинке самоустанавливающиеся сегменты, которые размещены в окнах плавающего сепаратора с дросселирующими торцевыми и окружными зазорами с обеспечением при этом максимального качания крайних точек несущих рабочих поверхностей сегмента в пределах, соответствующих возможности перемещения цапфы вала в пределах диаметрального зазора между цапфой вала и внутренней расточкой подшипника.
Отличительным признаком предлагаемого изобретения является то, что индивидуальный подвод смазки осуществлен под выполненные с окружной канавкой на спинке самоустанавливающиеся сегменты, которые размещены в окнах плавающего сепаратора с дросселирующими торцевыми и окружными зазорами с обеспечением при этом максимального качания крайних точек несущих рабочих поверхностей сегмента в пределах, соответствующих возможности перемещения цапфы вала в пределах диаметрального зазора между цапфой вала и внутренней расточкой подшипника.
Предлагаемый опорный сегментный подшипник скольжения можно проиллюстрировать с помощью чертежей фиг. 1, 2, 3 А, где на фиг. 1 представлен поперечный разрез подшипника, на фиг. 2 - сечение А-А на фиг. 1, на фиг. 3 - выноска Б на фиг. 2, на фиг. 4 - сечение В-В на фиг. 3.
В корпусе 1 (с каналами подвода смазки и сливной полостью в нем - на фиг. 1, 2, 3, 4 не показаны) предлагаемого опорного сегментного подшипника скольжения установлен состоящий из двух полувкладышей вкладыш 2 с выполненной на нем кольцевой наружной канавкой 3 (сообщенной с каналами подвода смазки в корпусе 1) и каналами индивидуального подвода смазки 4 в нем. Во внутреннем пространстве вкладыша 2 установлен плавающий сепаратор 5, в окнах 6 (возможны три, четыре или более окон) которого размещены выполненные с наружным радиусом, меньшим чем радиус расточки вкладыша 2, опорные самоустанавливающиеся с возможностью качания по линии (опорной) «K» (см. фиг. 3, 4) сегменты (колодки) 7 (в каждом из окон 6 - один сегмент) с минимально необходимыми (обеспечение возможности подвижности) торцевыми δ1 и окружными δ2 зазорами между сепаратором 5 и сегментами 7 по периметру окон 6. При этом окружной зазор δ2 между сегментом 7 (каждым из) и сепаратором 5 (соответственно, возможность максимального качания крайних точек несущих рабочих поверхностей сегмента 7) выполнен с обеспечением возможности перемещения цапфы вала 8 на величину диаметрального зазора между цапфой вала 8 и внутренней расточкой подшипника (по сегментам 7). На входной кромке 9 сегментов 7 выполнена осевая распределительная канавка 10, а между ней и полостью 11 под сегментом 7 (противоположной несущей рабочей поверхности сегмента 7) в его теле выполнены радиальные каналы 12. Сегмент 7 выполнен так, что линия качания «K» (см. фиг. 3, 4) на его спинке 13 смещена относительно его радиальной оси симметрии на некоторый угол в сторону вращения цапфы вала 8. На сегменте 7 также выполнены осевая канавка 14 на выходной кромке 15 и окружная канавка 16 на его спинке 13 (посредине), в которой на линии качания «K» установлен шип 17. Противоположный конец шипа 17 входит с зазором в ответное отверстие (не показано) во вкладыше 2. Плавающий сепаратор 5 выполнен из двух половин со штифтами от проворота 18 на них и с рабочими поверхностями 19 с баббитовой наплавкой на них (обращенных к цапфе вала 8). Относительно вкладыша 2 плавающий сепаратор 5 установлен с торцевыми и радиальными зазорами (на фиг. 1, 2, 3, 4 не показаны), причем радиальный зазор между сепаратором 5 и вкладышем 2 больше радиального зазора между баббитовой рабочей поверхностью 19 сепаратора 5 и цапфой вала 8. На фиг. 2 цапфа вала 8 условно не показана.
Опорный сегментный подшипник скольжения работает следующим образом (см. фиг. 1, 2, 3, 4).
При работе агрегата смазочное масло по каналам подвода смазки (на фиг. 1, 2, 3, 4 не показаны) в корпусе 1 подшипника поступает в кольцевую канавку 3 во вкладыше 2, затем из канавки 3 по каналам индивидуального подвода смазки 4 поступает в полости 11 под сегментами 7, заполняет, в том числе благодаря окружной канавке 16 на спинке 13, весь свободный объем под сегментом 7 в окнах 6 сепаратора 5 и находится, из-за малости зазоров δ1 и δ2 по периметру между сепаратором 5 и сегментом 7, практически под давлением подвода масла смазки. Далее масло смазки из полости 11 под сегментом 7 по радиальным каналам 12 в теле сегментов 7 и через осевую распределительную канавку 10 на входной кромке 9 сегмента 7 поступает к несущей рабочей поверхности сегмента 7, образуя масляный клин. При вращении цапфы вала 8 поступающая смазка создает гидродинамическую пленку на несущих рабочих поверхностях сегментов 7 с эпюрой давления, которая самоустанавливает сегменты 7 поворотом относительно их линии качания «K» (см. фиг. 3, 4) между спинкой 13 сегментов 7 и вкладышем 2. При качании сегмента (колодки) 7 с опорой по линии «K» (см. фиг. 3, 4) вследствие вибрации вала 8, происходящей, как правило, с прямой синхронной прецессией, совершается работа над замкнутым, вследствие малых щелевых протечек по зазорам δ1 и δ2, объемом масла под сегментом 7 (между ним и вкладышем 2), что приводит к существенному повышению демпфирующих свойств сегментного подшипника - при этом происходит вытеснение и втягивание масла под сегментом 7 аналогично действию гидравлического демпфера с поршнем. Отработанное в сегментах 7 масло из осевых канавок 14 на их выходных кромках 15 сливается в сливную полость в корпусе 1 (на фиг. 1, 2, 3, 4 - не показано) подшипника. Шип 17, установленный с зазором в углублениях вкладыша 2, гарантирует правильную установку сегмента 7 со смещенной от радиальной оси симметрии сегмента 7 в сторону вращения цапфы вала 8 линией качания «K» (см. фиг. 3,4) сегмента 7 во вкладыше 2 и не препятствует его качанию. Штифты 18 удерживают сепаратор 5 от проворота, но не мешают ему «плавать» и самоустанавливаться относительно цапфы вала 8 при вращении ротора (например, турбокомпрессора).
Расчетный или экспериментальный подбор проходных площадей радиальных каналов 12 подвода смазки в маслораспределительные канавки 10 на входных кромках 9 несущих поверхностей сегментов 7 и выполнение дросселирующих зазоров δ1 и δ2 обеспечивает снижение и оптимизацию расхода масла на подшипник, а следовательно, и оптимизацию теплового режима работы подшипника. При этом следует отметить, что уменьшению торцевых протечек масла из сегмента, наполнению эпюры давления и снижению расхода масла через подшипник способствует также выполненная на внутренней (рабочей) поверхности сепаратора баббитовая наплавка 19, которая при малом радиальном зазоре между валом и сепаратором играет роль плавающего масляного уплотнения. Наличие под сегментом масла под давлением подвода смазки повышает демпфирование, улучшает условия самоустановки сегмента, снижает трение и истирание опорных поверхностей, улучшает теплоотвод от сегмента.
Таким образом, данная конструкция опорного сегментного подшипника по сравнению с известной конструкцией опорного подшипникового узла позволяет повысить его демпфирующую и несущую способность, снизить расход смазки и оптимизировать тепловой режим работы подшипника.
Claims (1)
- Опорный сегментный подшипник скольжения, содержащий корпус с каналами подвода смазки и сливной полостью и с размещенным в нем вкладышем из двух полувкладышей с кольцевой канавкой и каналами индивидуального подвода смазки в них к размещенным в плавающем сепараторе самоустанавливающимся сегментам с установочными шипами и с распределительными осевыми канавками для подвода смазки на входных и слива масла на выходных кромках, одна из которых, у входной кромки, соединена радиальными каналами с полостью под сегментом, отличающийся тем, что индивидуальный подвод смазки осуществлен под выполненные с окружной канавкой на спинке самоустанавливающиеся сегменты, которые размещены в окнах плавающего сепаратора с дросселирующими торцевыми и окружными зазорами с обеспечением при этом максимального качания крайних точек несущих рабочих поверхностей сегмента в пределах, соответствующих возможности перемещения цапфы вала в пределах диаметрального зазора между цапфой вала и внутренней расточкой подшипника.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016112996A RU2619408C1 (ru) | 2016-04-05 | 2016-04-05 | Опорный сегментный подшипник скольжения |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016112996A RU2619408C1 (ru) | 2016-04-05 | 2016-04-05 | Опорный сегментный подшипник скольжения |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2619408C1 true RU2619408C1 (ru) | 2017-05-15 |
Family
ID=58716130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016112996A RU2619408C1 (ru) | 2016-04-05 | 2016-04-05 | Опорный сегментный подшипник скольжения |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2619408C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2685404C2 (ru) * | 2017-08-16 | 2019-04-17 | Василий Сигизмундович Марцинковский | Реверсивный подшипник скольжения (варианты) |
RU198998U1 (ru) * | 2019-12-06 | 2020-08-06 | Федеральное государственное бюджетное учреждение науки Сибирский федеральный научный центр агробиотехнологий Российской академии наук (СФНЦА РАН) | Устройство для диагностирования технического состояния подшипникового узла |
RU199332U1 (ru) * | 2020-05-12 | 2020-08-28 | Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" | Подшипник гидротурбины |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4497587A (en) * | 1983-06-20 | 1985-02-05 | General Electric Company | Three-pad journal bearing |
RU2193123C2 (ru) * | 2000-04-24 | 2002-11-20 | Товарыство реализации инжэнэрных задач "ТРИЗ-ЛТД" (товарыство з обмэжэною видповидальнистю) | Опорный подшипниковый узел |
RU2210685C2 (ru) * | 2000-01-17 | 2003-08-20 | Открытое акционерное общество "Ленинградский Металлический завод" | Сегментный вкладыш опорного подшипника |
RU2361126C1 (ru) * | 2007-11-22 | 2009-07-10 | Открытое акционерное общество "Силовые машины-ЗТЛ, ЛМЗ, Электросила, Энергомашэкспорт" (ОАО "Силовые машины") | Вкладыш опорного сегментного подшипника скольжения |
-
2016
- 2016-04-05 RU RU2016112996A patent/RU2619408C1/ru not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4497587A (en) * | 1983-06-20 | 1985-02-05 | General Electric Company | Three-pad journal bearing |
RU2210685C2 (ru) * | 2000-01-17 | 2003-08-20 | Открытое акционерное общество "Ленинградский Металлический завод" | Сегментный вкладыш опорного подшипника |
RU2193123C2 (ru) * | 2000-04-24 | 2002-11-20 | Товарыство реализации инжэнэрных задач "ТРИЗ-ЛТД" (товарыство з обмэжэною видповидальнистю) | Опорный подшипниковый узел |
RU2361126C1 (ru) * | 2007-11-22 | 2009-07-10 | Открытое акционерное общество "Силовые машины-ЗТЛ, ЛМЗ, Электросила, Энергомашэкспорт" (ОАО "Силовые машины") | Вкладыш опорного сегментного подшипника скольжения |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2685404C2 (ru) * | 2017-08-16 | 2019-04-17 | Василий Сигизмундович Марцинковский | Реверсивный подшипник скольжения (варианты) |
RU198998U1 (ru) * | 2019-12-06 | 2020-08-06 | Федеральное государственное бюджетное учреждение науки Сибирский федеральный научный центр агробиотехнологий Российской академии наук (СФНЦА РАН) | Устройство для диагностирования технического состояния подшипникового узла |
RU199332U1 (ru) * | 2020-05-12 | 2020-08-28 | Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" | Подшипник гидротурбины |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7470064B2 (en) | Axial thrust bearing | |
KR101178077B1 (ko) | 유체역학적 엑시얼 베어링 | |
JP4664254B2 (ja) | 圧縮機用軸受 | |
EP3112714A1 (en) | Spindle device | |
RU2619408C1 (ru) | Опорный сегментный подшипник скольжения | |
JP2010500520A (ja) | 大形タービン・発電設備における高支持容量の静圧ラジアルすべり軸受 | |
JP2015007463A (ja) | ティルティングパッド軸受 | |
Martsinkovsky et al. | Designing radial sliding bearing equipped with hydrostatically suspended pads | |
JP2009222210A (ja) | ジャーナル軸受装置 | |
US10094417B2 (en) | Tilting pad journal bearing | |
US20220120193A1 (en) | Exhaust gas turbocharger having a hydrodynamic plain bearing or a hydrodynamic plain bearing | |
US9377051B2 (en) | Duplex bearing device | |
US4116502A (en) | Dual bearing structure for rotatable machine parts with antifriction and plain bearings | |
JP5119281B2 (ja) | 組合せ軸受装置 | |
RU2722222C1 (ru) | Реверсивный упорный подшипник скольжения (варианты) | |
JP2008151239A (ja) | ティルティングパッド型軸受 | |
RU2361126C1 (ru) | Вкладыш опорного сегментного подшипника скольжения | |
RU2489615C1 (ru) | Комбинированный радиально-осевой газодинамический лепестковый подшипник скольжения | |
RU2453739C1 (ru) | Гидростатический подшипник | |
RU2605658C2 (ru) | Комбинированный радиально-осевой газодинамический лепестковый подшипник скольжения | |
RU2685404C2 (ru) | Реверсивный подшипник скольжения (варианты) | |
RU2282067C1 (ru) | Опорно-упорный подшипник скольжения вала турбомашины | |
RU2298116C1 (ru) | Гидростатический подшипник | |
RU2722107C1 (ru) | Реверсивный подшипник скольжения (варианты) | |
RU2755500C1 (ru) | Турбокомпрессор |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20190406 |