RU2619329C2 - Method of producing aspirin nanocapsules in sodium alginate - Google Patents

Method of producing aspirin nanocapsules in sodium alginate Download PDF

Info

Publication number
RU2619329C2
RU2619329C2 RU2014140358A RU2014140358A RU2619329C2 RU 2619329 C2 RU2619329 C2 RU 2619329C2 RU 2014140358 A RU2014140358 A RU 2014140358A RU 2014140358 A RU2014140358 A RU 2014140358A RU 2619329 C2 RU2619329 C2 RU 2619329C2
Authority
RU
Russia
Prior art keywords
nanocapsules
sodium alginate
aspirin
producing
shell
Prior art date
Application number
RU2014140358A
Other languages
Russian (ru)
Other versions
RU2014140358A (en
Inventor
Александр Александрович Кролевец
Илья Александрович Богачев
Original Assignee
Александр Александрович Кролевец
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Александрович Кролевец filed Critical Александр Александрович Кролевец
Priority to RU2014140358A priority Critical patent/RU2619329C2/en
Publication of RU2014140358A publication Critical patent/RU2014140358A/en
Application granted granted Critical
Publication of RU2619329C2 publication Critical patent/RU2619329C2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/60Salicylic acid; Derivatives thereof
    • A61K31/612Salicylic acid; Derivatives thereof having the hydroxy group in position 2 esterified, e.g. salicylsulfuric acid
    • A61K31/616Salicylic acid; Derivatives thereof having the hydroxy group in position 2 esterified, e.g. salicylsulfuric acid by carboxylic acids, e.g. acetylsalicylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

FIELD: medicine.
SUBSTANCE: invention relates to encapsulation. Described a method of producing aspirin nanocapsules. As a nanocapsules shell use sodium alginate. In agreement with the method according to the invention aspirin is added to the sodium alginate suspension in the butanol in the presence of the preparation E472c as a superficially active substance, at a mass ratio shell: nucleus is 1:5 or 3:1, or 1:1, respectively. Then mix and add butylchloride. Obtained suspension of nanocapsules is filtered, washed and dried.
EFFECT: invention provides a simpler and faster process of producing nanocapsules, reduces losses during production thereof (high mass output).
1 cl, 1 dwg, 4 ex

Description

Изобретение относится к области нанотехнологии, медицины и фармацевтике.The invention relates to the field of nanotechnology, medicine and pharmaceuticals.

Ранее были известны способы получения микрокапсул.Previously known methods for producing microcapsules.

В пат. №2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.In US Pat. No. 2173140, IPC A61K 009/50, A61K 009/127, Russian Federation, published September 10, 2001. A method for producing silicon organolipid microcapsules using a rotary-cavitation unit with high shear forces and powerful sonar acoustic and ultrasonic dispersion ranges is proposed.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхожденияThe disadvantage of this method is the use of special equipment - a rotary cavitation unit, which has an ultrasonic effect, which affects the formation of microcapsules and can cause adverse reactions due to the fact that ultrasound destructively affects polymers of a protein nature, therefore, the proposed method is applicable when work with polymers of synthetic origin

В пат. №2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.In US Pat. No. 2359662 IPC A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, published June 27, 2009. The Russian Federation proposes a method for producing microcapsules of sodium chloride using spray cooling in a Niro spray cooling tower under the following conditions: air temperature at the inlet 10 ° C, outlet air temperature 28 ° C, the rotation speed of the spray drum 10,000 rpm. The microcapsules of the invention have improved stability and provide controlled and / or prolonged release of the active ingredient.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).The disadvantages of the proposed method are the duration of the process and the use of special equipment, a set of certain conditions (air temperature at the inlet 10 ° C, air temperature at the outlet 28 ° C, rotation speed of the spray drum 10,000 rpm).

Наиболее близким методом является способ, предложенный в пат. №2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.The closest method is the method proposed in US Pat. No. 21394967, IPC A01N 53/00, A01N 25/28, published August 27, 1999, Russian Federation (1999). A solution of a mixture of natural lipids and a pyrethroid insecticide in a weight ratio of 2-4: 1 in an organic solvent is dispersed in water, which simplifies the microencapsulation method.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.The disadvantage of this method is dispersion in an aqueous medium, which makes the proposed method inapplicable for producing microcapsules of water-soluble preparations in water-soluble polymers.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).The technical task is to simplify and accelerate the process of obtaining nanocapsules, reduce losses in obtaining nanocapsules (increase in yield by mass).

Решение технической задачи достигается способом получения нанокапсул, отличающимся тем, что в качестве оболочки нанокапсул используется альгинат натрия, а в качестве ядра - аспирин при получении нанокапсул методом осаждения нерастворителем с применением бутилхлорида в качестве осадителя, процесс получения нанокапсул осуществляется без специального оборудования.The solution of the technical problem is achieved by the method of producing nanocapsules, characterized in that sodium alginate is used as the shell of the nanocapsules, and aspirin is used as the core when nanocapsules are prepared by the non-solvent precipitation method using butyl chloride as a precipitant, the process of producing nanocapsules is carried out without special equipment.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием бутилхлорида в качестве осадителя, а также использование альгината натрия в качестве оболочки частиц и аспирин - в качестве ядра.A distinctive feature of the proposed method is the preparation of nanocapsules by non-solvent precipitation using butyl chloride as a precipitant, as well as the use of sodium alginate as a particle shell and aspirin as a core.

Результатом предлагаемого метода является получение нанокапсул аспирина.The result of the proposed method is to obtain aspirin nanocapsules.

ПРИМЕР 1. Получение нанокапсул аспирина в альгинате натрия соотношение оболочка:ядро 1:5EXAMPLE 1. Obtaining nanocapsules of aspirin in sodium alginate, the ratio of the shell: core 1: 5

5 г аспирина медленно по порциям добавляют в суспензию альгината натрия в бутаноле, содержащий указанного 1 г полимера в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) при перемешивании 1000 об/сек. Далее приливают 5 мл бутилхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.5 g of aspirin is slowly added in portions to a suspension of sodium alginate in butanol containing 1 g of the polymer in the presence of 0.01 g of the preparation E472c (glycerol ester with one or two molecules of food fatty acids and one or two molecules of citric acid, with citric acid as tribasic can be esterified with other glycerides and as oxoacid with other fatty acids. Free acid groups can be neutralized with sodium) with stirring 1000 r / sec. Next, 5 ml of butyl chloride are added. The resulting suspension is filtered and dried at room temperature.

Получено 6 г порошка нанокапсул. Выход составил 100%.Received 6 g of nanocapsule powder. The yield was 100%.

ПРИМЕР 2. Получение нанокапсул аспирина в альгинате натрия соотношение оболочка:ядро 3:1EXAMPLE 2. Obtaining aspirin nanocapsules in sodium alginate, shell: core ratio 3: 1

1 г аспирина медленно по порциям добавляют в суспензию альгината натрия в бутаноле, содержащий указанного 3 г полимера в присутствии 0,01 г препарата Е472с при перемешивании 1000 об/сек. Далее приливают 3 мл бутилхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.1 g of aspirin is slowly added portionwise to a suspension of sodium alginate in butanol containing the indicated 3 g of polymer in the presence of 0.01 g of the preparation E472c with stirring at 1000 rpm. Then 3 ml of butyl chloride are added. The resulting suspension is filtered and dried at room temperature.

Получено 4 г порошка нанокапсул. Выход составил 100%.Received 4 g of nanocapsule powder. The yield was 100%.

ПРИМЕР 3. Получение нанокапсул аспирина в альгинате натрия соотношение оболочка:ядро 1:1EXAMPLE 3. Obtaining nanocapsules of aspirin in sodium alginate, the ratio of the shell: core 1: 1

1 г аспирина медленно по порциям добавляют в суспензию альгината натрия в бутаноле, содержащий указанного 1 г полимера в присутствии 0,01 г препарата Е472с при перемешивании 1000 об/сек. Далее приливают 2 мл бутилхлорида. Полученную суспензию отфильтровывают и сушат при комнатной температуре.1 g of aspirin is slowly added in portions to a suspension of sodium alginate in butanol containing the indicated 1 g of polymer in the presence of 0.01 g of the preparation E472c with stirring at 1000 rpm. Next, 2 ml of butyl chloride are added. The resulting suspension is filtered and dried at room temperature.

Получено 2 г порошка нанокапсул. Выход составил 100%.Received 2 g of nanocapsule powder. The yield was 100%.

ПРИМЕР 4. Определение размеров нанокапсул методом NTAEXAMPLE 4. Determination of the size of nanocapsules by NTA

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.The measurements were carried out on a Nanosight LM0 multiparameter nanoparticle analyzer manufactured by Nanosight Ltd (Great Britain) in the HS-BF configuration (Andor Luca high-sensitivity video camera, 405 nm semiconductor laser with a power of 45 mW). The device is based on the Nanoparticle Tracking Analysis (NTA) method described in ASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length:Auto, Min Expected Size:Auto. длительность единичного измерения 215s, использование шприцевого насоса.The optimal dilution for dilution was 1: 100. For the measurement, the device parameters were selected: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto. duration of a single measurement of 215s, the use of a syringe pump.

Claims (1)

Способ получения нанокапсул аспирина в альгинате натрия, заключающийся в том, что в качестве оболочки нанокапсул используется альгинат натрия, а в качестве ядра - аспирин, при массовом соотношении оболочка:ядро 1:5, или 3:1, или 1:1, соответственно, при этом аспирин добавляют в суспензию альгината натрия в бутаноле в присутствии препарата Е472с при перемешивании 1000 об/сек, затем добавляют бутилхлорид, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре.A method of producing aspirin nanocapsules in sodium alginate, which consists in the use of sodium alginate as a shell of nanocapsules, and aspirin as a core, with a shell: core mass ratio of 1: 5, or 3: 1, or 1: 1, respectively while aspirin is added to a suspension of sodium alginate in butanol in the presence of E472c with stirring at 1000 rpm, then butyl chloride is added, the resulting suspension of nanocapsules is filtered off and dried at room temperature.
RU2014140358A 2014-10-06 2014-10-06 Method of producing aspirin nanocapsules in sodium alginate RU2619329C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014140358A RU2619329C2 (en) 2014-10-06 2014-10-06 Method of producing aspirin nanocapsules in sodium alginate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014140358A RU2619329C2 (en) 2014-10-06 2014-10-06 Method of producing aspirin nanocapsules in sodium alginate

Publications (2)

Publication Number Publication Date
RU2014140358A RU2014140358A (en) 2016-04-27
RU2619329C2 true RU2619329C2 (en) 2017-05-15

Family

ID=55759305

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014140358A RU2619329C2 (en) 2014-10-06 2014-10-06 Method of producing aspirin nanocapsules in sodium alginate

Country Status (1)

Country Link
RU (1) RU2619329C2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU676316A1 (en) * 1978-03-24 1979-07-30 Киевский Ордена Ленина Государственный Университет Им.Т.Г.Шевченко Method of making microcapsules
SU707510A3 (en) * 1975-10-30 1979-12-30 Стауффер Кемикал Компани (Фирма) Microcapsule producing method
WO1987001587A1 (en) * 1985-09-17 1987-03-26 Biocompatibles Limited Microcapsules
RU2098121C1 (en) * 1990-02-13 1997-12-10 Такеда Кемикал Индастриз, Лтд. Microcapsule for prolonged release of physiologically active peptide
RU2134967C1 (en) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Method of preparing microcapsulated preparations containing pyrethroid insecticides

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU707510A3 (en) * 1975-10-30 1979-12-30 Стауффер Кемикал Компани (Фирма) Microcapsule producing method
SU676316A1 (en) * 1978-03-24 1979-07-30 Киевский Ордена Ленина Государственный Университет Им.Т.Г.Шевченко Method of making microcapsules
WO1987001587A1 (en) * 1985-09-17 1987-03-26 Biocompatibles Limited Microcapsules
RU2098121C1 (en) * 1990-02-13 1997-12-10 Такеда Кемикал Индастриз, Лтд. Microcapsule for prolonged release of physiologically active peptide
RU2134967C1 (en) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Method of preparing microcapsulated preparations containing pyrethroid insecticides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
СОЛОДОВНИК В. Д. "Микрокапсулирование",-М.:Химия, 1980.-216стр., стр.136-139. *

Also Published As

Publication number Publication date
RU2014140358A (en) 2016-04-27

Similar Documents

Publication Publication Date Title
RU2557900C1 (en) Method of production of nanocapsules of vitamins
RU2562561C1 (en) Method of obtaining nanocapsules of vitamins in carrageenan
RU2648816C2 (en) Method of preparation of spirulina nanocapules in sodium alginate
RU2613883C1 (en) Process of getting rosemary nanocapsules in sodium alginate
RU2590666C1 (en) Method of producing nano capsules of medicinal plants having immunostimulating effect
RU2591798C1 (en) Method of producing nano-capsules of adaptogenes in konjac gum
RU2642230C1 (en) Method of producing nanocapsules of dihydroquercetin in carrageenan
RU2625501C2 (en) Method for obtaining nanocapules of rosehip dry extract
RU2599009C1 (en) Method of producing of nanocapsules of medicinal plants with sedative effect in konjac gum
RU2578411C1 (en) Method of producing nanocapsules of riboflavin
RU2607589C2 (en) Method of producing nanocapsules of amino acids in konjac gum
RU2565392C1 (en) Method of producing of nanocapsules of vitamins b in xanthane gum
RU2569734C2 (en) Method of producing nanocapsules of resveratrol in sodium alginate
RU2624530C1 (en) Method for producing unabi nanocapsules in gellan gum
RU2627585C1 (en) Method of producing nanocapule of dry extract of briar in agar-agar
RU2616502C1 (en) Method for obtaining nanocapsul of unabi in the konjak gum
RU2609739C1 (en) Method for producing resveratrol nanocapsules in gellan gum
RU2642054C2 (en) Method of producing medicinal plants nanocapsules with cardiotonic effect
RU2613881C1 (en) Method for producing dry rosehip extract nanocapsules
RU2605847C2 (en) Method of producing nanocapsules of rosuvastatin in konjac gum
RU2573502C1 (en) Method of production of nanocapsules of resveratrol in sodium alginate
RU2599843C1 (en) Method of producing nanocapsules of green tea extract in pectin
RU2573978C1 (en) Method for obtaining nanocapsules of quercetin or dihydroquercetin in gellan gum
RU2579608C1 (en) Method of producing nanocapsules of l-arginine and norvaline in sodium alginate
RU2558079C1 (en) Method of producing resveratrol nanocapsules in pectin

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171007