RU2619173C1 - Трансгенное растение березы с ранним цветением - Google Patents

Трансгенное растение березы с ранним цветением Download PDF

Info

Publication number
RU2619173C1
RU2619173C1 RU2015147712A RU2015147712A RU2619173C1 RU 2619173 C1 RU2619173 C1 RU 2619173C1 RU 2015147712 A RU2015147712 A RU 2015147712A RU 2015147712 A RU2015147712 A RU 2015147712A RU 2619173 C1 RU2619173 C1 RU 2619173C1
Authority
RU
Russia
Prior art keywords
transgenic
birch
plant
plants
nucleic acid
Prior art date
Application number
RU2015147712A
Other languages
English (en)
Inventor
Вадим Георгиевич Лебедев
Константин Александрович Шестибратов
Original Assignee
Федеральное государственное бюджетное учреждение науки институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук (ИБХ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук (ИБХ РАН) filed Critical Федеральное государственное бюджетное учреждение науки институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук (ИБХ РАН)
Priority to RU2015147712A priority Critical patent/RU2619173C1/ru
Application granted granted Critical
Publication of RU2619173C1 publication Critical patent/RU2619173C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

Изобретение относится к области биохимии, в частности к трансгенному растению березы со способностью раннего цветения в срок до шести лет включительно с момента высадки из условий in vitro в нестерильные или посадки различных частей растения в условия защищенного или открытого грунта по сравнению с аналогом дикого типа, содержащему нуклеиновую кислоту, кодирующую глутаминсинтетазу. Изобретение позволяет эффективно получать трансгенное растение березы со способностью раннего цветения. 2 н. и 3 з.п. ф-лы, 4 ил., 7 пр.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к области генной инженерии растений и связано с получением трансгенных растений березы, обладающих ранним цветением. Результаты данного изобретения могут быть использованы в лесной генетике и селекции.
Уровень техники
Главная цель лесной генетики и селекции заключается в повышении продуктивности лесных древесных пород и выращивании устойчивых насаждений с высокими качествами древесины путем получения и размножения таких экземпляров деревьев, которые превосходили бы остальные по ряду хозяйственно-ценных признаков. Селекция древесных растений использует те же методы, что и селекция сельскохозяйственных культур, но имеет свои особенности. Она базируется в основном на использовании метода отбора среди дикорастущих деревьев и лишь в незначительной степени на специально выведенных гибридах. Это сильно ограничивает большой потенциал лесной селекции, так как именно скрещивание между отобранными индивидуумами важно для появления жизнеспособной и разнообразной популяции растений, а также новых комбинаций признаков и элитных генотипов. Причина такого положения дел заключается в длительном ювенильном периоде у древесных растений, в течение которого они не способны образовывать цветки и плоды. У лесных древесных пород ювенильная фаза в целом продолжается 10-20 лет (Longman K.A. Some experimental approaches to the problem of phase change in forest trees. Acta Hort. 1976. 56:81-90). В течение всего этого времени они невосприимчивы к факторам окружающей среды или внутренним сигналам, которые индуцируют цветение у взрослых деревьев. В этот период использование методов гибридизации невозможно. В результате селекция деревьев по сравнению с селекцией однолетних растений намного более длительна, из-за больших размеров деревьев требует значительных площадей, специального оборудования и, в конечном итоге, намного более затратна и менее продуктивна. Выходом из сложившегося положения могло бы стать укорачивание ювенильной фазы древесных растений путем ускорения цветения.
Для более раннего цветения древесных растений в последние десятилетия был разработан ряд самых разнообразных методов. Они включают агротехнические приемы - подрезку корней, кольцевание стволов, отгибание ветвей, прививки на специальные подвои; химические методы - обработку регуляторами роста (паклобутразол и др.); изменение физических условий выращивания - фотопериода, температуры, влажности; отбор природных раноцветущих генотипов. Однако выяснилось, что с помощью подобных подходов цветение можно ускорить у ряда плодовых культур, но многие лесные породы этому не поддаются (Chalupka W., Cecich R.A. Control of the first flowering in forest trees. Scand. J. For. Res. 1997. 12:102-111). Наконец, в последние годы для ускорения цветения стали использовать метод генетической трансформации растений.
Береза очень широко распространена в России, занимая до 2/3 площади всех лиственных лесов страны. Древесина березы находит самое разнообразное применение (производство фанеры, стройматериалов, мебели, паркета, высококачественной целлюлозы, бочек для пищевых продуктов и др.). Древесина карельской березы из-за оригинального рисунка очень высоко ценится и используется как декоративный материал. Известно также большое число декоративных форм березы, отличающихся окраской листьев и коры, формой листьев и кроны, которые широко используются в озеленении. В связи с большим экономическим значением этой породы она является одним из основных объектов лесной селекции среди лиственных видов, но имеет ту же особенность, присущую всем древесным видам - длительный ювенильный период. В природе растения березы зацветают в возрасте 10-15 лет (Perala D.A., Aim A.A. Reproductive ecology of birch: a review. For. Ecol. Manag. 1990. 32:1-38). Для ускорения цветения березы был использован метод генетической трансформации. Например, сообщалось о переносе в растения березы гена BpMADS4 из семейства MADS-генов, регулирующих программы развития (Elo A., Lemmetyinen J., Novak A., Keinonen K., Porali I., Hassinen M, Sopanen T. BpMADS4 has a central role in inflorescence initiation in silver birch (Betula pendula). Physiol. Plant. 2007. 131:149-158). У трансгенных растений цветение было значительно ускорено, вплоть до цветения растений размером 3 см, но у всех раноцветущих линий наблюдались фенотипические отклонения - в частности, сильная разветвленность и короткие междоузлия. В другой работе в растения березы переносили ген BpAP1, играющий важную роль в регуляции развитии цветка (Huang Н., Wang S., Jiang J., Liu G., Li H., Chen S., Xu H.. Overexpression of BpAP1 induces early flowering and produces dwarfism in Betula platyphylla × Betula pendula. Physiol. Plant. 2014. 151:495-506). Трансгенные растения зацвели через 2 месяца после посадки, но их высота была на 41% ниже, чем у контроля, у соцветий было снижено соотношение длина : диаметр, а у мужских соцветий были пустые пыльники и продуцировалось мало пыльцы. По-видимому, встраивание генов, отвечающих за регуляцию развития цветка или времени цветения, вызывает также нарушение других процессов в растениях, что приводит к возникновению отклонений как в вегетативных, так и в генеративных органах.
Фермент глутаминсинтетаза (GS) играет центральную роль в метаболизме азота у растений, катализируя превращение аммония в глутамин, который является аминокислотным предшественником глутамата и всех азотсодержащих компонентов, необходимых для роста растения. Встраивание гена этого фермента используется для повышения продуктивности растений, в том числе и древесных (Gallardo F., Fu J., Cantorn F.R., Garcia-Gutierrez A., Canovas F.M., Kirby E.G. Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta. 1999. 210:19-26), так как доступность неорганического азота в почве зачастую является лимитирующим фактором роста и развития растений. Однако, насколько нам известно, использование этого гена для ускорения цветения растений ранее не проводилось.
Раскрытие изобретения
Задачей настоящего изобретения было получение трансгенной березы, отличающейся ускоренным цветением, на основе различных генотипов Betula pubescens.
Используемый в настоящем описании термин «растение» охватывает целые растения, предшественники и потомство растений и части растений, включая семена, побеги, стебли, листья, корни, цветки и ткани и органы, причем все они содержат нуклеотидную последовательность с SEQ ID NO: 1. Термин «растение» также охватывает клетки растений, суспензионные культуры, каллусную ткань, зародыши, меристемы, гаметофиты, спорофиты, пыльцу и микроспоры, причем все они, опять же, содержат нуклеотидную последовательность с SEQ ID NO: 1.
Учитывая то, что большинство древесных растений, в том числе и береза, являются труднотрансформируемыми и труднорегенерируемыми, а также то, что даже при условии осуществления акта трансформации вероятность регенерации из трансформированной клетки экспланта целого трансгенного растения, в котором уровень экспрессии встроенного гена достаточен для проявления соответствующего фенотипического признака, а экспрессия эндогенных генов растения не нарушена, весьма мала, получение положительного результата при решении поставленной задачи не являлось очевидным фактом.
В качестве трансформирующего агента при получении трансгенной березы по изобретению использовали бинарный вектор pGS, включающий нуклеотидную последовательность глутаминсинтетазы. Структура вектора представлена на фиг. 1.
Настоящее изобретение относится к растению березы с ранним цветением, где указанное растение березы трансформировано молекулой нуклеиновой кислоты, которая кодирует глутаминсинтетазу.
Молекула нуклеиновой кислоты может представлять собой кДНК, РНК или их гибридную молекулу. Предпочтительно молекулой нуклеиновой кислоты является молекула кДНК, кодирующая глутаминсинтетазу. Наиболее предпочтительно молекула кДНК имеет нуклеотидную последовательность, представленную в SEQ ID NO: 1.
Молекулу нуклеиновой кислоты глутаминсинтетазы можно выделить из любого вида растений. Предпочтительно растение представляет собой Pinus sylvestris.
Растение березы, трансформированное молекулой нуклеиновой кислоты глутаминсинтетазы, может представлять любой вид березы из рода Betula. Предпочтительно растение березы выбрано из группы, состоящей из B. pubescens, B. pendula, B. pendula var. carelica, В. nigra, B. ermanii и B. schmidtii.
Настоящее изобретение относится к трансгенному растению березы, содержащему молекулу нуклеиновой кислоты, кодирующей глутаминсинтетазу, где экспрессия данной молекулы приводит к получению трансгенного растения, которое демонстрирует способность к цветению в более раннем возрасте по сравнению с аналогом дикого типа.
Настоящее изобретение также относится к способу получения трансгенного растения березы с повышенной продуктивностью, где способ включает стадии:
а) агробактериальной трансформации эксплантов березы in vitro молекулой нуклеиновой кислоты, кодирующей глутаминсинтетазу;
б) регенерации целых растений из трансформированных клеток эксплантов;
в) идентификации молекулы нуклеиновой кислоты, кодирующей глутаминсинтетазу, в регенерированных растениях или их потомстве;
г) размножение, укоренение и акклиматизацию трансгенных растений;
д) культивирование трансгенных растений в условиях защищенного или открытого грунта;
е) отбор растений с ранним цветением по сравнению с аналогом дикого типа, который не содержит молекулу нуклеиновой кислоты, кодирующую глутаминсинтетазу.
Полученные таким образом трансгенные растения не имели каких-либо фенотипических отклонений от исходного генотипа.
В еще одном варианте осуществления способ дополнительно включает стадию трансформации растения березы с нуклеотидной последовательностью, кодирующей селективный или репортерный ген, который функционально связан с молекулой нуклеиновой кислоты, кодирующей глутаминсинтетазу, посредством чего облегчается отбор трансгенного растения березы среди регенерированных растений.
Краткое описание чертежей
Фиг. 1 - схема основных генетических элементов трансформационного вектора pGS.
Фиг. 2 - результат проведения ПЦР на фрагмент гена глутаминсинтетазы на геномной ДНК березы.
Фиг. 3 - культивирование трансгенных растений березы в условиях открытого грунта.
Фиг. 4 - раннее цветение у трансгенного растения березы с геном глутаминсинтетазы (возраст три года).
Осуществление изобретения
Пример 1. Подготовка штамма бактерий A. tumefaciens СВЕ21 (рСВЕ21, pGS) для трансформации растений
Для трансформации растений используют ночную культуру бактерий A. tumefaciens. Для этого 100 мкл суспензии клеток бактерий A. tumefaciens СВЕ21 (рСВЕ21, pGS) добавляют к 50 мл жидкой среды LB, содержащей 50 мг/л канамицина и инкубируют в течение ночи на термостатируемом орбитальном шейкере при 28°С и 120-150 об/мин, после чего центрифугируют полученную суспензию 5 минут при 4000 об/мин, осадок промывают жидкой средой MS и повторяют центрифугирование и промывание. После осаждения клеток их заливают 50 мл жидкой среды MS и ресуспендируют.
Пример 2. Подготовка растительного материала березы in vitro для трансформации
Для трансформации растений березы используют листовые экспланты с растений in vitro. Размножение культуры березы проводят на питательной среде WPM, содержащей 0,6 мг/л БАП, 0,1 мг/л ИМК, 20 г/л сахарозы и 7 г/л агара. Растения выращивают при фотопериоде 16/8 часов, температуре 22-24°С и освещенности 3000-3500 люкс.
Пример 3. Трансформация растений березы клетками бактерий A. tumefaciens СВЕ21 (pCBE21, pGS)
Для трансформации используют листья с растений in vitro возрастом 1 месяц. У листьев удаляют черешки и верхушки (у крупных листьев - также и боковые стороны) и наносят несколько надрезов перпендикулярно центральной жилке, не доводя их до краев листа. Подготовленные таким образом экспланты помещают на 40-50 минут в суспензию агробактерий, после чего осушают стерильными фильтрами и размещают на фильтрах, расположенных в чашках Петри на поверхности среды для кокультивации, содержащей минеральные соли MS, 5 мг/л зеатина, 5 мг/л БАП, 0,2 мг/л ИМК, 30 г/л сахарозы и 7 г/л агара. В каждую чашку помещают по 10-15 эксплантов. Кокультивацию проводят в течение 3 суток.
Пример 4. Регенерация растений березы из трансформированных эксплантов
После периода кокультивации экспланты промывают в дистиллированной воде с добавлением 1 г/л цефотаксима в течение 20-30 минут и затем дважды в воде без цефотаксима. Отмытые экспланты подсушивают на фильтрах и переносят на среду для регенерации и селекции трансформантов того же состава, как и среда для кокультивации, содержащую дополнительно 50 мг/л канамицина и 500 мг/л цефотаксима. На этой среде экспланты выдерживают в условиях 16-часового светового дня при 22-23°С с пересадкой каждые 4 недели. Регенерированные побеги пересаживают на среду для размножения, содержащую 50 мг/л канамицина и 250 мг/л цефотаксима.
Пример 5. Идентификация фрагмента последовательности гена глутамин синтетазы в регенерантах березы методом ПЦР
Присутствие гена GS в трансгенных растениях березы подтверждают методом ПЦР с праймерами GS1 (SEQ ID NO: 2) и GS2 (SEQ ID NO: 3), специфичными для кодирующей области трансгенной конструкции.
Геномную ДНК из растений березы выделяют по методу Rogers and Bendich (1994, in: Gelvin SB, Schilperoort RA (eds) Plant Molecular Biology Manual. Boston, MA: Kluwer Academic Publishers, D 1: 1-8). Для выделения используют листья растений in vitro (около 100 мг). Полученную растительную ДНК используют в качестве матрицы в ПЦР-анализах. Реакционная смесь содержит 67 мМ Tris-HCl, рН 9.0, 16 мМ (NH4)2SO4, 2 мМ MgCl2, 0,01% желатина, по 0,2 мМ каждого dNTP, 0,6 мкМ конечной концентрации каждого праймера и 0,2 единицы/мкл Taq полимеразы. Реакцию проводят в объеме 25 мкл при следующих условиях: 92°С - 3 мин; 35 циклов: 92°С - 20 сек, 62°С - 10 сек, 72°С - 1 мин, затем 72°С - 5 мин.
Продукты ПЦР анализируют в 1,8% агарозном геле с добавлением бромистого этидия. Гель фотографируют в ультрафиолете при длине волны 260-280 нм. Появление продукта ПЦР (ДНК размером 1190 н.п.) при использовании указанных праймеров, а также при условии отсутствия его в реакциях, поставленных на контрольной ДНК, свидетельствует о присутствии искомого гена в ДНК исследуемых растений (Фиг. 2).
Пример 6. Культивирование трансгенных растений березы с геном глутаминсинтетазы
Укорененные в условиях in vitro растения березы (линии, по итогам ПЦР содержащие ген глутаминсинтетазы и нетрансформированный контроль) высаживают в теплицу в пластиковые кассеты. В качестве субстрата используют смесь торфа и перлита (3:1). На период акклиматизации растения накрывают полиэтиленовой пленкой, которую снимают через один месяц. Акклиматизированные растения пересаживают в пластиковые сосуды с субстратом того же состава и культивируют в условиях защищенного или открытого грунта (Фиг. 3).
Пример 7. Отбор трансгенных растений березы с ранним цветением
Отбор трансгенных растений с ранним цветением осуществляется по признаку появления соцветий в срок до шести лет включительно с момента высадки из условий in vitro в нестерильные условия или посадки различных частей растения в условия защищенного или открытого грунта (Фиг. 4).

Claims (5)

1. Трансгенное растение березы со способностью раннего цветения в срок до шести лет включительно с момента высадки из условий in vitro в нестерильные или посадки различных частей растения в условия защищенного или открытого грунта по сравнению с аналогом дикого типа, содержащее нуклеиновую кислоту, кодирующую глутаминсинтетазу с SEQ ID NO: 1.
2. Трансгенное растение по п. 1, где молекула нуклеиновой кислоты представляет собой молекулу кДНК, выделенную из сосны обыкновенной (Pinus sylvestris L.), имеющую нуклеотидную последовательность, представленную в SEQ ID NO: 1.
3. Трансгенное растение по п. 1, где береза является представителем видов Betula pubescens Ehrh., B. pendula Roth, B. pendula Roth var. carelica, B. nigra L., B. ermanii Cham. и B. schmidtii Regel.
4. Трансгенное растение по п. 1, которое демонстрирует раннее цветение в срок до шести лет включительно с момента высадки из условий in vitro в нестерильные условия или посадки различных частей растения в условия защищенного или открытого грунта.
5. Способ получения трансгенного растения березы по п. 1, включающий: агробактериальную трансформацию эксплантов березы in vitro молекулой нуклеиновой кислоты, кодирующей глутаминсинтетазу с SEQ ID NO: 1; регенерацию растений из трансформированных клеток эксплантов; идентификацию молекулы нуклеиновой кислоты, кодирующей глутаминсинтетазу с SEQ ID NO: 1, в регенерированных растениях; размножение, укоренение и акклиматизацию трансгенных растений, в которых была идентифицирована молекула нуклеиновой кислоты, кодирующая глутаминсинтетазу с SEQ ID NO: 1; культивирование трансгенных растений, в которых была идентифицирована молекула нуклеиновой кислоты, кодирующая глутаминсинтетазу с SEQ ID NO: 1, в условиях защищенного или открытого грунта; отбор растений с ранним цветением в срок до 6 лет.
RU2015147712A 2015-11-06 2015-11-06 Трансгенное растение березы с ранним цветением RU2619173C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015147712A RU2619173C1 (ru) 2015-11-06 2015-11-06 Трансгенное растение березы с ранним цветением

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015147712A RU2619173C1 (ru) 2015-11-06 2015-11-06 Трансгенное растение березы с ранним цветением

Publications (1)

Publication Number Publication Date
RU2619173C1 true RU2619173C1 (ru) 2017-05-12

Family

ID=58715974

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015147712A RU2619173C1 (ru) 2015-11-06 2015-11-06 Трансгенное растение березы с ранним цветением

Country Status (1)

Country Link
RU (1) RU2619173C1 (ru)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2356226C2 (ru) * 2003-04-22 2009-05-27 Иэмди Кроп Байосайенс Кэнада Инк. Применение липохитоолигосахаридов для инициирования раннего цветения и развития плодов у растений

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2356226C2 (ru) * 2003-04-22 2009-05-27 Иэмди Кроп Байосайенс Кэнада Инк. Применение липохитоолигосахаридов для инициирования раннего цветения и развития плодов у растений

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUANG Н. et al., Overexpression of BpAP1 induces early flowering and produces dwarfism in Betula platyphylla x Betula pendula, Physiol. Plant, 2014, Vol. 151, N 4, pp.495-506. ELO A.et al., BpMADS4 has a central role in inflorescence initiation in silver birch (Betula pendula), Physiol. Plant, 2007, Vol. 131, N 1, pp.149-158. GALLARDO F. et al., Expression of a conifer glutamine synthetase gene in transgenic poplar, Planta, 1999, Vol. 210, N.1. pp.19-26. *

Similar Documents

Publication Publication Date Title
de Assis et al. Current techniques and prospects for the clonal propagation of hardwoods with emphasis on Eucalyptus
Ravi et al. Molecular regulation of storage root formation and development in sweet potato
Zakizadeh et al. Transformation of miniature potted rose (Rosa hybrida cv. Linda) with P SAG12-ipt gene delays leaf senescence and enhances resistance to exogenous ethylene
AU2016371385B2 (en) Compositions and methods for manipulating the development of plants
JP2000510325A (ja) 植物性材料の繁殖および/または選択方法
Kaur et al. Efficient production of transgenic tomatoes via Agrobacterium-mediated transformation
JP2019532643A (ja) コンディショニングの必要なしでの低地でのイチゴプラグ苗の生育
Malabadi et al. Thin cell layers: Application to forestry biotechnology
CN109880830B (zh) 桃多肽激素合成基因PpRGF1及其应用
KR100860199B1 (ko) MADS―Box 유전자를 이용한 수형이 변형된과수작물의 제조
RU2619173C1 (ru) Трансгенное растение березы с ранним цветением
CN114990137A (zh) 拟南芥钙结合蛋白基因AtCAREF及应用
CN104152424B (zh) ZmHINT基因在促进植物免疫反应中的应用
CN113264992B (zh) 一种梨形番茄材料的制备方法
Cruz-Hernandez et al. Enhancement of economical value of nopal and its fruits through biotechnology
Altman et al. Introduction: Horticultural biotechnology: A historical perspective and future prospects
KR100447920B1 (ko) 오이 형질전환체의 제조방법 및 형질전환 오이
RU2593721C2 (ru) Трансгенное растение березы с повышенной продуктивностью
Rihan Plant tissue culture and artificial seed production techniques for cauliflower and their use to study molecular analysis of abiotic stress tolerance
Metwali et al. Effectiveness of tissue culture media components on the growth and development of cauliflower (Brassica oleracea var. Botrytis) seedling explants in vitro
CN104945493B (zh) 一种影响植物生育期的大豆蛋白GmIDD及其编码基因与应用
CN113968899B (zh) 一种长果番茄材料的制备方法
Hakeem The global floriculture industry: shifting directions, new trends, and future prospects
KR100496028B1 (ko) 제초제 저항성 고추 식물체의 제조방법
CN104098661B (zh) 与水稻耐逆性及水稻叶绿素含量相关的蛋白及其编码基因和应用