RU2618785C2 - Тангенциальная и беспламенная кольцевая камера сгорания для использования в газотурбинных двигателях - Google Patents
Тангенциальная и беспламенная кольцевая камера сгорания для использования в газотурбинных двигателях Download PDFInfo
- Publication number
- RU2618785C2 RU2618785C2 RU2014110630A RU2014110630A RU2618785C2 RU 2618785 C2 RU2618785 C2 RU 2618785C2 RU 2014110630 A RU2014110630 A RU 2014110630A RU 2014110630 A RU2014110630 A RU 2014110630A RU 2618785 C2 RU2618785 C2 RU 2618785C2
- Authority
- RU
- Russia
- Prior art keywords
- nozzles
- combustion chamber
- fuel
- air
- front wall
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
- F23R3/425—Combustion chambers comprising a tangential or helicoidal arrangement of the flame tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
- F23R3/58—Cyclone or vortex type combustion chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00002—Gas turbine combustors adapted for fuels having low heating value [LHV]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/02—Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
- F23R3/04—Air inlet arrangements
- F23R3/06—Arrangement of apertures along the flame tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
- F23R3/46—Combustion chambers comprising an annular arrangement of several essentially tubular flame tubes within a common annular casing or within individual casings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/34—Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
- Y02T50/678—Aviation using fuels of non-fossil origin
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Способ впрыска вступающих в реакцию горения веществ в камеру сгорания газотурбинного двигателя осуществляют в камере сгорания, содержащей наружную оболочку, перфорированную переднюю стенку, кольцевое отверстие, первые и вторые форсунки, осуществляют в следующей последовательности. Впрыскивают предварительно смешанную топливовоздушную смесь в кольцевой объем камеры сгорания через первые, распределенные по окружности форсунки, находящиеся в первой плоскости, в направлении, образующем угол с касательной к наружной оболочке, формируя поле течения через кольцевой объем, вращающееся вокруг осевой линии камеры сгорания. Указанное поле течения проходит через кольцевой объем в направлении от перфорированной передней стенки к кольцевому отверстию. Впрыскивают только топливо в указанное поле течения через вторые распределенные по окружности форсунки, находящиеся во второй плоскости в направлении, образующем угол с касательной к наружной оболочке. Вводят выходящий из компрессора воздух через перфорированную переднюю стенку в указанное поле течения. Такое осуществление способа впрыска вступающих в реакцию горения веществ в камеру сгорания, обеспечивает создание ступенчатого топливовоздушного эффекта для улучшения горения и снижения выбросов NOx и СО, оптимальное смешивание топлива и воздуха, а также создает такие условия сгорания, которые сокращают количество выбросов загрязняющих веществ, тем самым уменьшая необходимость в дорогостоящих устройствах контроля выбросов, а также улучшает зажигание и повышает стабильность пламени, сокращает проблемы управления и уменьшает вибрацию. 7 ил.
Description
Область техники, к которой относится изобретение
Настоящее изобретение относится к устройствам в газотурбинных двигателях, которые предназначены для содержания и сгорания топливовоздушной смеси. Такие устройства содержат следующие элементы, но не ограничены ими: топливовоздушные форсунки, облицовки и корпуса камеры сгорания, а также участки перехода потока, используемые в воздушных суднах военного и коммерческого назначения, системах генерирования энергии и других областях, связанных с газовыми турбинами.
Уровень техники
Газотурбинные двигатели содержат механизмы, позволяющие извлечь работу газообразных продуктов сгорания, истекающих при очень высоких температурах, давлениях и скоростях. Извлеченная работа может быть использована для приведения в действие генератора с целью выработки энергии или для обеспечения необходимой тяги воздушного судна. Обычный газотурбинный двигатель состоит из многоступенчатого компрессора, в котором атмосферный воздух сжимают до высоких давлений. Сжатый воздух затем смешивают в определенном соотношении топливо/воздух в камере сгорания, в которой происходит увеличение температуры смеси. Газообразные продукты сгорания с высокой температурой и давлением затем расширяются через турбину для извлечения работы таким образом, чтобы обеспечить необходимую тягу или привести в действие генератор в зависимости от области применения. Турбина содержит по меньшей мере одну ступень, причем каждая ступень состоит из ряда лопастей и ряда лопаток. Лопасти распределены по окружности вращающейся ступицы, причем высота каждой лопасти соответствует пути потока горячего газа. Каждая ступень невращающихся лопаток расположена по окружности, которая также проходит перпендикулярно пути течения горячего газа. Изобретение относится к камере сгорания газотурбинных двигателей и компонентам подачи топлива и воздуха в указанное устройство.
Существуют различные типы камер сгорания газотурбинного двигателя: трубчатая, кольцевая и комбинация указанных двух типов, образующая трубчато-кольцевую камеру сгорания. В указанном компоненте сжатая топливовоздушная смесь проходит через топливовоздушные форсунки и вступает в реакцию горения, создавая поток горячего газа, вызывая падение плотности указанной смеси и ее ускорение ниже по потоку. Камера сгорания трубчатого типа обычно содержит отдельные, распределенные по окружности жаровые трубы, вмещающие пламя каждой форсунки по отдельности. Поток из каждой жаровой трубы затем направляют через патрубок и объединяют в кольцевом участке перехода, перед подачей потока к первой ступени лопаток. В камере сгорания кольцевого типа топливовоздушные форсунки обычно распределены по окружности и позволяют ввести смесь в единственную кольцевую полость, в которой происходит сгорание. Поток просто выходит через расположенный ниже по потоку конец кольцевого пространства к первой ступени турбины, при этом нет необходимости в наличии участка перехода. Ключевое отличие камеры сгорания последнего типа, трубчато-кольцевой камеры сгорания, состоит в наличии отдельных жаровых труб, окруженных кольцевым корпусом, содержащим подаваемый в каждую жаровую трубу воздух. Каждый из указанных типов камер имеет свои достоинства и недостатки, в зависимости от условий их применения.
В камерах сгорания газовых турбин обычным для топливовоздушных форсунок является ввод завихрения в смесь, осуществляемый по нескольким причинам. Во-первых, это улучшает смешивание и, следовательно, сгорание, во-вторых, дополнительное завихрение стабилизирует пламя, что предотвращает затухание пламени и позволяет использовать более бедные топливовоздушные смеси для уменьшения количества выбросов. Существуют различные конфигурации топливовоздушных форсунок, например, с одним или множеством кольцевых входов с закручивающими лопатками на каждом.
Что касается других компонентов газовой турбины, то для предотвращения расплавления материалов камеры сгорания необходимо осуществлять охлаждение. Традиционным способом охлаждения камеры сгорания является эффузионное охлаждение, реализуемое путем окружения облицовки камеры сгорания вспомогательной смещенной облицовкой, причем между указанными двумя облицовками, выходящий из компрессора воздух проходит насквозь и входит в проток для горячего воздуха через отверстия разбавления и охлаждающие каналы. Посредством такой технологии отбирают тепло у компонента, а также создают тонкий пограничный слой охлаждающего воздуха между облицовкой и газообразными продуктами сгорания, предотвращая передачу тепла облицовке. Отверстие разбавления выполняют две функции в зависимости от их осевого расположения на облицовке: отверстие разбавления, расположенное ближе к топливовоздушным форсункам, способствует смешиванию газов для улучшения сгорания, а также обеспечивает подачу свежего воздуха для сгорания, во-вторых, отверстие, размещенное ближе к турбине, охлаждает поток горячего газа, и может быть приспособлено для регулирования температурного профиля на выходе из камеры сгорания.
Понятно, что для улучшения сгорания и снижения количества выбросов можно реализовать в конструкциях камер сгорания газотурбинных двигателей множество способов и технологий. Несмотря на то, что наблюдается тенденция к уменьшению образования количества загрязняющих веществ газовыми турбинами по сравнению с другими способами генерирования энергии, все еще существуют возможности для улучшения этих характеристик. В некоторых странах происходит ужесточение государственного регулирования выбросов, и для соответствия новым требованиям технологию необходимо усовершенствовать.
Раскрытие изобретения
Настоящее изобретение обеспечивает новую и усовершенствованную конструкцию камеры сгорания, способной работать в обычном режиме с минимальным количеством выбросов загрязняющих веществ, являющихся результатом сгорания топливовоздушной смеси. Изобретение содержит обычную кольцевую камеру сгорания с воздушными, топливными форсунками и форсунками для предварительно смешанной топливовоздушной смеси и/или отверстиями разбавления, которые вводят в камеру сгорания выходящий из компрессора воздух и сжатое топливо в различных местоположениях в продольном и окружном направлениях. Отличительным признаком изобретения является такое размещение топливных и воздушных входов, которое создает область сгорания вблизи передней стенки. Разделение топливных и воздушных распылительных форсунок вместе с размещением воздушных форсунок ниже по потоку от топливных форсунок улучшает смешивание вступающих в реакцию горения веществ и создает определенную концентрацию кислорода в области сгорания, что позволяет значительно сократить образование NOx. Кроме того, введение выходящего из компрессора воздуха ниже по потоку от области сгорания позволяет сжигать/использовать любое количество CO, образовавшегося во время сгорания, перед подачей газа в первую ступень турбины. По существу камера сгорания согласно изобретению позволяет снизить уровень выбросов газовой турбиной, сокращая тем самым необходимость в устройствах контроля выбросов, а также позволяет минимизировать воздействие на окружающую среду таких устройств. В дополнение к указанному усовершенствованию, тангенциальное направление воспламенения топлива и расположение топливовоздушных форсунок позволяют направить любой фронт пламени на соседнюю горелку, в значительной степени улучшая процесс зажигания в камере сгорания.
Краткое описание чертежей
На чертежах:
фиг. 1 представляет собой двухмерный эскиз, на котором показаны форсунки, прикрепленные к наружной облицовке камеры сгорания и имеющие окружное и радиальное направление в камере сгорания (возможное продольное направление форсунки не показано);
фиг. 2 представляет собой вид сбоку в изометрии примера кольцевой камеры сгорания с предложенным ступенчатым впрыском топлива и воздуха;
фиг. 3 представляет собой вид сбоку в изометрии в разрезе, плоскость которого задана осевой линией и радиусом двигателя;
фиг. 4A представляет собой вид сбоку в изометрии в направлении хвостовой части, на котором показана передняя стенка и перфорированная передняя стенка, которые может содержать настоящее изобретение;
фиг. 4B представляет собой увеличенный вид фиг. 4A;
фиг. 5A представляет собой вид спереди в изометрии примера осуществления камеры сгорания в направлении от хвостовой части вперед, на котором показаны выходные и входные форсунки; и
фиг. 5B представляет собой увеличенный вид фиг. 5A.
Предпочтительные варианты осуществления изобретения
Фиг. 1 иллюстрирует принципиальное устройство кольцевой камеры сгорания с тангенциально направленными топливовоздушными форсунками. Камера сгорания состоит из наружной оболочки (или облицовки) 1, внутренней оболочки (или облицовки) 2, каждая из которых может иметь постоянный или переменный радиус в продольном направлении, и наружной стенки 9, соединяющей внутреннюю и наружную облицовки 1, 2. Как видно на указанной фигуре, пример конструкции изобретения содержит топливные форсунки 3 и форсунки 4 чистого воздуха/предварительно смешанной топливовоздушной смеси, направленные преимущественно в окружном направлении, причем между линией 12, касательной к наружной облицовки, и осевыми линиями 13 форсунок 3, 4 образован угол 14, но в дополнение к указанному направлению может также содержать радиальный или продольный компонент. Указанные различные форсунки 3, 4 могут находиться в общей плоскости, заданной продольным направлением и точкой на осевой линии двигателя, и могут быть равномерно распределены по окружности или иметь другую схему распределения в этом направлении. Указанные различные типы форсунок могут вводить чистое топливо 5, чистый воздух (выходящий из компрессора воздух) 6, или предварительно смешанную топливовоздушную смесь 7 в объем камеры сгорания, образованный указанными внутренней и наружной оболочкой 1, 2 и передней стенкой 9. Вступающие в реакцию вещества, впрыскиваемые топливными и воздушными форсунками 3, 4, сгорают внутри указанной области и создают поле 8 течения через камеру сгорания, которое вращается вокруг осевой линии двигателя.
На фиг. 2 показан пример конструкции изобретения, в котором топливные форсунки 3 размещены выше по потоку (слева) от воздушных форсунок 4 / форсунок 4 предварительно смешанной топливовоздушной смеси. Может быть предусмотрено наличие одной и более топливных форсунок 3 и воздушных форсунок 4, вплоть до их неограниченного количества. Выходящий из компрессора воздух также вводят в объем камеры сгорания через перфорированную переднюю стенку 9, как показано на фиг.3, 4A и 4B. Впрыскивание топлива, около передней стенки вместе с впрыскиванием выходящего из компрессора воздуха ниже по потоку от топливных форсунок 3 обеспечивает требуемое смешивание и ступенчатый топливовоздушный эффект, что, в свою очередь, создает оптимальные условия сгорания и позволяет сократить выбросы NOx и CO из камеры сгорания. В частности, большую часть воздушной смеси, впрыскиваемой через ряд расположенных ниже по потоку форсунок, разбавляют дымовыми газами при ее прохождении/диффундировании выше по потоку в направлении области сгорания с высоким содержанием топлива. Такая разбавленная кислородная смесь уменьшает температуру пламени и обеспечивает возможность удержания низкого уровня выбросов из камеры сгорания. Горячие продукты сгорания затем покидают камеру сгорания через кольцевое отверстие 10, как показано на фиг. 5A и 5B, где они входят на первую ступень газовой турбины.
Настоящее изобретение раскрыто выше со ссылкой на предпочтительный вариант осуществления. Однако специалисту области техники понятно, что могут быть выполнены различные изменения и модификации раскрытого варианта изобретения без отклонения от сущности и объема правовой охраны настоящего изобретения. Различные изменения и модификации варианта осуществления, выбранного в данном документе с целью иллюстрации сущности изобретения, очевидны специалисту области техники. Если такие модификации и вариации не выходят за рамки сущности изобретения, они должны быть включены в объем правовой охраны изобретения.
Изобретение полностью раскрыто в ясных и понятных терминах таким образом, чтобы специалист области техники мог понять и реализовать на практике указанное изобретение. Формула настоящего изобретение приведена ниже.
Claims (9)
- Способ впрыска вступающих в реакцию горения веществ в камеру сгорания газотурбинного двигателя, включающий следующие шаги:
- - обеспечивают камеру сгорания, содержащую
- наружную оболочку (1), внутреннюю оболочку (2) и перфорированную переднюю стенку (9), которая соединяет наружную оболочку (1) и внутреннюю оболочку (2) так, чтобы образовать кольцевой объем, расположенный вокруг осевой линии камеры сгорания, и кольцевое отверстие (10) для отвода продуктов сгорания, расположенное напротив перфорированной передней стенки (9) вокруг осевой линии камеры сгорания;
- первые форсунки (4), расположенные в наружной оболочке (1) между перфорированной передней стенкой (9) и кольцевым отверстием (10), причем первые форсунки (4) распределены по окружности в единой плоскости, перпендикулярной продольному направлению, и
- вторые форсунки (3), расположенные в наружной оболочке (1) между первыми распределенными по окружности форсунками (4) и перфорированной передней стенкой (9), причем вторые форсунки (3) распределены по окружности в единой плоскости, перпендикулярной продольному направлению;
- - впрыскивают предварительно смешанную топливовоздушную смесь в кольцевой объем через первые распределенные по окружности форсунки (4), находящиеся в первой плоскости, в направлении, образующем угол с касательной к наружной оболочке (1), формируя поле течения через кольцевой объем, вращающееся вокруг осевой линии камеры сгорания, причем указанное поле течения проходит через кольцевой объем в направлении от перфорированной передней стенки (9) к кольцевому отверстию (10);
- - впрыскивают только топливо в указанное поле течения через вторые распределенные по окружности форсунки (3), находящиеся во второй плоскости, в направлении, образующем угол с касательной к наружной оболочке (1); и
- - вводят выходящий из компрессора воздух через перфорированную переднюю стенку (9) в указанное поле течения;
- причем указанные шаги впрыскивания предварительно смешанной топливовоздушной смеси в кольцевой объем через первые распределенные по окружности форсунки (4), находящиеся в первой плоскости, впрыскивания только топлива в указанное поле течения через вторые распределенные по окружности форсунки (3), находящиеся во второй плоскости, и ввода выходящего из компрессора воздуха через перфорированную переднюю стенку (9) в указанное поле течения обеспечивают создание ступенчатого топливовоздушного эффекта для улучшения горения и снижения выбросов NOx и СО.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2011/048581 WO2013028163A1 (en) | 2011-08-22 | 2011-08-22 | Tangential and flameless annular combustor for use on gas turbine engines |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2014110630A RU2014110630A (ru) | 2015-09-27 |
RU2618785C2 true RU2618785C2 (ru) | 2017-05-11 |
Family
ID=47746710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014110630A RU2618785C2 (ru) | 2011-08-22 | 2011-08-22 | Тангенциальная и беспламенная кольцевая камера сгорания для использования в газотурбинных двигателях |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP2748531B1 (ru) |
JP (1) | JP5934795B2 (ru) |
KR (1) | KR101832026B1 (ru) |
CN (1) | CN103930721A (ru) |
PL (1) | PL2748531T3 (ru) |
RU (1) | RU2618785C2 (ru) |
WO (1) | WO2013028163A1 (ru) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101770068B1 (ko) * | 2016-07-04 | 2017-08-21 | 두산중공업 주식회사 | 가스 터빈의 임핀지먼트 냉각 장치 |
US10823418B2 (en) * | 2017-03-02 | 2020-11-03 | General Electric Company | Gas turbine engine combustor comprising air inlet tubes arranged around the combustor |
ES2933119T3 (es) * | 2018-11-12 | 2023-02-02 | Ws Waermeprozesstechnik Gmbh | Procedimiento y dispositivo para la combustión escalonada sin llama |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3934408A (en) * | 1974-04-01 | 1976-01-27 | General Motors Corporation | Ceramic combustion liner |
US4098075A (en) * | 1976-06-01 | 1978-07-04 | United Technologies Corporation | Radial inflow combustor |
SU1471748A1 (ru) * | 1986-10-27 | 1995-08-09 | О.Г. Жирицкий | Жаровая труба камеры сгорания газотурбинного двигателя |
SU1176678A1 (ru) * | 1984-03-01 | 1995-08-27 | О.Г. Жирицкий | Жаровая труба камеры сгорания газотурбинного двигателя |
US20040216463A1 (en) * | 2003-04-30 | 2004-11-04 | Harris Mark M. | Combustor system for an expendable gas turbine engine |
US20050241319A1 (en) * | 2004-04-30 | 2005-11-03 | Graves Charles B | Air assist fuel injector for a combustor |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2403657A1 (de) * | 1973-02-28 | 1974-09-12 | United Aircraft Corp | Brennkammer mit vormischung fuer gasturbinentriebwerke |
JP2523500B2 (ja) * | 1986-06-02 | 1996-08-07 | 東京電力株式会社 | ガスタ−ビン燃焼器 |
US4891936A (en) * | 1987-12-28 | 1990-01-09 | Sundstrand Corporation | Turbine combustor with tangential fuel injection and bender jets |
US4928481A (en) * | 1988-07-13 | 1990-05-29 | Prutech Ii | Staged low NOx premix gas turbine combustor |
JPH0375414A (ja) * | 1989-08-15 | 1991-03-29 | Nissan Motor Co Ltd | ガスタービン燃焼器 |
US5113647A (en) * | 1989-12-22 | 1992-05-19 | Sundstrand Corporation | Gas turbine annular combustor |
GB2295887A (en) * | 1994-12-08 | 1996-06-12 | Rolls Royce Plc | Combustor assembly |
US6751961B2 (en) * | 2002-05-14 | 2004-06-22 | United Technologies Corporation | Bulkhead panel for use in a combustion chamber of a gas turbine engine |
US6955053B1 (en) * | 2002-07-01 | 2005-10-18 | Hamilton Sundstrand Corporation | Pyrospin combuster |
JP3959632B2 (ja) * | 2002-09-04 | 2007-08-15 | 石川島播磨重工業株式会社 | 拡散燃焼方式低NOx燃焼器 |
JP3901629B2 (ja) * | 2002-11-11 | 2007-04-04 | 石川島播磨重工業株式会社 | アニュラ型渦巻き拡散火炎燃焼器 |
US7052231B2 (en) * | 2003-04-28 | 2006-05-30 | General Electric Company | Methods and apparatus for injecting fluids in gas turbine engines |
US20070107437A1 (en) * | 2005-11-15 | 2007-05-17 | Evulet Andrei T | Low emission combustion and method of operation |
US8015814B2 (en) * | 2006-10-24 | 2011-09-13 | Caterpillar Inc. | Turbine engine having folded annular jet combustor |
JP5296320B2 (ja) * | 2007-01-30 | 2013-09-25 | ゼネラル・エレクトリック・カンパニイ | 逆流噴射機構を有するシステム及び燃料及び空気を噴射する方法 |
US9181812B1 (en) * | 2009-05-05 | 2015-11-10 | Majed Toqan | Can-annular combustor with premixed tangential fuel-air nozzles for use on gas turbine engines |
US8739511B1 (en) * | 2009-05-05 | 2014-06-03 | Majed Toqan | Can-annular combustor with staged and tangential fuel-air nozzles for use on gas turbine engines |
US8904799B2 (en) * | 2009-05-25 | 2014-12-09 | Majed Toqan | Tangential combustor with vaneless turbine for use on gas turbine engines |
KR101774630B1 (ko) * | 2011-08-22 | 2017-09-19 | 마제드 토칸 | 가스 터빈 엔진에 사용되는 예비혼합된 연료와 공기를 가진 접선방향의 애뉼러형 연소실 |
-
2011
- 2011-08-22 CN CN201180073011.7A patent/CN103930721A/zh active Pending
- 2011-08-22 JP JP2014527124A patent/JP5934795B2/ja active Active
- 2011-08-22 WO PCT/US2011/048581 patent/WO2013028163A1/en unknown
- 2011-08-22 RU RU2014110630A patent/RU2618785C2/ru active
- 2011-08-22 PL PL11871279T patent/PL2748531T3/pl unknown
- 2011-08-22 EP EP11871279.3A patent/EP2748531B1/en active Active
- 2011-08-22 KR KR1020147007516A patent/KR101832026B1/ko active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3934408A (en) * | 1974-04-01 | 1976-01-27 | General Motors Corporation | Ceramic combustion liner |
US4098075A (en) * | 1976-06-01 | 1978-07-04 | United Technologies Corporation | Radial inflow combustor |
SU1176678A1 (ru) * | 1984-03-01 | 1995-08-27 | О.Г. Жирицкий | Жаровая труба камеры сгорания газотурбинного двигателя |
SU1471748A1 (ru) * | 1986-10-27 | 1995-08-09 | О.Г. Жирицкий | Жаровая труба камеры сгорания газотурбинного двигателя |
US20040216463A1 (en) * | 2003-04-30 | 2004-11-04 | Harris Mark M. | Combustor system for an expendable gas turbine engine |
US20050241319A1 (en) * | 2004-04-30 | 2005-11-03 | Graves Charles B | Air assist fuel injector for a combustor |
Also Published As
Publication number | Publication date |
---|---|
EP2748531A1 (en) | 2014-07-02 |
RU2014110630A (ru) | 2015-09-27 |
CN103930721A (zh) | 2014-07-16 |
PL2748531T3 (pl) | 2018-05-30 |
EP2748531B1 (en) | 2017-12-06 |
WO2013028163A1 (en) | 2013-02-28 |
KR101832026B1 (ko) | 2018-02-23 |
JP2014524561A (ja) | 2014-09-22 |
JP5934795B2 (ja) | 2016-06-15 |
KR20140082657A (ko) | 2014-07-02 |
EP2748531A4 (en) | 2015-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8904799B2 (en) | Tangential combustor with vaneless turbine for use on gas turbine engines | |
RU2611217C2 (ru) | Трубчато-кольцевая камера сгорания со ступенчатыми и тангенциальными топливовоздушными форсунками для использования в газотурбинных двигателях | |
RU2626887C2 (ru) | Тангенциальная кольцевая камера сгорания с предварительно смешанным топливом и воздухом для использования в газотурбинных двигателях | |
US7950233B2 (en) | Combustor | |
US6389815B1 (en) | Fuel nozzle assembly for reduced exhaust emissions | |
US9052114B1 (en) | Tangential annular combustor with premixed fuel and air for use on gas turbine engines | |
RU2619673C2 (ru) | Способ смешивания вступающих в реакцию горения веществ для камеры сгорания газотурбинного двигателя | |
JP4997018B2 (ja) | 一次燃料噴射器及び複数の二次燃料噴射ポートを有するガスタービンエンジン燃焼器のミキサ組立体のためのパイロットミキサ | |
RU2686652C2 (ru) | Способ работы сжигающего устройства газовой турбины и сжигающее устройство для газовой турбины | |
JPH09501486A (ja) | 燃料噴射装置及び該燃料噴射装置の運転方法 | |
US9091446B1 (en) | Tangential and flameless annular combustor for use on gas turbine engines | |
US9181812B1 (en) | Can-annular combustor with premixed tangential fuel-air nozzles for use on gas turbine engines | |
RU2618785C2 (ru) | Тангенциальная и беспламенная кольцевая камера сгорания для использования в газотурбинных двигателях | |
US8739511B1 (en) | Can-annular combustor with staged and tangential fuel-air nozzles for use on gas turbine engines |