RU2617614C1 - Устройство и способ нагнетания давления текучей среды - Google Patents

Устройство и способ нагнетания давления текучей среды Download PDF

Info

Publication number
RU2617614C1
RU2617614C1 RU2016125549A RU2016125549A RU2617614C1 RU 2617614 C1 RU2617614 C1 RU 2617614C1 RU 2016125549 A RU2016125549 A RU 2016125549A RU 2016125549 A RU2016125549 A RU 2016125549A RU 2617614 C1 RU2617614 C1 RU 2617614C1
Authority
RU
Russia
Prior art keywords
impeller
fluid
disks
inlet
gap
Prior art date
Application number
RU2016125549A
Other languages
English (en)
Inventor
Александр Михайлович Литвинов
Дмитрий Юрьевич Яшин
Original Assignee
Закрытое акционерное общество "Путь 910"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Путь 910" filed Critical Закрытое акционерное общество "Путь 910"
Priority to RU2016125549A priority Critical patent/RU2617614C1/ru
Application granted granted Critical
Publication of RU2617614C1 publication Critical patent/RU2617614C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D11/00Other rotary non-positive-displacement pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors

Abstract

Группа изобретений относится к области энергетики, а именно к устройствам и способам для нагнетания давления текучих сред, и может быть использовано для перекачки жидкостей, а также в конструкциях движителей в судостроении. Устройство включает по меньшей мере одно выполненное с возможностью вращения безлопастное рабочее колесо (1), содержащее жестко соединенные задний (2) и передний (3) диски, размещенные соосно с зазором. В переднем диске (3) выполнено входное отверстие (5) для текучей среды, а на смежных торцевых поверхностях переднего и заднего дисков (2, 3) выполнены чередующиеся кольцевые выступы (6), формирующие лабиринтный канал для прохождения текучей среды от упомянутого входного отверстия (5) к выходному отверстию, образованному упомянутым зазором между дисками (2, 3). Лабиринтный канал имеет постоянную площадь проходного сечения. Изобретения направлены на повышение эффективности, производительности и КПД перекачивания, достижение равномерности и симметричности износа устройства, снижение общего износа, радиальных биений, шума, осевых нагрузок, уровня кавитации, расширение возможностей по перекачке различных сред. 2 н. и 5 з.п. ф-лы, 3 ил.

Description

Область техники
Изобретение относится к области энергетики, а именно к устройствам и способам для нагнетания давления текучих сред, и может быть использовано для перекачки жидкостей, а также в конструкциях движителей в судостроении.
Уровень техники
Из уровня техники известно множество решений, описывающих центробежные насосы для нагнетания давления с использованием лопастей. Однако применение лопастей является основной причиной возникновения кавитационных процессов, которые в свою очередь ограничивают максимальную скорость вращения колеса, вызывают биения и значительные радиальные нагрузки, а также приводят к повышенному износу устройства.
Известны также различные решения, использующие безлопастные дисковые насосы, применяющие принцип поверхностного трения (см., например, патент РФ RU 2285154).
Наиболее близким аналогом заявленной группы изобретений является способ и устройство для нагнетания давления текучей среды, раскрытые в патенте Китая на полезную модель CN 2325559, опубл. 23.06.1999. Известное устройство содержит по меньшей мере одно вращающееся рабочее колесо, включающее жестко соединенные передний и задний диски с гладкими внутренними поверхностями, установленные соосно с зазором. Для нагнетания давления текучую среду (жидкость) подают через входное отверстие в упомянутый зазор, при этом за счет центробежных сил среда движется в образованном кольцевом канале и выходит со стороны боковой поверхности рабочего колеса.
Недостатком данного аналога является относительно низкая эффективность, т.к. по мере удаления среды от центра возрастает проходное сечение, вследствие чего ухудшается контакт жидкости со стенками дисков. Кроме того, диски с гладкими поверхностями могут быть использованы только для работы с высоковязкими средами, что ограничивает возможности применения способа.
Раскрытие изобретения
Задачей изобретений является устранение недостатков известных аналогов.
Технический результат группы изобретений заключается в повышении эффективности и КПД перекачивания среды, равномерности и симметричности износа устройства, снижении общего износа, радиальных биений, шума, осевых нагрузок, уровня кавитации, возможности увеличения частоты вращения, повышении производительности, расширении возможностей по перекачке различных сред, в том числе жидкостей и суспензий с высоким содержанием воздуха, газов, абразивных включений.
Указанный технический результат достигается в устройстве для нагнетания давления текучей среды за счет того, что оно включает по меньшей мере одно выполненное с возможностью вращения безлопастное рабочее колесо, содержащее жестко соединенные задний и передний диски, размещенные соосно с зазором, причем в переднем диске выполнено входное отверстие для текучей среды, а на смежных торцевых поверхностях переднего и заднего дисков выполнены чередующиеся кольцевые выступы, формирующие лабиринтный канал для прохождения текучей среды от упомянутого входного отверстия к выходному отверстию, образованному упомянутым зазором между дисками, при этом указанный лабиринтный канал имеет постоянную площадь проходного сечения.
Указанный технический результат достигается в способе нагнетания давления текучей среды за счет того, что он включает осевую подачу текучей среды в по меньшей мере одно вращающееся безлопастное рабочее колесо с последующим радиальным распределением текучей среды и ее выходом в виде кольцевого потока, при этом используют рабочее колесо, содержащее жестко соединенные задний и передний диски, размещенные соосно с зазором, причем в переднем диске выполнено входное отверстие для текучей среды, а на смежных торцевых поверхностях переднего и заднего дисков выполнены чередующиеся кольцевые выступы, образующие лабиринтный канал для прохождения текучей среды от упомянутого входного отверстия к выходному отверстию, образованному упомянутым зазором между дисками, при этом указанный лабиринтный канал имеет постоянную площадь проходного сечения.
Кроме того, предусмотрены частные варианты реализации группы изобретений, согласно которым:
- упомянутые кольцевые выступы имеют щелевые отверстия;
- передний и задний диски соединены посредством шпилек;
- в устройстве дополнительно предусмотрен привод вращения рабочего колеса.
В отличие от наиболее близкого аналога в заявленных способе и устройстве используют диски, имеющие чередующиеся кольцевые выступы, образующие лабиринтный канал для прохождения среды, за счет которого обеспечивается эффективное сцепление жидкости с рабочим колесом. При этом геометрия дисков и выступов обеспечивает неизменность суммарного проходного сечения в каждой точке по ходу движения жидкости от входного отверстия со стороны торца переднего диска до выходного отверстия со стороны боковой поверхности дисков, образованного зазором между ними. Благодаря этому разница между линейными скоростями стенок рабочего колеса и контактирующего с ними объема текучей среды, раскручиваемого в рабочем колесе, стремится к нулю, а разгон среды происходит на всей рабочей поверхности колеса при движении среды от центра к периферии. Таким образом, объем жидкости, проходящей от центра рабочего колеса через лабиринтный канал к периферии за единицу времени, равен объему, проходящему во входном и выходном отверстиях.
Краткое описание чертежей
Изобретение поясняется чертежами, где:
на фиг. 1 показан вид спереди и сбоку заявленного устройства;
на фиг. 2 показан частный вариант выполнения переднего диска рабочего колеса; на фиг. 3 показан вариант судоходного гидрореактивного движителя для судов на подводных крыльях и подводных аппаратов с использованием заявленного изобретения.
Осуществление изобретения
Заявленное устройство для нагнетания давления текучей среды содержит по меньшей мере одно установленное на валу рабочее колесо (1), выполненное с возможностью вращения с использованием привода (не показан).
Рабочее колесо (1) имеет задний (2) и передний (3) диски, установленные соосно с зазором и жестко соединенные, например, посредством шпилек (4). В рамках данной заявки термины «передний» и «задний» используются относительно направления потока текучей среды. Диски предпочтительно имеют плоские торцевые поверхности. В переднем диске (3) со стороны торцевой поверхности выполнено осевое входное отверстие (5) для подачи текучей среды в зазор между дисками (1). На смежных (внутренних) торцевых поверхностях дисков (2) и (3) выполнены чередующиеся кольцевые выступы (6). Соседние кольцевые выступы (6) перекрывают друг друга с образованием в зазоре между дисками лабиринтного канала, для прохождения среды от входного отверстия (5) до выходного отверстия - кольцевой щели, образованной зазором между дисками (2) и (3) на боковой поверхности рабочего колеса (1).
Указанный лабиринтный канал образует кольцевые камеры, соединяемые отверстиями для прохода перекачиваемой текучей среды, размер которых на любом удалении от центра обеспечивает неизменность суммарного проходного сечения каждой камеры рабочего колеса. Выступы (6) выполнены таким образом, что площадь проходного сечения канала при движении среды не изменяется:
Sвх=S1=S2=…SN=const,
где Sвх - площадь входного отверстия, S1, S2, S3, … SN - площади проходного сечения в разных точках канала при движении среды до выходного отверстия. В частности, постоянство площади сечения обеспечивается уменьшением зазора между дисками (2) и (3) от центра рабочего колеса (1) к его периферии.
Кольцевые выступы могут быть выполнены сплошными или иметь щелевые отверстия в виде прорезей (7) (см. фиг. 2), которые обеспечивают дополнительное сцепление жидкости с рабочим колесом. В случае щелевых отверстий (7) также должно выполняться условие неизменной площади проходного сечения канала.
Высоту кольцевых выступов и их конфигурацию подбирают исходя из режимов работы насоса (или другого устройства для нагнетания давления) и типа применяемой среды.
Заявленный способ нагнетания давления с использованием описанного устройства реализуется следующим образом.
Текучая среда (жидкость, суспензия, жидкостно-газовая среда и т.д.), попадая через входное отверстие (5) внутрь вращающегося рабочего колеса (1), под воздействием центробежных сил попеременно прижимается к кольцевым выступам (6) переднего (3) и заднего (2) дисков, двигается в неизменном объеме к периферии, последовательно поступая в камеры кольцевого лабиринтного канала, и затем выходит со стороны боковой поверхности рабочего колеса (1) в виде кольцевого потока. За счет конфигурации дисков (2), (3) с выступами (6) скорость движения среды равна скорости вращения рабочего колеса (1), что, в свою очередь, обеспечивает ее перекачку без биений и кавитации.
Отсутствие кавитации, уравновешенность рабочего колеса и возможность работы на высоких оборотах дают возможность при неизменной производительности значительно уменьшить толщину рабочего колеса (1), увеличив при необходимости диаметр.
Изобретение может быть использовано, в частности, в конструкциях судовых движителей с низким лобовым сопротивлением. Внешний корпус такого движителя выполняется с возможностью поворота относительно оси рабочего колеса и выполняет функцию рулевого управления. Использование многодвижительной симметричной компоновки позволяет вынести в носовую часть корпуса основные движители. Носовая часть корпуса в этом случае выполняется таким образом, чтобы заборные патрубки находились на месте традиционного форштевня, а реактивные струи выбрасывались вдоль скул как можно ближе к форштевню. В зависимости от скорости хода и внешних факторов (ветер, волнение и т.д.) поворотом выходных патрубков изменяются углы выброса реактивных струй относительно оси движения с целью выбора оптимального режима работы.
При использовании подобной конструкции разряжение создается по ходу судна, а нагнетание позади в отличие от традиционной компоновки, когда корпус судна по ходу движения нагнетает давление (носовой бурун), а между корпусом и винтом создается зона разряжения, из которой вода выталкивается винтами за корму.
Возможная конструкция гидрореактивного движителя для подводных аппаратов и судов на воздушных крыльях с использованием заявленного изобретения показана на фиг. 3. Конструкция движителя включает лобовой обтекатель (8) с входным патрубком (9), рабочее колесо (1) согласно заявленному изобретению, рабочую камеру-гондолу (10) с двигателем (11) и выходным соплом (12). Для преобразования вращательного движения жидкости в поступательное на внутренней поверхности рабочей камеры (10) выполнены криволинейные ребра (13). Ход жидкости в рабочей камере (10) показан короткими стрелками для случая высокой скорости вращения рабочего колеса (1) и длинными - низкой скорости вращения.

Claims (7)

1. Устройство для нагнетания давления текучей среды, включающее по меньшей мере одно выполненное с возможностью вращения безлопастное рабочее колесо (1), содержащее жестко соединенные задний (2) и передний (3) диски, размещенные соосно с зазором, причем в переднем диске (3) выполнено входное отверстие (5) для текучей среды, а на смежных торцевых поверхностях переднего и заднего дисков выполнены чередующиеся кольцевые выступы (6), формирующие лабиринтный канал для прохождения текучей среды от упомянутого входного отверстия (5) к выходному отверстию, образованному упомянутым зазором между дисками (2) и (3), при этом указанный лабиринтный канал имеет постоянную площадь проходного сечения.
2. Устройство по п. 1, характеризующееся тем, что кольцевые выступы (6) имеют щелевые отверстия (7).
3. Устройство по п. 1, характеризующееся тем, что передний (3) и задний (2) диски соединены посредством шпилек (4).
4. Устройство по п. 1, характеризующееся тем, что дополнительно содержит привод вращения рабочего колеса (1).
5. Способ нагнетания давления текучей среды, включающий осевую подачу текучей среды в по меньшей мере одно вращающееся безлопастное рабочее колесо (1) с последующим радиальным распределением текучей среды и ее выходом в виде кольцевого потока, при этом используют рабочее колесо (1), содержащее жестко соединенные задний (2) и передний (3) диски, размещенные соосно с зазором, причем в переднем диске (3) выполнено входное отверстие (5) для текучей среды, а на смежных торцевых поверхностях переднего (3) и заднего (2) дисков выполнены чередующиеся кольцевые выступы (6), образующие лабиринтный канал для прохождения текучей среды от упомянутого входного отверстия (5) к выходному отверстию, образованному упомянутым зазором между дисками (2) и (3), при этом указанный лабиринтный канал имеет постоянную площадь проходного сечения.
6. Способ по п. 5, характеризующийся тем, что используют рабочее колесо (1), в котором кольцевые выступы (6) имеют щелевые отверстия (7).
7. Способ по п. 5, характеризующийся тем, что используют рабочее колесо (1), в котором передний (3) и задний (2) диски соединены посредством шпилек (4).
RU2016125549A 2016-06-27 2016-06-27 Устройство и способ нагнетания давления текучей среды RU2617614C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016125549A RU2617614C1 (ru) 2016-06-27 2016-06-27 Устройство и способ нагнетания давления текучей среды

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016125549A RU2617614C1 (ru) 2016-06-27 2016-06-27 Устройство и способ нагнетания давления текучей среды

Publications (1)

Publication Number Publication Date
RU2617614C1 true RU2617614C1 (ru) 2017-04-25

Family

ID=58643195

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016125549A RU2617614C1 (ru) 2016-06-27 2016-06-27 Устройство и способ нагнетания давления текучей среды

Country Status (1)

Country Link
RU (1) RU2617614C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2688058C1 (ru) * 2018-06-19 2019-05-17 Дмитрий Николаевич Спиркин Устройство и способ нагнетания давления текучей среды

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4280791A (en) * 1978-05-17 1981-07-28 Gawne Gordon S Bi-directional pump-turbine
US5297926A (en) * 1990-03-02 1994-03-29 Nissho Giken Kabushiki Kaisha Flow generating apparatus and method of manufacturing the apparatus
CN2325559Y (zh) * 1997-11-13 1999-06-23 天津市海河工业泵厂 新型多圆盘无叶片泵
WO2002042642A1 (en) * 2000-11-27 2002-05-30 Palumbo John F Bladeless turbocharger
RU2239098C1 (ru) * 2003-06-18 2004-10-27 Макин Ким Дмитриевич Компрессор двухвального биротативного газотурбинного двигателя
RU2281419C2 (ru) * 2004-03-24 2006-08-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П. Королева" Рабочее колесо дискового насоса
RU2285154C1 (ru) * 2005-04-11 2006-10-10 Государственное Образовательное Учреждение Высшего Профессионального Образования "Тамбовский Государственный Технический Университет" Дисковый насос

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4280791A (en) * 1978-05-17 1981-07-28 Gawne Gordon S Bi-directional pump-turbine
US5297926A (en) * 1990-03-02 1994-03-29 Nissho Giken Kabushiki Kaisha Flow generating apparatus and method of manufacturing the apparatus
CN2325559Y (zh) * 1997-11-13 1999-06-23 天津市海河工业泵厂 新型多圆盘无叶片泵
WO2002042642A1 (en) * 2000-11-27 2002-05-30 Palumbo John F Bladeless turbocharger
RU2239098C1 (ru) * 2003-06-18 2004-10-27 Макин Ким Дмитриевич Компрессор двухвального биротативного газотурбинного двигателя
RU2281419C2 (ru) * 2004-03-24 2006-08-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П. Королева" Рабочее колесо дискового насоса
RU2285154C1 (ru) * 2005-04-11 2006-10-10 Государственное Образовательное Учреждение Высшего Профессионального Образования "Тамбовский Государственный Технический Университет" Дисковый насос

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2688058C1 (ru) * 2018-06-19 2019-05-17 Дмитрий Николаевич Спиркин Устройство и способ нагнетания давления текучей среды

Similar Documents

Publication Publication Date Title
US11448232B2 (en) Propeller blade
US1061142A (en) Fluid propulsion
US20040175268A1 (en) Rotary kinetic tangential pump
US3951565A (en) High suction inducer
US1334461A (en) Centrifugal pump
CN105035289A (zh) 全回转串联涵道式船用螺旋桨
US5549451A (en) Impelling apparatus
RU2617614C1 (ru) Устройство и способ нагнетания давления текучей среды
JP2016522357A (ja) 遠心ロータ
JP2015107794A (ja) 圧縮空気流体機械及び連続圧縮流体噴出推進装置、これを用いた船舶の推進システム、ならびに気液混合流体機械の推進装置。
US20170009777A1 (en) Fluid pump
US20100258046A1 (en) Method and apparatus for suppressing cavitation on the surface of a streamlined body
CN111188791A (zh) 一种高抗空化性能的诱导轮
US1129934A (en) Propeller.
US3865506A (en) Centrifugal compressor
CN210258797U (zh) 无共振磁悬浮静音潜艇推进器
US3295455A (en) Centrifugal pumps
RU2510357C1 (ru) Лопастная система водометного движителя
JPH09296799A (ja) 遠心圧縮機のインペラ
RU2266231C2 (ru) Водометный движитель
RU2594247C1 (ru) Рабочее колесо промежуточной ступени центробежного насоса
WO2016166574A1 (en) Bladeless marine propulsor
CN212318298U (zh) 一种旋涡泵
RU2451839C1 (ru) Осерадиальное рабочее колесо тоннельного типа
RU2136539C1 (ru) Гидроаэродинамический движитель

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200628