RU2617374C1 - Способ направленного акустического воздействия на функциональное состояние клеток-мишеней тканей представителей семейства кошачьих - Google Patents

Способ направленного акустического воздействия на функциональное состояние клеток-мишеней тканей представителей семейства кошачьих Download PDF

Info

Publication number
RU2617374C1
RU2617374C1 RU2016116741A RU2016116741A RU2617374C1 RU 2617374 C1 RU2617374 C1 RU 2617374C1 RU 2016116741 A RU2016116741 A RU 2016116741A RU 2016116741 A RU2016116741 A RU 2016116741A RU 2617374 C1 RU2617374 C1 RU 2617374C1
Authority
RU
Russia
Prior art keywords
cells
microns
size
nuclear
cell
Prior art date
Application number
RU2016116741A
Other languages
English (en)
Inventor
Анна Анатольевна Олешкевич
Федор Иванович Василевич
Тимофей Николаевич Пашовкин
Давудай Абдулсемедович Девришов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Московская государственная академия ветеринарной медицины и биотехнологии - МВА имени К.И. Скрябина" (ФГБОУ ВО МГАВМиБ - МВА имени К.И. Скрябина)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Московская государственная академия ветеринарной медицины и биотехнологии - МВА имени К.И. Скрябина" (ФГБОУ ВО МГАВМиБ - МВА имени К.И. Скрябина) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Московская государственная академия ветеринарной медицины и биотехнологии - МВА имени К.И. Скрябина" (ФГБОУ ВО МГАВМиБ - МВА имени К.И. Скрябина)
Priority to RU2016116741A priority Critical patent/RU2617374C1/ru
Application granted granted Critical
Publication of RU2617374C1 publication Critical patent/RU2617374C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Изобретение относится к медицине и может быть использовано для направленного акустического воздействия на функциональное состояние клеток-мишеней тканей представителей семейства кошачьих. Для этого осуществляют воздействие на клеточную суспензию модулированной ультразвуковой волной с несущей частотой 0,88 МГц, диапазонами интенсивностей 0,4-0,7 Вт/см2 и частот модуляции 21-50 Гц в течение 15-20 с при направлении действия на цитоплазматическую мембрану безъядерных клеток размера 4-8 мкм, а также одновременно на ЦПМ и ядра ядросодержащих клеток размера 5-17 мкм. Также воздействуют интенсивностью 0,05 Вт/см2, частотой модуляции 700-800 Гц в течение 30-45 с при выборе в качестве мишени ядер 5-17 мкм - клеток, содержащих ядро, а в течение 10-45 с - ЦПМ безъядерных клеток размера до 4 мкм. Затем готовят мазки, окрашивают их дифференциальными красителями и проводят анализ морфологического состояния клеток. По окраске клетки в синий цвет, началу деформации, изменению клеточного размера, состоянию и изменению проницаемости ЦПМ, по морфологическим изменениям: деформации или степени изменения структуры ядер, ядерному лизису или разрушению ядер, - определяют наличие и регулируют направление и глубину эффекта акустического воздействия; оценивают индивидуальную репарационную систему клетки, рост и размножение клеток-мишеней, активность внутриклеточных и мембран-связанных ферментов. Изобретение позволяет направленно изменять проницаемость цитоплазматической и/или ядерной мембран, регулировать глубину эффекта акустического воздействия на клетки тканей животных. 2 з.п. ф-лы, 1 табл., 6 ил.

Description

Изобретение относится к медицине, биотехнологии и ветеринарии, а именно, к применению акустических волн для направленного неинвазивного воздействия на функциональное состояние клеток тканей животной этиологии с возможностью выборочного изменения состояния/разрушения клеток-мишеней. Физическое воздействие проводят с целью управления процессами жизнедеятельности, пролиферативной активностью клеток/культур клеток и тканей и избирательного подавления или активации их функций. Изобретение также может быть использовано в клеточной и молекулярной биологии, представляет интерес для разработки методов экспериментальной медицины и ветеринарии, иммунологии, фармакологии, для индивидуальной оценки репарационной системы клетки, а также в диагностике или терапии злокачественных новообразований, при индивидуальном подборе лекарственных препаратов и герондопротекторов.
При воздействии акустических волн за счет сжатия в волне клеточных мембран и реализации пьезоэффекта возможен эффект изменения поверхностного заряда и функционального состояния мембран. Таким образом, мембрана может быть мишенью, на уровне которой реализуются цепи одинаковых в дальнейшем эффектов как для акустических, так и для электромагнитных волн. Клетки, находящиеся в акустической волне по сравнению с длиной волны, являются точечными. Они могут испытывать сжатие и расширения объема, достигающее 20% при действии волн с амплитудой до 100 кПа, что, в свою очередь, может уменьшить количество активных каналов за счет латеральной диффузии молекул липидного бислоя, изменить проницаемость цитоплазматической мембраны (ЦПМ) и функциональное состояние клетки [1].
В настоящее время нет однозначной теории формирования частотно-зависимых ответов на акустическое воздействие. Ряд исследователей показали существенные отличия на уровне ткани в биологических эффектах непрерывных и модулированных волн различной физической природы. Причем вызываемые изменения при воздействии модулированных волн выше, а степень и выраженность в большой степени зависят от частоты модуляций. Также было показано, что модулированное электромагнитное или УЗ воздействие на некоторых частотах модуляции могут вызывать изменение ферментативной активности как в сторону активирования, так и ингибирования [2-12].
Из уровня техники известен способ иммунокоррекции при аутоиммунном процессе (патент на изобретение RU 2098139, опубл. 10.12.1997). После премедикации осуществляют перфузию крови больного в вено-венозном варианте через срезы ксеноселезенки, предварительно активированные ультразвуком слабой интенсивности 0,3-0,4 Вт/см2 в импульсном режиме 50 имп/с, в течение 8-10 мин. Способ применяется для упрощения процесса гемоперфузии и увеличения сорбционной способности селезенки при лечении псориаза. Данный способ эффективен при проведении перфузии с объемной скоростью 75-80 мм/мин в течение 40-45 мин 2-3 сеансами с интервалом между ними в 3-5 дней в начале курса традиционной комплексной терапии.
Однако указанный способ является затратным за счет использования дорогостоящего стационарного оборудования и материала. Способ требует при его реализации работы специально обученного персонала, сложен в исполнении методики, длителен по времени, осуществим при работе УЗ аппаратуры в импульсном режиме и на срезе одного типа ткани.
Известен способ неинвазивного разрушения расположенных за костями грудной клетки биологических тканей (патент на изобретение RU 2472545 от 20.01.2013 г., Бюл. №2), выбранный в качестве ближайшего аналога. Данный способ основан на воздействии фокусированным УЗ пучком на биологическую ткань для локального разрушения клеток только в месте нахождения основного фокуса, без повреждения в побочных фокусах.
Однако данный способ применяется в УЗ хирургии только для одновременно теплового и механического воздействий, сопровождается сильным разогревом ткани. Ограничение в применении способа акустического разрушения клеток определяется использованием высокоинтенсивного УЗ, возможностью воздействия только на один вид ткани организма человека - костную, причем на всю ткань одновременно, а не на отдельные клетки (остеобласты), генерацией локального избыточного пикового положительного давления 30-80 МПа в месте воздействия.
Заявленное изобретение осуществляется путем нахождения оптимальных условий ультразвукового воздействия на ткань, приводящего к избирательному изменению цитоморфологии или к разрушению клеток/клеточных структур животных семейства кошачьих.
Задачей предлагаемого изобретения является разработка эффективного способа неинвазивного направленного воздействия на клетки ткани животных, безопасного при реализации и не требующего дорогостоящего стационарного оборудования, специально обученного персонала и специально оборудованного помещения; осуществление способа без дополнительных технических средств и химических реагентов; минимальная затрата времени (10-45 с); полная безопасность метода для медицинского персонала и научных сотрудников при максимальном эффекте.
Целью предлагаемого изобретения является плановое воздействие на клетки разных типов и размеров.
Техническим результатом заявленного изобретения является: направленное изменение проницаемости/структуры цитоплазматической и/или ядерной мембраны; регулирование глубины эффекта акустического воздействия; торможение или активация транспортных систем клеток; выборочное разрушение в одной ткани ядер у клеток определенного, заранее заданного размера; направленная супрессия роста клеток, в том числе и ненормированного; нарушение аппарата межклеточного взаимодействия и клеточных контактов; регуляция активности внутриклеточных и мембран-связанных ферментов, что даст возможность проводить купирование заболеваний различной этиологии на клеточном уровне, а также индивидуально оценить репарационную систему клетки.
Заявленный технический результат осуществляется тем, что на клеточную суспензию объемом от 1,0 мл до 1,5 мл, содержащую (6-7)×106 клеток/см3 и помещенную в кювету, воздействуют импульсно-модулированной ультразвуковой волной с несущей частотой 0,88 МГц, диапазонами интенсивностей 0,4-0,7 Вт/см2 и частот модуляции 21-50 Гц в течение 15-20 с при направлении действия на цитоплазматическую мембрану безъядерных клеток размера 4-8 мкм, а также одновременно на ЦПМ и ядра ядросодержащих клеток размера 5-17 мкм, или интенсивностью 0,05 Вт/см2, частотой модуляции 700-800 Гц в течение 30-45 с при выборе в качестве мишени ядер 5-17 мкм - клеток, содержащих ядро, а в течение 10-45 с - ЦПМ безъядерных клеток размера до 4 мкм.
Пробы обрабатывают в абсолютно одинаковых условиях, поддерживают постоянную температуру образцов в кюветах с проточным охлаждением, а также проводят анализ морфологического состояния клеток пробой с трипановым синим [13] и методами световой микроскопии.
По окраске клетки в синий цвет, началу деформации, изменению клеточного размера, состоянию и изменению проницаемости ЦПМ, по морфологическим изменениям: деформации или степени изменения структуры ядер, ядерному лизису или разрушению ядер, - определяют наличие и регулируют направление и глубину эффекта акустического воздействия, оценивают индивидуальную репарационную систему клетки, рост и размножение клеток-мишеней, активность внутриклеточных и мембран-связанных ферментов.
Способ эффективен и информативен при любом количестве исследуемого материала.
Заявленный способ осуществляется следующим образом.
Воздействовали ультразвуком in vitro на жидкую подвижную ткань - кровь, в которой одновременно представлены клетки разного вида, размера и возраста. Среднее количество клеток в суспензии при обработке УЗ (6-7)×106 клеток/см3. Для обеспечения постоянной концентрации образцы разбавлялись сывороткой крови того же животного. Для реализации заявляемого изобретения используются любые из отечественных ультразвуковых терапевтических генераторов с излучателями, работающих на несущей частоте 0,88 МГц: УЗТ-1-01Ф; Ультразвук Т-5 и УЗТ-1.02С и др. Экспозиция УЗ: время от 15 с до 45 с, ISATA - средняя по пространству и времени интенсивность - 0,05 Вт/см2 и 0,4-0,7 Вт/см2, что контролировали с помощью дифференциальной термопары, калиброванной по интенсивности. Интенсивность УЗ, прошедшего в ткань in vitro, составляла 90% номинальной интенсивности. Диапазон активных частот модуляции 21-50 Гц и 700-800 Гц, модулятор Г3-112 (или любой аналогичный генератор). Объем облучаемых образов составлял 1-1,5 мл.
Кровь брали из периферических вен: вены Сафена и подкожной вены предплечья диких (тигр, лев, пантера) и домашних кошек разных пород, веса, возраста и пола. Образцы крови облучались в абсолютно одинаковых условиях (площадь излучателя, охлаждение, циркуляция жидкости). УЗ воздействие на клетки крови, находящейся в термостатируемой кювете, осуществлялось по отработанной ранее методике [4]. Делали мазки крови и окрашивали их по методу быстрого дифференцированного окрашивания биопрепаратов ДИФФ-КВИК: фиксация в абсолютном метаноле 15 с, затем в растворах красителей по 10 с, промывание в забуференной воде, сушка и просмотр под иммерсией. Контролем служили интактные клетки тех же животных. Образцы, опытные и контроль, красили трипановым синим [13] для определения изменения проницаемости ЦПМ. Результат воздействия УЗ на клетки сразу же наблюдали в световой микроскоп («ЛОМО», объектив 100х/1,25, окуляр 10х/18). О направлении воздействия УЗ на клетки ткани судили по количественным и качественным морфологическим изменениям.
Подсчет клеток вели по линии «Меандра»: 3-5 полей зрения вдоль края мазка, 3-5 полей зрения под прямым углом к середине мазка, потом 3-5 полей зрения параллельно краю мазка и вновь под прямым углом к краю мазка. Так продолжали до тех пор, пока не было подсчитано 100 целых клеток [14]. Считали все лейкоциты, находящиеся в 25 больших квадратах, содержащих по 16 малых квадратов (т.е. в 400 квадратах). Для расчета в 1 мл использовали формулу:
Figure 00000001
где X - количество лейкоцитов в 1 мл крови; М - количество лейкоцитов, подсчитанное в 25 квадратах; 20 - разведение крови; 400 - количество квадратов [15]. Статистическую обработку результатов проводили с использованием пакета прикладных программ «Statistica 6.0». Достоверность различий средних значений определяли, используя парный t-критерий Стьюдента; достоверными считали различия при р<0,05. Референсный ряд клеточных размеров приведен по Н.А. Любину [16].
Действие модулированного УЗ на клетки крови животных (р<0,05).
Облучения в течение 10-45 с УЗ интенсивностью 0,05 Вт/см2 (таблица) частотами модуляции 700-800 Гц деформировало клетки ткани, нарушало проницаемость ЦПМ (по данным теста с трипановым синим) безъядерных клеток размером менее 4 мкм, а воздействие теми же диапазонами, но при времени экспозиции 30-45 с на ядросодержащие клетки размера 5-17 мкм вызывало деформацию и/или изменение структуры ядер. Ядра могли разрыхляться, а также «вытекать» из всех клеток. На фотографии (Фиг. 1) показаны результаты действия в течение 45 с интенсивности 0,05 Вт/см2 частоты модуляции 800 Гц: ядро сегментоядерного нейтрофила деформировано и разрыхлено; на Фиг. 2 - экспозиция 35 с. Деформация ядра лимфоцита и разрыв ядра гранулоцита.
Figure 00000002
Безъядерные клетки размера 4-8 мкм и ядросодержащие клетки размера 5-17 мкм. Кратковременное 15-20 с действие модулированным УЗ (р<0,05) направленно изменяло проницаемость ЦПМ. Также шло изменение формы клеток, формирование симметричных групп вокруг клетки и цепочек эритроцитов без признаков разрушения или цитолиза. Возможно, это связано с изменением поверхностной плотности заряда или перераспределением заряда ЦПМ. Основные спектры активных частот в диапазоне интенсивностей 0,4-0,7 Вт/см2 для воздействия на ЦПМ, составляют: 21-50 Гц при времени облучения 15-20 с. На фотографии (фиг. 3) показаны изменения эритроцитов кошки (агрегированные, каплевидные или вытянутые - 3.1), образование булавовидных утолщений ЦПМ и разные стадии изменения ядер лейкоцитов.
Облучение УЗ 0,7 Вт/см2 в течение 15-20 с частотным диапазоном модуляции 21-50 Гц деформировало безъядерные клетки размера 4-8 мкм, изменяло проницаемость ЦПМ ядросодержащих клеток размером 5-17 мкм, вызывало лизис ядер. Направленное воздействие вызывало вначале изменение формы эритроцитов, без внешних признаков разрушения или цитолиза, затем регистрировали формирование групп вокруг клеток и цитоцепочек. Возможно, было появление теней клеток. В зависимости от экспозиции во всех клетках ткани кошачьих происходили одинаковые эффекты: цитолиз, деструкция и агрегация клеток, вспенивание цитоплазмы гранулоцитов, разрыв ЦПМ, деформация и взрыв ядер. Изменение мембран и ядер лейкоцитов в зависимости от вида и размера клетки регистрировалось, при озвучивании активными частотами, как клеток крови больных, так и здоровых кошачьих.
На фотографиях (фиг. 4-6) показаны направления акустического воздействия на клетки ткани. После облучения УЗ с интенсивностью 0,4 Вт/см2 частотой модуляции 30 Гц в течение 20 с (фиг. 4) видно изменение клетки. По-видимому, это гранулоцит, т.к. просматривается зернистость: базофил, или сегментоядерный нейтрофил, или эозинофил, с деформированным ядром. В результате влияния интенсивностью 0,7 Вт/см2, частотой модуляции 21 Гц в течение 18 с менялась структура ЦПМ, а затем шло разрушение ядер лейкоцитов. На фиг. 5 - разрыв цитоплазмы и деформация ядра, вероятно, сегментоядерного лейкоцита. На фиг. 6 видны изменения ядра, вспенивание цитоплазмы лейкоцита после УЗ экспозиции 0,7 Вт/см2, модуляции 22 Гц, в течение 20 с. Так как структура неоднородна, можно предположить, что это палочкоядерный нейтрофил. Во многих случаях цитологические изменения столь значительны, что клетки идентифицировать было сложно (фиг. 4-6).
Выводы.
1. Предложена схема ультразвукового воздействия на суспензии клеток-мишеней тканей представителей семейства кошачьих в фиксированном, термостатируемом объеме и определена оптимальная 106 клеток/мл.
2. Показана общая закономерность влияния акустической волны выбранного диапазона действия на клетки крови всех представителей Семейства, не зависимо от вида животного.
3. Определены диапазоны частот управления и интенсивность, действующие направленно на цитоплазматические мембраны безъядерные клеток размера до 4 мкм: 0,05 Вт/см2 вблизи частот 700-800 Гц, и времени ультразвукового воздействия от 10 с до 45 с.
4. Интенсивностью 0,05 Вт/см2, частота модуляции 700-800 Гц в течение 30-45 с направленно действует на клеточные ядра клеток тканей представителей Семейства кошачьих. Происходит разрушение ядер ядросодержащих клеток размера 5-17 мкм и изменение объема их цитоплазмы.
5. Интенсивностью 0,05 Вт/см2, частота модуляции 700-800 Гц в течение 10-45 с способна изменить проницаемость ЦПМ безъядерных клеток размером до 4 мкм.
6. Применение УЗ в диапазонах интенсивности 0,4-0,7 Вт/см2, частот модуляции 21-50 Гц, в течение 15-20 с приводило к цепи взаимосвязанных эффектов: изменению проницаемости ЦПМ, вспениванию цитоплазмы, разрушению ЦПМ и/или ядер всех клеток размера 4-17 мкм.
7. Облучение интенсивностью 0,4-0,7 Вт/см2 частотами модуляции 21-50 Гц в течение 15-20 с оказывало эффект на цитоплазматическую мембрану и ядросодержащих клеток размера 5-17 мкм и безъядерных 4-8 мкм - клеток.
Список литературы
1. Олешкевич А.А., Каминская Е.В., Носовский A.M. Экспериментально-теоретическое обоснование методов увеличения продукции клеток различной этиологии после обработки акустическими (УЗ) волнами. Ч. 2. Методика акустической стимуляции клеток животного происхождения // Биомед. радиоэлектр. 2014 - №. 3. С. 33-39.
2. Олешкевич А.А., Пашовкин Т.Н. Возможность изменения лейкограмм животных при действии непрерывного ультразвука терапевтического диапазона интенсивностей // Аграрная Россия.-№6 (2015). С 13-17.
3. Oleshkevich, АА. Studies of frequency-dependent changes under modulated ultrasound exposure on cells in suspension // International Journal of BioMedicine. N.-Y.: "Int. Medical Research and Development Corporation". V. 4, Issue 1, March 2015. P. 30-34.
4. Олешкевич A.A., Пашовкин Т.Н. Количественный анализ действия модулированного ультразвука на некоторые клетки тканей животных // Ветеринария, зоотехния и биотехнология. 2014 - №5. С. 27-33.
5. Олешкевич А.А., Носовский A.M., Каминская Е.В. Экспериментально-теоретическое обоснование методов увеличения продукции клеток различной этиологии после обработки акустическими (ультразвуковыми) волнами. Ч. 3. Сравнительный анализ методов оценки функционального состояния клеток после ультразвукового воздействия // Биомедицинская радиоэлектроника, 2014 - №.8. - С. 45-49.
6. Олешкевич А.А., Кутликова И.В. Влияние ультразвука на лимфоциты и сегментоядерные нейтрофилы // Научное обозрение. - 2015. - №13. - С. 145-150.
7. Олешкевич А.А. Действие непрерывного и модулированного ультразвука на клетки крови животных in vitro /V Съезд биофизиков России. Материалы докладов: в 2 т. - Ростов-на-Дону: ЮФУ. - Т. 2: 2015. - С. 107.
8. Утешев В.К., Пашовкин Т.Н., Гахова Э.Н. Выживаемость зародышей амфибий после воздействия модулированного ультразвука терапевтического диапазона //Вестник новых медицинских технологий, 2010, №4, С. 7-10.
9. Максутова Д.Ж Применение фокусированного ультразвука под контролем магнитно-резонансной томографии // Проблемы репродукции / Russian Journal of Human Reproduction. 2009. №2. С. 30-36.
10. Panagopoulos D.J., Karabarbounis A., Margaritisa L.H. Mechanism for action of electromagnetic fields on cells //Biochemical and Biophysical Research Communications 298. 2002. P. 95-102.
11. Пашовкина M.C., Акоев И.Г., Пашовкин Т.Н. Изменение активности некоторых ферментов животных и человека при воздействии модулированных микроволн и феномены выявления нелинейных эффектов.// Биологические эффекты слабых электромагнитных излучений. Пущино. 2002. С. 26-37.
12. Пашовкина М.С., Акоев И.Г. Изменение активности щелочной фосфатазы в сыворотке крови морских свинок iv vivo при действии амплитудно-модулированного сверхвысокочастотного электромагнитного поля (2375 МГц) // Биофизика. 2000. - Т. 45, Вып. 1. С. 130-136.
13. Скибо Ю.В., Абрамова З.И. Методы исследования программируемой клеточной гибели: - Казань: ФГАОУ ВПО КФУ, 2011. - 61 с.
14. Бурмистров Е.Н. Шанс Био: Лабораторная диагностика. М., 2006. - 154 с.
15. Кондрахин И.П., Курилов Н.В., Малахов А.Г. и др. Клиническая лабораторная диагностика в ветеринарии. - М.: Агропромиздат, 1985. - с. 59-64.
16. Любин Н.А., Конова Л.Б. Методические рекомендации к определению и выведению гемограммы у сельскохозяйственных и лабораторных животных при патологиях. Ульяновск, ГСХА, 2005, с. 113.

Claims (3)

1. Способ направленного акустического воздействия на функциональное состояние клеток-мишеней тканей представителей семейства кошачьих, включающий воздействие на клеточную суспензию модулированной ультразвуковой волной с несущей частотой 0,88 МГц, диапазонами интенсивностей 0,4-0,7 Вт/см2 и частот модуляции 21-50 Гц в течение 15-20 с при направлении действия на цитоплазматическую мембрану безъядерных клеток размера 4-8 мкм, а также одновременно на ЦПМ и ядра ядросодержащих клеток размера 5-17 мкм, или интенсивностью 0,05 Вт/см2, частотой модуляции 700-800 Гц в течение 30-45 с при выборе в качестве мишени ядер 5-17 мкм - клеток, содержащих ядро, а в течение 10-45 с - ЦПМ безъядерных клеток размера до 4 мкм, с последующим приготовлением мазков, их окраской дифференциальными красителями, анализом морфологического состояния клеток, при этом по окраске клетки в синий цвет, началу деформации, изменению клеточного размера, состоянию и изменению проницаемости ЦПМ, по морфологическим изменениям: деформации или степени изменения структуры ядер, ядерному лизису или разрушению ядер - определяют наличие и регулируют направление и глубину эффекта акустического воздействия; оценивают индивидуальную репарационную систему клетки, рост и размножение клеток-мишеней, активность внутриклеточных и мембран-связанных ферментов.
2. Способ по п. 1, характеризующийся тем, что для воздействия используется клеточная суспензия объемом от 1,0 до 1,5 мл.
3. Способ по п. 1 и 2, характеризующийся тем, что клеточная суспензия содержит (6-7)×106 клеток/см3.
RU2016116741A 2016-04-28 2016-04-28 Способ направленного акустического воздействия на функциональное состояние клеток-мишеней тканей представителей семейства кошачьих RU2617374C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016116741A RU2617374C1 (ru) 2016-04-28 2016-04-28 Способ направленного акустического воздействия на функциональное состояние клеток-мишеней тканей представителей семейства кошачьих

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016116741A RU2617374C1 (ru) 2016-04-28 2016-04-28 Способ направленного акустического воздействия на функциональное состояние клеток-мишеней тканей представителей семейства кошачьих

Publications (1)

Publication Number Publication Date
RU2617374C1 true RU2617374C1 (ru) 2017-04-24

Family

ID=58643228

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016116741A RU2617374C1 (ru) 2016-04-28 2016-04-28 Способ направленного акустического воздействия на функциональное состояние клеток-мишеней тканей представителей семейства кошачьих

Country Status (1)

Country Link
RU (1) RU2617374C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2707361C1 (ru) * 2019-03-20 2019-11-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет"(ОмГТУ) Способ изготовления изделий из композиционных материалов

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2472545C1 (ru) * 2011-07-28 2013-01-20 Вера Александровна Хохлова Способ неинвазивного разрушения расположенных за костями грудной клетки биологических тканей
RU2527345C1 (ru) * 2013-04-05 2014-08-27 ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "НИЖЕГОРОДСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ" МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РФ (ГБОУ ВПО "НижГМА" МИНЗДРАВА РОССИИ) Cпособ индуцированных повреждений днк в индивидуальных неделимых ядросодержащих клетках
RU2574881C1 (ru) * 2014-12-15 2016-02-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московская государственная академия ветеринарной медицины и биотехнологии - МВА имени К.И. Скрябина" (ФГБОУ ВО МГАВМиБ - МВА имени К.И. Скрябина) Способ диагностики наличия заболевания у животных по изменению лейкограммы после ультразвукового воздействия

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2472545C1 (ru) * 2011-07-28 2013-01-20 Вера Александровна Хохлова Способ неинвазивного разрушения расположенных за костями грудной клетки биологических тканей
RU2527345C1 (ru) * 2013-04-05 2014-08-27 ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "НИЖЕГОРОДСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ" МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РФ (ГБОУ ВПО "НижГМА" МИНЗДРАВА РОССИИ) Cпособ индуцированных повреждений днк в индивидуальных неделимых ядросодержащих клетках
RU2574881C1 (ru) * 2014-12-15 2016-02-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московская государственная академия ветеринарной медицины и биотехнологии - МВА имени К.И. Скрябина" (ФГБОУ ВО МГАВМиБ - МВА имени К.И. Скрябина) Способ диагностики наличия заболевания у животных по изменению лейкограммы после ультразвукового воздействия

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MILLER MW et al., Comparative sensitivity of human erythrocytes and lymphocytes to sonolysis by 1-MHz ultrasound,Ultrasound Med Biol. 1997;23(4):635-8.-. *
MILLER MW et al., Comparative sensitivity of human erythrocytes and lymphocytes to sonolysis by 1-MHz ultrasound,Ultrasound Med Biol. 1997;23(4):635-8.-реферат. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2707361C1 (ru) * 2019-03-20 2019-11-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет"(ОмГТУ) Способ изготовления изделий из композиционных материалов

Similar Documents

Publication Publication Date Title
Liu et al. Nonthermal and reversible control of neuronal signaling and behavior by midinfrared stimulation
US11415503B2 (en) Microfluidic system and method with focused energy apparatus
Nyborg Biological effects of ultrasound: development of safety guidelines. Part II: general review
US20200363402A1 (en) Organoids related to immunotherapy and methods of preparing and using the same
CN102089418B (zh) 用于对细胞和生物分子进行计数的系统和方法
US10928298B2 (en) Microfluidic system and method with focused energy apparatus
JP5990177B2 (ja) 物質を音響的に処理するためのシステム
Hysi et al. Photoacoustic ultrasound spectroscopy for assessing red blood cell aggregation and oxygenation
JP2014519397A (ja) 音響処理容器及び音響処理方法
Kim et al. Label-free analysis of the characteristics of a single cell trapped by acoustic tweezers
Rubin et al. On the behaviour of living cells under the influence of ultrasound
CN111103272B (zh) 细胞特异性光敏效应的实时筛查与测量系统及方法
RU2617374C1 (ru) Способ направленного акустического воздействия на функциональное состояние клеток-мишеней тканей представителей семейства кошачьих
US11859177B2 (en) Theranostic methods and systems for diagnosis and treatment of malaria
US20150072337A1 (en) Theranostic methods and systems for diagnosis and treatment of malaria
Zhang et al. Ultrasound-mediated gene transfection in vitro: Effect of ultrasonic parameters on efficiency and cell viability
Burov et al. Nonlinear ultrasound: breakdown of microscopic biological structures and nonthermal impact on a malignant tumor.
RU2639805C2 (ru) Способ направленного неинвазивного воздействия на морфологическое состояние клеток-мишеней тканей представителей семейства кошачьих
RU2645076C2 (ru) Способ акустического неинвазивного воздействия на клетки-мишени тканей животных семейства собачьих
RU2639769C1 (ru) Способ направленного воздействия на клетки тканей животных отряда непарнокопытных
Saliev et al. Apoptotic and genotoxic effects of low-intensity ultrasound on healthy and leukemic human peripheral mononuclear blood cells
Oleshkevich Various in vitro effects of continuous and modulated ultrasound on blood cells of different animal species
CN205286322U (zh) 生物组织光声循环肿瘤细胞检测诊断装置
RU2699733C1 (ru) Способ лабораторной ультразвуковой диагностики ранних стадий жеребости
RU2672114C1 (ru) Способ лабораторной диагностики ранних стадий жерёбости кобыл

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180429