RU2616190C1 - Способ получения катализатора с наноразмерными частицами платины - Google Patents

Способ получения катализатора с наноразмерными частицами платины Download PDF

Info

Publication number
RU2616190C1
RU2616190C1 RU2016122586A RU2016122586A RU2616190C1 RU 2616190 C1 RU2616190 C1 RU 2616190C1 RU 2016122586 A RU2016122586 A RU 2016122586A RU 2016122586 A RU2016122586 A RU 2016122586A RU 2616190 C1 RU2616190 C1 RU 2616190C1
Authority
RU
Russia
Prior art keywords
platinum
catalyst
nanoparticles
carbon
anode
Prior art date
Application number
RU2016122586A
Other languages
English (en)
Inventor
Владимир Ефимович Гутерман
Иван Николаевич Новомлинский
Анастасия Анатольевна Алексеенко
Сергей Валерьевич Беленов
Галина Геннадьевна Цветкова
Елена Николаевна Балакшина
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" filed Critical федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет"
Priority to RU2016122586A priority Critical patent/RU2616190C1/ru
Application granted granted Critical
Publication of RU2616190C1 publication Critical patent/RU2616190C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation

Landscapes

  • Catalysts (AREA)

Abstract

Изобретение относится к электролитическим способам нанесения покрытий на углеродный носитель из растворов металлов группы платины и может быть использовано для получения платиноуглеродных катализаторов, используемых в химических источниках тока, в частности в низкотемпературных топливных элементах. Способ получения катализатора с наноразмерными частицами платины заключается в электроосаждении платины на углеродный носитель в виде суспензии с добавкой гексахлорплатиновой кислоты концентрацией 10-250 г/дм3 в двухэлектродной ячейке с разделенным анодным и катодным пространством. Анод выполнен из инертного материала. Под действием постоянного электрического тока, отнесенного к единице площади поверхности катода и равного 4-10 А/см2, при перемешивании углеродной суспензии в католите с помощью магнитной мешалки происходит электроосаждение платины на углеродный носитель. Технические результаты: получение катализатора с закрепленными на углеродном носителе нанокристаллами платины размером менее 5 нм с совокупной электрохимически активной площадью поверхности наночастиц платины более 30 м2/г (Pt) при равномерном распределении наночастиц платины по поверхности углеродного носителя. 3 з.п. ф-лы, 1 табл., 5 ил., 8 пр.

Description

Изобретение относится к электролитическим способам нанесения покрытий на углеродный носитель из растворов металлов группы платины и может быть использовано для получения платиноуглеродных катализаторов, используемых в химических источниках тока, в частности в низкотемпературных топливных элементах.
Основной характеристикой в гетерогенном катализе является эффективная удельная поверхность катализатора, то есть поверхность частиц катализатора, на которой протекают электрохимические процессы, отнесенная к массе нанесенного на носитель катализатора. В настоящее время получены катализаторы, содержащие наночастицы, размер которых лежит в диапазоне 1-100 нм.
Большинство известных способов получения катализатора с наночастицами платины на углеродном носителе осуществляется химическими методами, заключающимися в восстановлении соединений платины на углеродном носителе.
Известны химические методы получения металл-углеродных наноструктурированных композиционных материалов. В первую очередь, это методы синтеза в жидкой фазе, наиболее распространенными из которых являются так называемые боргидридный (Ma Н-С., Effect of borohydride as reducing agent on the structures and electrochemical properties of Pt/C catalyst/ Ma H-C., Xue X-Z., Liao J-H. et al. // Appl. Surface Science. - 2006. - V. 252. - P. 8593-8597) [1], (RUS 2367520, МПК B01J 23/42, B01J 21/18, B82B 1/00, B01J 37/34, опубл. 20.09.2009) [2], формальдегидный (Zhenhua Zhou, Preparation of highly active Pt/C cathode electrocatalysts for DMFCs by an improved aqueous impregnation method / Zhenhua Zhou, Suli Wang, Weijiang Zhou, Luhua Jiang, Guoxiong Wang, Gongquan Sun, Bing Zhou, Qin Xin // J.Physical Chemistry Chemical Physics. - 2003. - №5. - 5485-5488) [3], (US 9343747, МПК H01M 6/00; H01M 4/88; H01M 4/92; H01M 8/10 опубл. 17.04.2014) [4], полиольный (Григорьев C.A. Синтез и исследования наноструктурных катализаторов для электрохимических систем с твердым полимерным электролитом / Журн. Электрохимическая энергетика. - 2009. - Т. 9. - №1. - с. 18-24) [5].
Эти способы находятся на стыке науки и искусства экспериментатора, т.к. даже незначительное изменение одного из параметров или условий синтеза может привести к ухудшению характеристик катализатора. В то же время каждый из данных способов обладает своими достоинствами и недостатками.
Химические методы синтеза в жидкой фазе (в растворах) являются достаточно простыми и не требуют дорогостоящего оборудования. В то же время они трудоемки, не всегда характеризуются высокой степенью воспроизводимости, не позволяют контролировать рост нанообъектов. Введение в состав раствора токсичной органической фазы негативно влияет на характеристики получаемых платиноуглеродных катализаторов вследствие адсорбции органических молекул на поверхности и в порах углеродного носителя и последующего влияния на электрохимические реакции.
Более перспективными, с точки зрения управления морфологией поверхности катализатора и чистоты получаемого продукта, представляются электрохимические способы получения наночастиц.
Электрохимические процессы могут осуществляться в двух-, трех- или четырехэлектродных ячейках с применением различных режимов: гальваностатического, потенциостатического, импульсного режима, режима переменного тока и т.д. Для контроля роста наночастиц металлов широкие возможности представляет варьирование потенциала и плотности пропускаемого тока (Смирнова Н.В. Электрохимическое разрушение платины - новый путь синтеза наноразмерных Pt/C катализаторов для низкотемпературных топливных элементов / Смирнова Н.В., Куриганова А.Б. // Инженерный вестник Дона. - 2011. - Т. 15. - №1. - С. 310-314) [6].
Известен способ получения Ме/С наноструктурированных композиционных материалов электроосаждением металлов на закрепленный носитель (Багоцкий В.С, Топливные элементы. Современное состояние и основные научно-технические проблемы / B.C. Багоцкий, Н.В. Осетрова, A.M. Скундин // Журн. Электрохимия. - 2003. - Т. 39. - №. 9. - С. 1027-1045) [7]. На поверхность стеклографитового электрода после предварительной подготовки с помощью полимерного связующего Nafion закрепляется пористый слой углеродного носителя. Углеродная суспензия наносится на торец стеклоуглеродного электрода и после высушивания покрывается небольшим количеством раствора Nafion с целью более прочного закрепления слоя на торце диска. Последующее электроосаждение платины на стеклографитовый вращающийся дисковый катод с нанесенным слоем углеродного порошка проводится в трехэлектродной ячейке при комнатной температуре. Электролитом при этом является раствор, содержащий смесь 1 М H2SO4 и 5 мМ H2PtCl6. Во время протекания электрического тока на поверхности углерода формируются наночастицы платины. Следует отметить, что осаждение платины протекает неравномерно - только на поверхности слоя углеродного порошка. В глубине закрепленного слоя носителя рост наночастиц не наблюдается, что подтверждается данными, полученными сканирующей электронной микроскопией (Беленов С.В. Влияние добавки этиленгликоля на морфологические особенности электролитических осадков платины / Беленов С.В., Гебретсадик В.Й., Гутерман В.Е., Скибина Л.М., Лянгузов Н.В. // Журн. Конденсированные среды и межфазные границы. - 2015. - Т. 17. - №1 - с. 37-49 фиг. 3) [8]
Развитием способа [8] являются способы получения катализатора с наноразмерными частицами платины, в которых при пропускании переменного электрического тока через ячейку с платиновыми электродами можно добиваться их разрушения на наночастицы платины (Куриганова А.Б., Электрохимический способ получения нанодисперсного Pt/C катализатора и перспективы его применения в низкотемпературных топливных элементах / Куриганова А.Б. Герасимова Е.В., Леонтьев И.Н., Смирнова Н.В., Добровольский Ю.А. // Международный научный журнал "Альтернативная энергетика и экология". - 2011. - №5. - С. 58-62) [9], (Леонтьева Д.В. Синтез Pt-NiO/c катализаторов для топливных элементов путем электрохимического диспергирования металлов под действием переменного импульсного тока / Леонтьева Д.В., Леонтьева Д.В., Смирнова Н.В. // Международный научный журнал "Альтернативная энергетика и экология". - 2012. - №10. - С. - 59-63) [10], (Липкин М.С. Изучение возможности катодной интеркаляции щелочных металлов в платину под действием переменного импульсного тока/ Липкин М.С., Смирнова Н.В., Куриганова А.Б. // Инженерный вестник Дона. - 2012. - Т. 19. - №1. - С. 60-64) [11].
Для получения наночастиц платины указанными способами не требуется введение в состав электролита токсичной органической фазы и нагревание, присущие химическим способам.
Наиболее близким по технической сущности к заявляемому изобретению является способ получения катализатора с наноразмерными частицами платины (RU 2424850 МПК6 B01J 37/34, B01J 23/42, B01J 32/00, В82В 1/00, опубликовано 27.07.2011) [12], принимаемый за прототип.
Платиновые электроды погружают в раствор гидроксида щелочного металла концентрацией 2-6 моль/л и подключают электроды к источнику переменного тока частотой 50 Гц. Среднюю величину тока, отнесенную к единице площади поверхности электродов, устанавливают в диапазне 0,3-1,5 А/см2. Известный способ позволяет получить наночастицы платины размером 5-80 нм без использования токсичных веществ и нагревания до высоких температур. При этом электрохимически активная площадь поверхности платины составляет не более 30 м2/г (Смирнова Н.В. Структурные и электрокаталитические свойства катализаторов Pt/C и Pt-Ni/C, полученных методом электрохимического диспергирования/ Смирнова Н.В., Куриганова А.Б., Леонтьева Д.В., Леонтьев И.Н., Михеикин A.L. // Кинетика и катализ. - 2013. - Т. 54. - №2. - С. 265-272) [13].
Недостатком способа-прототипа является невозможность получения наночастиц платины размером менее 5 нм и с электрохимически активной площадью поверхности платины более 30 м2/г (Pt). Первое обусловлено тем, что при разрушении платинового электрода в щелочной среде происходит отрыв зерен (нанокристаллов) или агломератов зерен металла размером 5 и более нанометров. Такой размер нанокристаллов определяется структурой исходного платинового электрода и не может быть изменен посредством изменения условий диспергирования платины. Второе обусловлено тем, что средний диаметр металлических наночастиц, полученных данным способом, значительно выше 5 нм, поэтому электрохимически активная площадь совокупной поверхности платины имеет низкое значение.
Задачей заявляемого способа является получение катализатора с закрепленными на углеродном носителе нанокристаллами платины размером менее 5 нм с совокупной электрохимически активной площадью поверхности наночастиц платины более 30 м2/г (Pt) при равномерном распределении наночастиц платины по поверхности углеродного носителя.
Указанные технические результаты достигаются тем, что способ получения катализатора с наноразмерными частицами платины заключается в электроосаждении платины в двухэлектродной ячейке с разделенным анодным и катодным пространством, анод которой выполнен из инертного материала, на углеродный носитель, диспергированный в водном растворе гексахлорплатиновой кислоты концентрацией 10-250 г/дм3, поддерживаемой путем периодического внесения порций концентрированного раствора в раствор электролита, и фонового электролита, находящемся в катодном пространстве, под действием постоянного электрического тока, отнесенного к единице площади поверхности катода и равного 4-10 А/см2, при перемешивании углеродной суспензии в католите с помощью магнитной мешалки.
В частных случаях выполнения:
- анод выполнен из графита;
- анод выполнен из платины;
- в качестве фонового электролита использован водный раствор серной кислоты концентрацией не менее 192 г/дм3.
В отличие от прототипа осаждение платины происходит на углеродный носитель не за счет разрушения металла, а за счет образования новых частиц путем восстановления платины на поверхности углеродного носителя в момент прикосновения частицы углерода к металлическому катоду, что позволяет получить наночастицы меньшего диаметра и с большей электрохимически активной площадью поверхности, чем у прототипа. При этом способ осуществляется без применения органических растворителей и повышенных температур.
Способ получения катализатора с наноразмерными частицами платины поясняется фигурами чертежей.
Фиг. 1 - Схема двухэлектродной ячейки с разделенным анодным и катодным пространством для осуществления заявляемого способа.
Фиг. 2 - Рентгеновская дифрактограмма Pt/C катализатора, полученного заявляемым способом.
Фиг. 3 - Фотография поверхности Pt/C катализатора, полученного электроосаждением на закрепленный на поверхности электрода углеродный носитель, описанным в статье [8].
Фиг. 4 - Фотография поверхности Pt/C катализатора, полученного заявляемым способом, подтверждающая равномерность распределения наночастиц платины по поверхности углеродного носителя.
Фиг. 5 - Циклическая вольтамперограмма Pt/C катализатора, полученная на бипотенциостате PINE.
Двухэлектродная ячейка для осуществления заявляемого способа (фиг. 1) содержит стеклянный корпус 1, в котором размещен катод 2, графитовый (платиновый) анод 3 в электролите 4, содержащем водный раствор серной кислоты концентрацией не менее 192 г/дм3 для создания достаточной электропроводности раствора электролита. В отсек, содержащий катод 2, помещают углеродную суспензию 5 на основе водного раствора, содержащего гексахлорплатиновую кислоту концентрацией 10-250 г/дм3, которая поддерживается путем периодического внесения порций концентрированного раствора кислоты в раствор электролита 4, и магнитный мешальник 6. Двухэлектродную ячейку устанавливают на магнитную мешалку. Катод 2 подключают к отрицательному полюсу источника постоянного тока 7, а анод 3 - к положительному полюсу и пропускают постоянный электрический ток, величина которого, отнесенная к единице площади поверхности катода 2, составляет 4-10 А/см2.
В результате электрохимической реакции происходит электроосаждение платины в виде наночастиц на поверхность углеродного носителя. Влияние заявляемых интервалов плотности тока и концентрации гексахлорплатиновой кислоты на размер кристаллитов и электрохимически активную площадь поверхности наночастиц платины подтверждены экспериментально и приведены в таблице.
Количество осажденной на углеродный носитель платины определяли методом гравиметрии. Для этого в прокаленный до постоянной массы тигель помещали навеску Pt/C материала порядка 0,01 г и выдерживали в течение 40 минут в муфельной печи, предварительно прогретой до температуры 800°С. По несгораемому остатку платины определяли процентное содержание металла в образце.
Для определения состава образца и наличия в нем наночастиц металлов использовали рентгенофазовый анализ. По полученным дифрактограммам (фиг. 2) определяли наличие платины в материале и средний размер (диаметр) ее частиц (кристаллитов). Определение среднего диаметра кристаллитов проводили по формуле Шеррера, в которую подставляли значение ширины пика на половине высоты максимального пика, отражаемого гранью металла 111:
D=Kλ/(FWHM cosθ),
где λ - длина волны монохроматического излучения (в Å),
FWHM - полуширина пика (в радианах),
D - средняя толщина «стопки» отражающих плоскостей в области когерентного рассеяния,
θ - половина угла отражения;
K=0.89 - постоянная Шеррера.
Микроструктуру образцов изучали методом сканирующей электронной микроскопии с полевой эмиссией (FE-SEM) на электронном микроскопе Hitachi SU8000. Съемку изображений (фиг. 4) вели в режимах регистрации вторичных и отраженных электронов при ускоряющем напряжении 5 кВ и рабочем расстоянии 9-10 мм. Сравнение микроструктуры образцов Pt/C материала, полученных способом, описанным в статье [8] (фиг. 3) и заявляемым способом (фиг. 4), подтверждает достижение равномерного распределения платины по поверхности углеродного носителя.
При проведении цикловольтамперометрического исследования использовали бипотенциостат AFCBP1 (PAIN). Для стандартизации поверхности платины и полного удаления примесей проводили 100 циклов развертки потенциала со скоростью 200 мВ/с в диапазоне потенциалов от 0 до 1 В (относительно СВЭ). Далее по площади пиков адсорбции и десорбции водорода (фиг. 5). проводили расчет количества электричества и оценку электрохимически активной площади поверхности платины, откуда следует, что количество электричества, затраченное на эти процессы, прямо пропорционально электрохимически активной площади поверхности платины.
Ниже приведены примеры выполнения изобретения.
Пример 1. Катализатор с наноразмерными частицами платины на углеродном носителе был изготовлен следующим образом. Материал получен в двухэлектродной ячейке. Анод - графит, катод - медная проволока. Плотность катодного тока 4 А/см2. Длительность пропускания тока 20 минут. Объем католита - 25 мл, масса углерода Vulkan-XC-72R составляет 0,5 г. Концентрированная гексахлроплатиновая кислота (H2РtСl6⋅6Н2O) подавалась в ячейку порциями для поддержания концентрации равной 250 г/дм3. Электролиз велся при постоянном перемешивании суспензии на магнитной мешалке. Полученную суспензию катализатора фильтровали, промывали дистиллированной водой, сушили при температуре 80°С в течение 1 часа. Вес наночастиц платины составил 13% от массы Pt/C катализатора. Размер наночастиц составил 3-19 нм. Электрохимически активная площадь поверхности составила 52 м2/г (Pt).
Пример 2. Процесс аналогичен приведенному в примере 1 и отличается тем, что длительность пропускания тока 5 минут. Концентрированная гексахлорплатиновая кислота (H2PtCl6⋅6H2O) подавалась в ячейку порциями для поддержания концентрации равной 10 г/дм3. Вес наночастиц платины составил 4% от массы катализатора. Размер наночастиц составил 3-14 нм. Электрохимически активная площадь поверхности составила 42 м2/г (Pt).
Пример 3. Процесс аналогичен приведенному в примере 1 и отличается тем, что плотность катодного тока равна 8 А/см2, длительность пропускания тока 11 минут. Концентрированная гексахлорплатиновая кислота (H2PtCl6⋅6H2O) подавалась в ячейку порциями для поддержания концентрации равной 200 г/дм3. Вес наночастиц платины составил 13% от массы катализатора. Размер наночастиц составил 4-20 нм. Электрохимически активная площадь поверхности составила 54 м2/г (Pt).
Пример 4. Процесс аналогичен приведенному в примере 2 и отличается тем, что плотность катодного тока равна 9 А/см2, длительность пропускания тока 10 минут. Концентрированная гексахлорплатиновая кислота (H2PtCl6⋅6H2O) подавалась в ячейку порциями для поддержания концентрации равной 230 г/дм3. Вес наночастиц платины составил 14% от массы катализатора. Размер наночастиц составил 3-18 нм. Электрохимически активная площадь поверхности составила 65 м2/г (Pt).
Пример 5. Процесс аналогичен приведенному в примере 2 и отличается тем, что плотность катодного тока равна 7 А/см2, длительность пропускания тока 12 минут. Концентрированная гексахлорплатиновая кислота (Н2PtCl6⋅6H2О) подавалась в ячейку порциями для поддержания концентрации равной 150 г/дм3. Вес наночастиц платины составил 10% от массы катализатора. Размер наночастиц составил 3-21 нм. Электрохимически активная площадь поверхности равна 56 м2/г (Pt).
Пример 6. Процесс аналогичен приведенному в примере 2 и отличается тем, что плотность катодного тока равна 10 А/см2, длительность пропускания тока 9 минут. Концентрированная гексахлорплатиновая кислота (H2PtCl6⋅6H2O) подавалась в ячейку порциями для поддержания концентрации равной 230 г/дм3. Вес наночастиц платины составил 14% от массы катализатора. Размер наночастиц составил 4-21 нм. Электрохимически активная площадь поверхности равна 59 м2/г (Pt).
Пример 7. Процесс аналогичен приведенному в примере 2 и отличается тем, что плотность катодного тока равна 5 А/см2, длительность пропускания тока 17 минут. Концентрированная гексахлорплатиновая кислота (Н2РCl6⋅6Н2O) подавалась в ячейку порциями для поддержания концентрации равной 70 г/дм3. Вес наночастиц платины составил 16% от массы катализатора. Размер наночастиц составил 5-21 нм. Электрохимически активная площадь поверхности равна 53 м2/г (Pt).
Пример 8. Процесс аналогичен приведенному в примере 2 и отличается тем, что плотность катодного тока равен 9 А/см2, длительность пропускания тока 10 минут. Концентрированная гексахлорплатиновая кислота (Н2РtCl6⋅6H2О) подавалась в ячейку порциями для поддержания концентрации равной 100 г/дм3. Вес наночастиц платины составил 14% от массы катализатора. Размер наночастиц составил 2-21 нм. Электрохимически активная площадь поверхности равна 65 м2/г (Pt).
Как видно из примеров 1-8 таблицы, предлагаемый способ позволяет получить катализаторы с размерами частиц платины 3-21 нанометров.
Разработана лабораторная технология электрохимического получения катализатора с наноразмерными частицами платины размером менее 5 нм с совокупной электрохимически активной площадью поверхности наночастиц платины более 30 м2/г (Pt) при равномерном распределении наночастиц платины по поверхности углеродного носителя.
Источники информации
1. Ma Н-С., Effect of borohydride as reducing agent on the structures and electrochemical properties of Pt/C catalyst/ Ma H-C, Xue X-Z., Liao J-H. et al. // Appl. Surface Science. - 2006. - V. 252. - P. 8593-8597.
2. RU 2367520, МПК B01J 23/42, B01J 21/18, B82B 1/00, B01J 37/34, опубл. 20.09.2009
3. Zhenhua Zhou, Preparation of highly active Pt/C cathode electrocatalysts for DMFCs by an improved aqueous impregnation method / Zhenhua Zhou, Suli Wang, Weijiang Zhou, Luhua Jiang, Guoxiong Wang, Gongquan Sun, Bing Zhou, Qin Xin // J. Physical Chemistry Chemical Physics. - 2003. - №5. - 5485-5488.
4. US 9343747, МПК H01M 6/00; H01M 4/88; H01M 4/92; H01M 8/10, опубл. 17.04.2014
5. Григорьев C.A. Синтез и исследования наноструктурных катализаторов для электрохимических систем с твердым полимерным электролитом/ Григорьев, С.А. // Журн. Электрохимическая энергетика. - 2009. - Т. 9. - №1. - с. 18-24.
6. Смирнова Н.В. Электрохимическое разрушение платины - новый путь синтеза наноразмерных Pt/C катализаторов для низкотемпературных топливных элементов / Смирнова Н.В., Куриганова А.Б. // Инженерный вестник Дона. - 2011. - Т. 15. - №1. -С. 310-314.
7. Багоцкий В.С. Топливные элементы. Современное состояние и основные научно-технические проблемы / B.C. Багоцкий, Н.В. Осетрова, A.M. Скундин // Журн. Электрохимия. - 2003. - Т.39. - №.9. - С. 1027-1045.
8. Беленов С.В. Влияние добавки этиленгликоля на морфологические особенности электролитических осадков платины / Беленов С.В., Гебретсадик В.Й., Гутерман В.Е., Скибина Л.М., Лянгузов Н.В. // Журн. Конденсированные среды и межфазные границы. - 2015. - Т. 17. - №1 - с. 37-49.
9. Куриганова А.Б. Электрохимический способ получения нанодисперсного Pt/C катализатора и перспективы его применения в низкотемпературных топливных элементах/ Куриганова А.Б., Герасимова Е.В., Леонтьев И.Н., Смирнова Н.В., Добровольский Ю.А. // Международный научный журнал "Альтернативная энергетика и экология". - 2011. - №5. - С. 58-62.
10. Леонтьева Д.В. Синтез Pt-NiO/c катализаторов для топливных элементов путем электрохимического диспергирования металлов под действием переменного импульсного тока / Леонтьева Д.В., Леонтьева Д.В., Смирнова Н.В. // Международный научный журнал "Альтернативная энергетика и экология". - 2012. - №10. - С. - 59-63.
11. Липкин М.С. Изучение возможности катодной интеркаляции щелочных металлов в платину под действием переменного импульсного тока / Липкин М.С., Смирнова Н.В., Куриганова А.Б. // Инженерный вестник Дона. - 2012. - Т. 19. - №1. - С. 60-64.
12. RU 2424850, МПК: B01J 1300, C01G 5500, В82В 100, опубл. 26.02.2009 - прототип.
13. Смирнова Н.В. Структурные и электрокаталитические свойства катализаторов Pt/C и Pt-Ni/C, полученных методом электрохимического диспергирования / Смирнова Н.В., Куриганова А.Б., Леонтьева Д.В., Леонтьев И.Н., Михейкин А.С. // Кинетика и катализ. - 2013. - Т. 54. - №2. - С. 265.
Figure 00000001

Claims (4)

1. Способ получения катализатора с наноразмерными частицами платины, заключающийся в электроосаждении платины в двухэлектродной ячейке с разделенным анодным и катодным пространством, анод которой выполнен из инертного материала, на углеродный носитель, находящийся в катодном пространстве и диспергированный в водном растворе гексахлорплатиновой кислоты концентрацией 10-250 г/дм3 и фонового электролита, под действием постоянного тока, отнесенного к единице площади поверхности катода, равного 4-10 А/см2, при перемешивании углеродной суспензии в католите с помощью магнитной мешалки.
2. Способ по п. 1, отличающийся тем, что анод выполнен из графита.
3. Способ по п. 1, отличающийся тем, что анод выполнен из платины.
4. Способ по п. 1, отличающийся тем, что в качестве фонового электролита использован водный раствор серной кислоты концентрацией не менее 192 г/дм3.
RU2016122586A 2016-06-07 2016-06-07 Способ получения катализатора с наноразмерными частицами платины RU2616190C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016122586A RU2616190C1 (ru) 2016-06-07 2016-06-07 Способ получения катализатора с наноразмерными частицами платины

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016122586A RU2616190C1 (ru) 2016-06-07 2016-06-07 Способ получения катализатора с наноразмерными частицами платины

Publications (1)

Publication Number Publication Date
RU2616190C1 true RU2616190C1 (ru) 2017-04-13

Family

ID=58642477

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016122586A RU2616190C1 (ru) 2016-06-07 2016-06-07 Способ получения катализатора с наноразмерными частицами платины

Country Status (1)

Country Link
RU (1) RU2616190C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2656914C1 (ru) * 2017-09-19 2018-06-07 федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" Способ получения наноструктурного материала оксида олова на углеродном носителе
RU2660900C1 (ru) * 2017-06-15 2018-07-11 Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН) Способ получения наноструктурированных платиноуглеродных катализаторов
CN111413330A (zh) * 2020-05-07 2020-07-14 青岛科技大学 一种化学发光测定脱氧雪腐镰刀菌烯醇的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7589043B2 (en) * 2005-09-14 2009-09-15 Samsung Sdi Co., Ltd. Supported catalyst, electrode using the supported catalyst and fuel cell including the electrode
US20100300984A1 (en) * 2009-05-27 2010-12-02 Kastner James R Nanostructured Carbon Supported Catalysts, Methods Of Making, And Methods Of Use
US7955488B2 (en) * 2007-04-12 2011-06-07 National Tsing Hua University Process of electrodeposition platinum and platinum-based alloy nano-particles with addition of ethylene glycol
RU2455070C1 (ru) * 2011-04-12 2012-07-10 Нина Владимировна Смирнова Способ получения катализатора с наноразмерными частицами сплавов платины
RU2486958C1 (ru) * 2012-04-24 2013-07-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" Способ электрохимического получения катализатора pt-nio/c

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7589043B2 (en) * 2005-09-14 2009-09-15 Samsung Sdi Co., Ltd. Supported catalyst, electrode using the supported catalyst and fuel cell including the electrode
US7955488B2 (en) * 2007-04-12 2011-06-07 National Tsing Hua University Process of electrodeposition platinum and platinum-based alloy nano-particles with addition of ethylene glycol
US20100300984A1 (en) * 2009-05-27 2010-12-02 Kastner James R Nanostructured Carbon Supported Catalysts, Methods Of Making, And Methods Of Use
RU2455070C1 (ru) * 2011-04-12 2012-07-10 Нина Владимировна Смирнова Способ получения катализатора с наноразмерными частицами сплавов платины
RU2486958C1 (ru) * 2012-04-24 2013-07-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" Способ электрохимического получения катализатора pt-nio/c

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
С.В. Беленов, В.И. Гебретсадик и др. Формирование массива наночастиц при электроосаждении платины на стеклоуглерод и дисперсный углеродный носитель. Инженерный вестник Дона, номер 3, 2014. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2660900C1 (ru) * 2017-06-15 2018-07-11 Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН) Способ получения наноструктурированных платиноуглеродных катализаторов
RU2656914C1 (ru) * 2017-09-19 2018-06-07 федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" Способ получения наноструктурного материала оксида олова на углеродном носителе
CN111413330A (zh) * 2020-05-07 2020-07-14 青岛科技大学 一种化学发光测定脱氧雪腐镰刀菌烯醇的方法
CN111413330B (zh) * 2020-05-07 2023-04-18 青岛科技大学 一种化学发光测定脱氧雪腐镰刀菌烯醇的方法

Similar Documents

Publication Publication Date Title
CN109518222B (zh) 用于电催化co2还原至甲酸的铋基催化剂及其制备方法和应用
Han et al. Enhanced activity and acid pH stability of Prussian blue-type oxygen evolution electrocatalysts processed by chemical etching
Ahmed et al. Ultrafine iridium oxide nanorods synthesized by molten salt method toward electrocatalytic oxygen and hydrogen evolution reactions
Ng et al. Subnanometer silver clusters exhibiting unexpected electrochemical metastability on graphite
CN1101259C (zh) 以铂或银为主要成分的载带双金属的催化剂,它的制备方法及其在电化学电池中的应用
JP4270476B2 (ja) 高分散性金属コロイドの調製方法としての金属塩の電気化学的還元ならびに金属塩の電気化学的還元による基材に固定された金属クラスター
Hua et al. Pt nanoparticles supported on submicrometer-sized TiO2 spheres for effective methanol and ethanol oxidation
Liu et al. Morphology-controllable gold nanostructures on phosphorus doped diamond-like carbon surfaces and their electrocatalysis for glucose oxidation
CN111483999B (zh) 一种氮掺杂碳纳米管的制备方法、氮掺杂碳纳米管及其应用
RU2616190C1 (ru) Способ получения катализатора с наноразмерными частицами платины
Makarova et al. Direct electrochemical visualization of the orthogonal charge separation in anatase nanotube photoanodes for water splitting
Fang et al. Twenty second synthesis of Pd nanourchins with high electrochemical activity through an electrochemical route
Milikić et al. Gold nanorod-polyaniline composites: Synthesis and evaluation as anode electrocatalysts for direct borohydride fuel cells
US9446392B2 (en) Method for preparing proton-conducting particles capable of catalyzing the reduction of oxygen or the oxidation of hydrogen by grafting proton-conducting polymers to the surface of the particles
Liu et al. Design and preparation of electrocatalysts by electrodeposition for CO2 reduction
KR20200094003A (ko) 수소 생성 반응용 촉매 제조방법, 그에 의하여 제조된 촉매 및 그 촉매를 포함하는 수소 생성 반응전해액
Qiu et al. Anode Engineering for Proton Exchange Membrane Water Electrolyzers
Long et al. Improving the electrical catalytic activity of Pt/TiO 2 nanocomposites by a combination of electrospinning and microwave irradiation
Zhou et al. An efficient photocatalyst used in a continuous flow system for hydrogen evolution from water: TiO 2 nanotube arrays fabricated on Ti meshes
Kumar et al. Electro-oxidation of formic acid on composites from polycarbazole and WO3
Bai et al. Facile synthesis and electrocatalytic properties of dendritic palladium nanostructures
Kheirmand et al. Electrodeposition of platinum nanoparticles on reduced graphene oxide as an efficient catalyst for oxygen reduction reaction
Rasmi et al. Synthesis and characterization of nanostructured platinum coated titanium as electrode material
RU2424850C2 (ru) Способ получения катализатора с наноразмерными частицами платины
RU2656914C1 (ru) Способ получения наноструктурного материала оксида олова на углеродном носителе

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190608