RU2614283C1 - Устройство для диспергирования в жидкости капель или пузырей в микроканалах и способ его эксплуатации - Google Patents

Устройство для диспергирования в жидкости капель или пузырей в микроканалах и способ его эксплуатации Download PDF

Info

Publication number
RU2614283C1
RU2614283C1 RU2016105046A RU2016105046A RU2614283C1 RU 2614283 C1 RU2614283 C1 RU 2614283C1 RU 2016105046 A RU2016105046 A RU 2016105046A RU 2016105046 A RU2016105046 A RU 2016105046A RU 2614283 C1 RU2614283 C1 RU 2614283C1
Authority
RU
Russia
Prior art keywords
chamber
liquid
bubbles
micro
microchannel
Prior art date
Application number
RU2016105046A
Other languages
English (en)
Inventor
Руфат Шовкет оглы Абиев
Станислав Дмитриевич Светлов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный технологический институт (технический университет)"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный технологический институт (технический университет)" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный технологический институт (технический университет)"
Priority to RU2016105046A priority Critical patent/RU2614283C1/ru
Application granted granted Critical
Publication of RU2614283C1 publication Critical patent/RU2614283C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0403Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal
    • B01J8/0423Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more otherwise shaped beds
    • B01J8/0426Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more otherwise shaped beds the beds being superimposed one above the other
    • B01J8/043Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more otherwise shaped beds the beds being superimposed one above the other in combination with one cylindrical annular shaped bed

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Изобретение относится к устройствам для диспергирования капель или пузырей в микроканалах и может быть использовано для проведения процессов диспергирования газа в жидкости, одной жидкости в другой (эмульгирования), с сопутствующими реакционными, тепло- и массообменными процессами, например, для проведения процессов теплообмена, экстракции, газожидкостных реакций, реакций в системах жидкость-жидкость, абсорбции в химической, нефтехимической, фармацевтической, пищевой и других отраслях промышленности. В устройстве для диспергирования в жидкости капель или пузырей в микроканалах корпус состоит из камеры и микроканала. Камера расположена в месте ввода сред в устройство и выполнена в форме вытянутого эллипсоида, плавно сужающегося от срединного сечения к концам камеры. К одному из концов камеры присоединен патрубок подачи сплошной жидкой среды. К другому концу камеры присоединен микроканал, в котором протекает основной технологический процесс. Патрубок подачи дисперсной жидкой или газообразной среды выполнен в форме протяженной тонкостенной трубки, установленной соосно патрубку подачи сплошной жидкой среды и камере. Согласно способу применения устройства конец протяженной тонкостенной трубки устанавливают между плоскостью максимального поперечного сечения камеры и плоскостью присоединения к камере микроканала. Техническим результатом группы изобретений является обеспечение возможности поддержания стабильных гидродинамических условий ведения процесса, достижение заданной интенсивности перемешивания, обеспечивающей, в свою очередь, высокие значения коэффициентов тепло- и массоотдачи. Кроме того, техническим результатом является расширение диапазонов расходов сплошной и дисперсной фаз, что приводит к повышению универсальности устройства и возможности его применимости для процессов с различными параметрами. 2 н. и 1 з.п. ф-лы, 8 ил., 1 табл., 2 пр.

Description

Предлагаемое изобретение относится к устройствам для диспергирования капель или пузырей в микроканалах, в частности к аппаратам для проведения химических реакций и массообменных процессов, и может быть использовано для проведения процессов диспергирования газа в жидкости, одной жидкости в другой (эмульгирования), с сопутствующими реакционными, тепло- и массообменными процессами, например для проведения процессов теплообмена, экстракции, газожидкостных реакций, реакций в системах жидкость-жидкость, абсорбции в химической, нефтехимической, фармацевтической, пищевой и других отраслях промышленности.
Известно устройство для диспергирования капель или пузырей в микроканалах и проведения массообменных и реакционных процессов в системах жидкость-жидкость и жидкость-газ (МПК7 С01В 3/26, С07С 5/03, С07С 5/00, С07С 5/10, пат. США №6632414, 2003 г.). Аппарат содержит корпус протяженной формы с установленным в нем монолитным катализатором, состоящим из большого числа микроканалов, расположенных параллельно друг другу, патрубки для ввода исходных компонентов в корпус, устройство для диспергирования газа. В микроканалы подают газ и жидкость (либо две несмешивающиеся жидкости). В аппарате с монолитным катализатором в зависимости от соотношения расходов газа и жидкости может быть реализован один из следующих основных режимов течения: пузырьковый, снарядный, взрывной (эмульсионный) и пленочный (кольцевой). Наиболее эффективным для проведения газожидкостных реакций принято считать снарядный (другие названия - тейлоровский, сегментированный) режимы течения, когда газ движется в виде вытянутых пузырей - "снарядов", отделенных друг от друга жидкостными снарядами (пробками) (Бауэр Т. Интенсификация гетерогенно-каталитических газожидкостных реакций в реакторах с многоканальным монолитным катализатором / Т. Бауэр, М. Шуберт, Р. Ланге, Р.Ш. Абиев // Журн. прикл. химии, 2006, Т. 79, №7, С. 1057-1066; Kreutzer, М.Т. Multiphase monolith reactors: Chemical reaction engineering of segmented flow in microchannels / M.T. Kreutzer, F. Kapteijn, J.A. Moulijn, J.J. Heiszwolf // Chemical Engineering Science. - 2005. - V. 60 - P. 5895-5916). Благоприятными особенностями этого режима являются: хорошее перемешивание внутри жидкостных снарядов, возникающее при циркуляции в них жидкости, а также малая толщина пленки вокруг пузырей, что сокращает длину диффузионного пути для молекул газа.
К недостаткам известного устройства относятся: недостаточно равномерное распределение пузырьков и капель по сечению аппарата, изменение соотношения расходов жидкости и газа по длине аппарата в ходе вступления газа в реакцию с жидкостью, влекущее за собой изменение режима течения газожидкостной смеси в каналах. Кроме того, в известном изобретении не предусмотрены меры по формированию капель или пузырей дисперсной фазы с заданными размерами. Это приводит к тому, что в каждом из каналов формируются пузыри с большим разбросом размеров; большой разброс имеют также длины жидкостных снарядов. В итоге значительная часть микроканалов функционирует с показателями (коэффициентами тепло- и массообмена) существенно ниже расчетных значений, полученных исходя из предположения об идеальной картине формирования двухфазного потока в микроканалах.
Известно устройство - аналог предлагаемого изобретения - Т-образный смеситель (T-mixer) (Ребров Е.В. Режимы двухфазного течения в микроканалах // Теорет. основы хим. технологии, 2010, т. 44, №4, стр. 371-383), для которого характерен способ формирования пузырей (либо капель) путем передавливания формирующегося в смесителе пузыря (капли). При этом пузырь (капля) формируется в узком микроканале, обтекаясь потоком жидкости - сплошной фазы, движущейся в виде тонкой пленки. На процесс формирования пузыря (капли) влияет большое количество факторов: касательные напряжения на его поверхности, перепад давления между лобовой и тыльной частями пузыря (капли), силы поверхностного натяжения на границе отверстия, из которого истекает пузырь (капля), а также межфазное натяжение на поверхности микроканала, которое может быть асимметричным ввиду различия углов натекания и оттекания в лобовой и тыльной частях пузыря (капли). Сложная гидродинамическая обстановка вокруг формирующегося пузыря (капли), а также влияние на него близости стенок микроканала и их шероховатости предопределяет существенную нестабильность условий получаемых пузырей (капель) и их размеров, равно как и размеров жидкостных снарядов между ними. Все это, как указывалось выше, обуславливает ухудшение коэффициентов тепло- и массообмена в микроканалах и ведет к снижению эффективности оборудования.
Известно устройство - аналог предлагаемого изобретения - Y-образный смеситель (Y-mixer) (Ребров Е.В. Режимы двухфазного течения в микроканалах // Теорет. основы хим. технологии, 2010, т. 44, №4, стр. 371-383), для которого характерен способ формирования пузырей (либо капель) путем вытягивания и отрыва пузыря (капли). Большое количество влияющих условий и близость стенки микроканалов и в этом случае обуславливают нестабильность размеров получаемых пузырей (капель) и их, равно как и размеров жидкостных снарядов между ними. Таким образом, и в Y-образном смесителе складываются неблагоприятные условия для управления размерами элементов дисперсной и сплошной фазы, а значит, и показателями эффективности работы оборудования.
Наиболее близким по технической сущности к предлагаемому устройству является микрореактор (Ueno М., Hisamoto Н., Kitamori Т., Kobayashi S. Phase-transfer alkylation reactions using microreactors // Chem. Commun., 2003, pp. 936-937; Wegmann A., von Rohr P.R. Two phase liquid-liquid flows in pipes of small diameters // International Journal of Multiphase Flow, V. 32, 2006, pp. 1017-1028), представляющий собой трубку с поперечным диаметром от 100-200 мкм до 7 мм, ввод фаз в которую осуществляется либо под прямым углом (Т-образный смеситель), либо под острым углом примерно 30° (Y-образный смеситель).
К недостаткам известного устройства относятся невозможность регулировать условия диспергирования. Как и в устройствах-аналогах, в данном устройстве (в Т-образном и в Y-образном смесителях) складываются неблагоприятные условия для формирования размеров элементов дисперсной и сплошной фазы (капель и пузырей) и управления ими. Это приводит к ограничению области применения устройства узкими диапазонами расходов сплошной и дисперсной фаз, поскольку при изменении расходов существенно изменяется гидродинамическая обстановка в аппарате и нарушается благоприятный для тепло- и массообмена снарядный режим течения.
Задача предлагаемого изобретения заключается в поддержании стабильных гидродинамических условий ведения процесса, а именно в формировании в жидкости в микроканалах капель или пузырей с размерами, распределенными в достаточно узком диапазоне, а также обеспечение равного расстояния между соседними каплями или пузырями, что в итоге ведет к достижению заданной интенсивности перемешивания, обеспечивающей, в свою очередь, высокие значения коэффициентов тепло- и массоотдачи. Кроме того, задачей предлагаемого изобретения является расширение диапазонов расходов сплошной и дисперсной фаз, что приводит к повышению универсальности устройства и возможности его применимости для процессов с различными параметрами (физико-химическими свойствами сред и расходами компонентов). Еще одна задача предлагаемого изобретения - достижение возможности регулировать длину пузырей/плагов и слагов при заданном соотношении расходов фаз.
Поставленная задача достигается тем, что в устройстве для диспергирования в жидкости капель или пузырей в микроканалах, содержащем корпус, соединенные с ним патрубок подачи сплошной жидкой среды и патрубок подачи дисперсной жидкой или газообразной среды, согласно изобретению корпус состоит из камеры и микроканала, камера расположена в месте ввода сред в устройство и выполнена в форме вытянутого эллипсоида, плавно сужающегося от срединного сечения к концам камеры, к одному из концов камеры присоединен патрубок подачи сплошной жидкой среды, а к другому присоединен микроканал, в котором протекает основной технологический процесс, при этом патрубок подачи дисперсной жидкой или газообразной среды выполнен в форме протяженной тонкостенной трубки, установленной соосно патрубку подачи сплошной жидкой среды и камере.
Поставленная задача достигается также тем, что протяженная тонкостенная трубка сопряжена с корпусом устройства посредством подвижного соединения, а к протяженной тонкостенной трубке присоединен генератор механических колебаний.
Поставленная задача достигается также тем, что конец протяженной тонкостенной трубки устанавливают между плоскостью максимального поперечного сечения камеры и плоскостью присоединения к камере микроканала.
Заявляемые устройство и способ позволяют обеспечить стабильные (распределенные в достаточно узком диапазоне) размеры пузырей или капель дисперсной фазы, а также равные расстояния между соседними каплями или пузырями - в каплях сплошной фазы (так называемых слагах). Это гарантирует практически одинаковые гидродинамические условия во всех элементах как сплошной, так и дисперсной среды - пузырях или каплях и слагах: интенсивность тейлоровских вихрей, время циркуляции в каждом элементе, а значит, и равномерное распределение по длине микроканалов коэффициентов тепло- и массоотдачи. В результате предлагаемое изобретение позволяет более полно использовать возможности микроканалов, т.е. при равной длине микроканалов в них достигается более высокие значения тепловых и массовых потоков, увеличивается выход реакций.
Заявляемое техническое решение является новым, обладает изобретательским уровнем и промышленно применимо.
На фиг. 1 представлена схема предлагаемого устройства, на фиг. 2 - варианты расположения конца патрубка подачи дисперсной жидкой или газообразной среды в корпусе, на фиг. 3 - циркуляционные течения в пузырях (каплях) и слагах при реализации тейлоровского режима, на фиг. 4 - фотографии двухфазного течения (на примере системы вода-воздух) в микроканале в составе предлагаемого устройства, номера фотографий (A-G) соответствуют обозначениям поперечных сечений на фиг. 3; на фиг. 5 - механизм формирования и отрыва пузырей при расположении конца 7 тонкостенной трубки 6 между сечениями А и D; на фиг. 6 - механизм формирования и отрыва пузырей при расположении конца 7 тонкостенной трубки 6 в сечении D; на фиг. 7 - механизм формирования и отрыва пузырей при расположении конца 7 тонкостенной трубки 6 между сечениями D и F; на фиг. 8 - предлагаемое устройство, оборудованное генератором механических колебаний 14 с боковым вводом 15 сплошной жидкой фазы в патрубок 2.
На фиг. 1 изображено предлагаемое устройство, содержащее корпус 1, соединенный с ним патрубок 2 подачи сплошной жидкой среды и патрубок 3 подачи дисперсной жидкой или газообразной среды. Корпус 1 состоит из камеры 4 и микроканала 5. Камера 4 выполнена в форме вытянутого эллипсоида и расположена в месте ввода сред в устройство через патрубки 2 и 3. Эллипсоид плавно сужается от срединного сечения к концам камеры 4, к одному из концов камеры 4 присоединен патрубок 2 сплошной жидкой среды, а к другому присоединен микроканал 5. В микроканале 5 протекает основной технологический процесс (химические реакции, тепло- и массообменные процессы), при этом патрубок 3 подачи дисперсной жидкой или газообразной среды имеет форму протяженной тонкостенной трубки 6, установленной соосно патрубку 2 подачи сплошной жидкой среды камере 4, а конец 7 трубки 6 расположен между плоскостью D максимального поперечного сечения камеры и плоскостью F присоединения к камере 4 микроканала 5.
Предлагаемое устройство работает следующим образом. При подаче сред через патрубки 2 и 3 с заданным расходом, в зависимости от расположения конца 7 трубки 6 в камере 4, в микрореакторе возникает течение двухфазной среды, при этом целевым режимом является так называемый снарядный (тейлоровский) режим.
При этом в микрореакторе образуются пузыри 9 или капли дисперсной фазы (в англоязычной литературе за ними закрепилось название plugs - «плаги»), отделенные друг от друга каплями 8 сплошной фазы (международное название slugs - «слаги»). На фиг. 3 показана схема циркуляционных течений, возникающих в пузырях/плагах 9 и слагах 8 при реализации тейлоровского режима, а также параболические профили скорости жидкости в них, характерные для ламинарного режима течения. Благодаря тормозящему действию стенок микрореактора по отношению к движущимся жидкостям и действующими на поверхности стенок касательными напряжениями в каплях (плагах и слагах) возникают тороидальные (так называемые тейлоровские) вихри 10 и 11, которые способствуют хорошему перемешиванию, как в дисперсной, так и в сплошной фазе. Так, молекулы 13 вещества в пузырях или каплях (плагах) 9 быстро перемещаются вихрями Тейлора 11, в то же время молекулы вещества 12 в сплошной жидкой фазе в виде капель (слагов) 8 сплошной среды интенсивно переносятся вихрями Тейлора 10, при этом направления движения молекул на поверхности контактирующих фаз 8 и 9 противоположны. В результате частого столкновения и взаимодействия молекул резко возрастает вероятность их контакта, сопровождающегося протеканием рассматриваемой химической реакции. Кроме того, тейлоровские вихри 10 и 11 переносят молекулы из центральных слоев капель 8 и 9 на поверхность. Это способствует чрезвычайно высокой интенсификации процесса, увеличению конверсии и выхода реакции. Аналогичная картина наблюдается и для процессов теплопереноса: теплота переносится от стенок микроканала внутрь конвекцией благодаря тейлоровским вихрям.
Экспериментальные исследования показали, что при расположении конца 7 тонкостенной трубки 6 между сечениями А и D двухфазное течение имеет нерегулярный характер и большой разброс размеров пузырей/плагов и слагов (фиг. 4, А, В, С). При расположении конца 7 тонкостенной трубки 6 между сечениями D и F наблюдается регулярное течением с довольно узким распределением размеров пузырей/плагов и слагов (фиг. 4, D, Е, F).
Таким образом, размещение конца тонкостенной трубки между плоскостью максимального поперечного сечения камеры и плоскостью присоединения к камере микроканала позволяет:
1) обеспечить стабильность снарядного (тейлоровского) режима в миниканале 5;
2) регулировать длину пузырей/плагов и слагов при заданном соотношении расходов фаз за счет изменения положения конца 7 тонкостенной трубки 6.
При размещении в плоскости максимального поперечного сечения (сечение D) камеры 4 пузыри/плаги имеют длину, максимально достижимую при заданном соотношении расходов фаз, а по мере смещения конца 7 тонкостенной трубки 6 вправо, по направлению к плоскости присоединения к камере 4 микроканала 5 длина пузырей постепенно уменьшается (сечение Е), достигая минимального значения в сечении F. Смещение конца 7 тонкостенной трубки 6 правее плоскости присоединения к камере 4 микроканала 5 хоть и обеспечивает стабильный характер течения двухфазной среды, размер пузырей при этом начинает снова увеличиваться (фото на фиг. 4G), что затрудняет регулировку длину пузырей за счет смещения конца 7 тонкостенной трубки 6, поскольку зависимость длины пузырей от положения на участке F-G является возрастающей, а не убывающей, как на участке D-F (фиг. 5). Наличие для случая размещения конца 7 трубки 6 в сечении D в некоторых случаях приводит к образованию сателлитных (дочерних) пузырей малого диаметра; эти пузыри, как правило, по мере движения по микроканалу, движутся в следе длинных пузырей, быстро достигают их хвостовой части и сливаются с ними.
Как видно из фотографий, представленных на фиг. 4, при расположении конца 7 тонкостенной трубки 6 между сечениями А и D течение нестабильное, а размеры как пузырей/плагов, так и слагов имеют существенный разброс, что приводит к существенному различию в условиях протекания тепло- и массообменных процессов по длине микроканале, а в целом по микроканалу средняя интенсивность тепло- и массообмена снижается.
Указанные эффекты обусловлены различными механизмами формирования и отрыва пузырей при расположении конца 7 тонкостенной трубки 6 между сечениями А и D (фиг. 5), в сечении D (фиг. 6) и между сечениями D и F (фиг. 7). Стрелками показаны векторы скорости v и порождаемые движением жидкости касательные напряжения τ.
При расположении конца 7 тонкостенной трубки 6 между сечениями А и D жидкость в камере 4 расширяется, при этом средняя скорость в поперечном сечении падает, а давление возрастает, т.е. градиент давления на участке А-D положительный (фиг. 5). Скорость порождает касательные напряжения - явления вытягивания, а также «откусывания» пузырей пережимающими потоками жидкости, а давление препятствует отрыву. Поступающий в камеру 4 газ расширяется, заполняя почти весь объем камеры 4. Далее возможны два сценария: этот пузырь может либо сразу оторваться (режим «заполнения камеры», фиг. 5б), формируя вытянутый пузырь 9 (показан на фиг. 1), либо его рост может продолжиться с затягиванием носика пузыря в микроканал 5, его вытягиванием и отрывом (режим «заполнения камеры и затягивания», фиг. 5в). При этом могут отрываться пузыри разной длины и с разной периодичностью, что ведет к образованию пузырей с широким разбросом размеров.
При расположении конца 7 тонкостенной трубки 6 в сечении D (фиг. 6) градиент давления в зоне выхода пузыря близок к нулю и торможения пузыря не происходит. Вначале происходит частичное заполнение части камеры 4, расположенной правее сечения D (фиг. 6а, б), затем конец пузыря затягивается в микроканал 5 (фиг. 6в) и отрывается (фиг. 6г). Вследствие того что объем исходного пузыря, заполнившего правую часть камеры 4, достаточно велик, образующийся основной пузырь 9а имеет длину, равную нескольким диаметрам микроканала 5. В некоторых случаях (фиг. 4D) образуются мелкие сателлитные пузыри 96, которые движутся в следе основных пузырей 9а, догоняя их и сливаясь с ними. Этот режим можно назвать режимом «частичного заполнения камеры, затягивания и отрыва».
На участке D-F градиент давления отрицательный в соответствии с уравнением Бернулли, поскольку скорость возрастает от сечения D к сечению F (фиг. 7). Таким образом, давление на правом конце пузыря способствует его более раннему отрыву от конца 7 трубки 6. Формируемый на конце 7 трубки 6 пузырек сразу затягивается в микроканал 5. В силу того что в зоне сужения камеры 4 на входе в микроканал 5 (между сечениями D и F) скорость жидкости выше, чем в широкой части камеры 4, касательные напряжения τ на поверхности пузыря высокие и он сразу вытягивается, приобретая «снарядообразную» (сигарообразную) форму. Кроме того, касательные напряжения τ на поверхности пузыря также способствуют его более раннему отрыву. Все это в комплексе приводит к регулярному отрыву пузырей малой и средней длины, без образования сателлитного пузыря (режим затягивания и отрыва, фиг. 7в). В результате пузыри имеют достаточно узкое распределение по размерам. При заданном расходе сплошной и дисперсной фаз длина пузыря зависит от конкретного расположения конца 7 трубки 6 между сечениями D и F: чем правее располагается конец 7 трубки 6, тем меньше длина пузыря (фиг. 4D-F). Таким образом, путем установки конца 6 протяженной тонкостенной трубки 7 между плоскостью максимального поперечного сечения камеры и плоскостью присоединения к камере микроканала можно регулировать длину пузырей.
Расположение конца 7 трубки 6 правее сечения F, например в сечении G, приводит к некоторому увеличению размеров пузырей по сравнению с сечением F, что неудобно для управления размерами пузырей, имеющих большое значение для интенсификации тепло- и массопереноса (фиг. 4G). По этой причине конец 7 протяженной тонкостенной трубки 6 устанавливают между плоскостью D максимального поперечного сечения камеры 4 и плоскостью F присоединения к камере 4 микроканала 5.
Предлагаемое изобретение позволяет также расширить диапазоны расходов сплошной и дисперсной фаз, что достигается стабилизацией гидродинамики отрыва пузырей (фиг. 4D, E, F). Эксперименты, проведенные в широком диапазоне расходов сплошной и дисперсной фаз, показали результаты, аналогичные представленным на фиг. 4D, E, F. Все вышеуказанные закономерности для пузырей, относятся также к каплям дисперсной среды (плагам).
Согласно предлагаемому изобретению сопряжение патрубка 3 подачи дисперсной жидкой или газообразной среды с корпусом 1 устройства может выполняться посредством подвижного соединения (т.е. соединения, допускающего относительное перемещение патрубка 3 и трубки 6 относительно корпуса 1), при этом к патрубку присоединен генератор 14 механических колебаний, а патрубок 2 оснащен боковым вводом 15 сплошной жидкой фазы (фиг. 8). Колебания могут быть как продольными, так и поперечными. При включении генератора 14 трубка 6 совершает механические колебания (продольные или поперечные, показаны на фиг. 8 линиями с двунаправленными стрелками) относительно корпуса 1, благодаря силам инерции, действующим на присоединенную к пузырю массу жидкости, общий баланс сил, удерживающих пузырь на конце 7 трубки 6 и отрывающих пузырь, смещается в сторону отрывающих сил, и по этой причине пузыри отрываются, не достигая больших размеров. Кроме того, за счет стабилизации условий отрыва достигается более узкое распределение размеров пузырей и капель (слагов) между ними.
Таким образом, все отличительные признаки предлагаемого изобретения направлены на решение поставленной задачи.
Примеры конкретного выполнения
Пример 1. Гидрирование альфаметилстирола (α - метилстирола) в микроканале с использованием Т-образного смесителя.
Гидрирование АМС с помощью монолитного катализатора с активным элементом палладием (Pd) является модельной реакцией, так как она протекает при высоких скоростях реакции, а ее продуктом является только кумол.
Figure 00000001
Реакция имеет нулевой порядок относительно АМС при малой его концентрации, так как наблюдается его высокая адсорбция катализатором и первый порядок относительно водорода. Условия проведения реакции приведены в таблице. Палладий был нанесен на внутреннюю стенку микроканала диаметром 1 мм. Газ и жидкость подавались через патрубки Т-образного смесителя (Ребров Е.В. Режимы двухфазного течения в микроканалах // Теорет. основы хим. технологии, 2010, т. 44, №4, стр. 371-383): жидкость - через центральный патрубок, газ - через боковой.
Figure 00000002
Выбранному интервалу скоростей соответствует снарядный режим в микроканале. Исследования показали, что при использовании Т-образного диспергатора газа в микроканале наблюдается снарядный режим, но размеры пузырей имеют значительный разброс. Коэффициент вариации длины пузырей и слагов (жидкостных снарядов), определялся по известной формуле
Figure 00000003
где ML - средняя длина пузырей или слагов для заданного соотношения расходов жидкости и газа;
σL - среднее квадратическое отклонение длины пузырей или слагов для заданного соотношения расходов жидкости и газа.
Коэффициент вариации при использовании Т-образного смесителя колебался для длины пузырей в пределах от 0,3 до 0,6, а для слагов - от 0,4 до 0,75.
Измеренная скорость реакции составила при этих условиях 40 ммоль/ч (определялась по скорости убыли альфаметилстирола).
Пример 2. Гидрирование альфаметилстирола в микроканале с использованием предлагаемого изобретения.
Реакция, описанная в примере 1, была проведена с использованием предлагаемого изобретения. Конец 7 трубки 6 устанавливался в сечениях D, Е, F, при этом в микроканале устанавливался устойчивый снарядный режим течения (фиг. 4D-F), характеризуемый малым разбросом размеров пузырей и слагов.
Коэффициент вариации при использовании предлагаемого изобретения колебался для длины пузырей в пределах от 0,02 до 0,1, а для слагов - от 0,01 до 0,15.
Таким образом, при использовании предлагаемого изобретения разброс размеров пузырей в 6-15 раз меньше, а слагов - в 5-40 раз меньше, чем при применении традиционного Т-образного смесителя.
Измеренная скорость реакции составила при этих условиях 65 ммоль/ч (определялась по скорости убыли альфаметилстирола), что на 75% выше, чем при применении «традиционного» Т-образного смесителя. Указанный эффект достигается за счет интенсификации перемешивания в жидкостных снарядах (слагах), скорость которого зависит от их длины, а также за счет практически одинаковых размеров пузырей и слагов. Поскольку в микроканале отсутствуют чрезмерно длинные пузыри и слаги, не происходит снижения эффективности массообмена, наблюдаемого в «традиционном» Т-образном смесителе. При использовании предлагаемого изобретения в мкироканале создаются практически одинаковые гидродинамические условия во всех элементах как сплошной, так и дисперсной среды - пузырях или каплях и слагах: интенсивность тейлоровских вихрей, время циркуляции в каждом элементе, а значит, и равномерное распределение по длине микроканалов коэффициентов массоотдачи.
Приведенные примеры показывают существенный эффект при использовании предлагаемого изобретения.

Claims (3)

1. Устройство для диспергирования в жидкости капель или пузырей в микроканалах, содержащее корпус, соединенные с ним патрубок подачи сплошной жидкой среды и патрубок подачи дисперсной жидкой или газообразной среды, отличающееся тем, что корпус состоит из камеры и микроканала, камера расположена в месте ввода сред в устройство и выполнена в форме вытянутого эллипсоида, плавно сужающегося от срединного сечения к концам камеры, к одному из концов камеры присоединен патрубок подачи сплошной жидкой среды, а к другому присоединен микроканал, в котором протекает основной технологический процесс, при этом патрубок подачи дисперсной жидкой или газообразной среды выполнен в форме протяженной тонкостенной трубки, установленной соосно патрубку подачи сплошной жидкой среды и камере.
2. Устройство по п. 1, отличающееся тем, что протяженная тонкостенная трубка сопряжена с корпусом устройства посредством подвижного соединения, а к протяженной тонкостенной трубке присоединен генератор механических колебаний.
3. Способ применения устройства по пп. 1-2, заключающийся в том, что конец протяженной тонкостенной трубки устанавливают между плоскостью максимального поперечного сечения камеры и плоскостью присоединения к камере микроканала.
RU2016105046A 2016-02-15 2016-02-15 Устройство для диспергирования в жидкости капель или пузырей в микроканалах и способ его эксплуатации RU2614283C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016105046A RU2614283C1 (ru) 2016-02-15 2016-02-15 Устройство для диспергирования в жидкости капель или пузырей в микроканалах и способ его эксплуатации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016105046A RU2614283C1 (ru) 2016-02-15 2016-02-15 Устройство для диспергирования в жидкости капель или пузырей в микроканалах и способ его эксплуатации

Publications (1)

Publication Number Publication Date
RU2614283C1 true RU2614283C1 (ru) 2017-03-24

Family

ID=58453377

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016105046A RU2614283C1 (ru) 2016-02-15 2016-02-15 Устройство для диспергирования в жидкости капель или пузырей в микроканалах и способ его эксплуатации

Country Status (1)

Country Link
RU (1) RU2614283C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2675599C1 (ru) * 2018-02-05 2018-12-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный технологический институт (технический университет)" Безопасный способ получения 2-метил-5-нитротетразола и микрореактор для его осуществления
RU2718617C1 (ru) * 2019-10-11 2020-04-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный технологический институт (технический университет) Микродиспергатор для генерирования капель
RU2813892C1 (ru) * 2023-06-26 2024-02-19 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук Способ управления дисперсными потоками несмешивающихся жидкостей в микроканальном устройстве для создания капель микронного и субмикронного размера

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1258465A1 (ru) * 1985-04-23 1986-09-23 Ленинградский Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Технологический Институт Им.Ленсовета Устройство дл диспергировани несмешивающихс жидкостей
SU1502064A1 (ru) * 1987-01-28 1989-08-23 Дальневосточный политехнический институт им.В.В.Куйбышева Способ диспергировани жидкостей в потоке и устройство дл его осуществлени
US6632414B2 (en) * 2001-03-30 2003-10-14 Corning Incorporated Mini-structured catalyst beds for three-phase chemical processing
US6822128B2 (en) * 2000-12-27 2004-11-23 Corning Incorporated Flow control in a three-phase monolithic catalyst reactor
RU2348451C2 (ru) * 2007-04-03 2009-03-10 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный технологический институт (технический университет) Аппарат для проведения газожидкостных каталитических реакций (варианты)
RU2420349C1 (ru) * 2009-11-05 2011-06-10 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный технологический институт (технический университет)" Аппарат для проведения процессов в системах жидкость - газ и/или жидкость - жидкость и способ его эксплуатации
RU2534764C2 (ru) * 2012-12-04 2014-12-10 Валерий Винарович Арсланов Способ создания мелкодисперсного облака распыла жидкости и устройство для его осуществления

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1258465A1 (ru) * 1985-04-23 1986-09-23 Ленинградский Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Технологический Институт Им.Ленсовета Устройство дл диспергировани несмешивающихс жидкостей
SU1502064A1 (ru) * 1987-01-28 1989-08-23 Дальневосточный политехнический институт им.В.В.Куйбышева Способ диспергировани жидкостей в потоке и устройство дл его осуществлени
US6822128B2 (en) * 2000-12-27 2004-11-23 Corning Incorporated Flow control in a three-phase monolithic catalyst reactor
US6632414B2 (en) * 2001-03-30 2003-10-14 Corning Incorporated Mini-structured catalyst beds for three-phase chemical processing
RU2348451C2 (ru) * 2007-04-03 2009-03-10 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный технологический институт (технический университет) Аппарат для проведения газожидкостных каталитических реакций (варианты)
RU2420349C1 (ru) * 2009-11-05 2011-06-10 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный технологический институт (технический университет)" Аппарат для проведения процессов в системах жидкость - газ и/или жидкость - жидкость и способ его эксплуатации
RU2534764C2 (ru) * 2012-12-04 2014-12-10 Валерий Винарович Арсланов Способ создания мелкодисперсного облака распыла жидкости и устройство для его осуществления

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2675599C1 (ru) * 2018-02-05 2018-12-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный технологический институт (технический университет)" Безопасный способ получения 2-метил-5-нитротетразола и микрореактор для его осуществления
RU2718617C1 (ru) * 2019-10-11 2020-04-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный технологический институт (технический университет) Микродиспергатор для генерирования капель
RU2813892C1 (ru) * 2023-06-26 2024-02-19 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук Способ управления дисперсными потоками несмешивающихся жидкостей в микроканальном устройстве для создания капель микронного и субмикронного размера

Similar Documents

Publication Publication Date Title
Kashid et al. Gas–liquid and liquid–liquid mass transfer in microstructured reactors
Haase Characterisation of gas-liquid two-phase flow in minichannels with co-flowing fluid injection inside the channel, part II: gas bubble and liquid slug lengths, film thickness, and void fraction within Taylor flow
Tan et al. Mass transfer characteristic in the formation stage of gas–liquid segmented flow in microchannel
Li et al. Intensification of liquid–liquid two‐phase mass transfer in a capillary microreactor system
Yin et al. Dynamics and mass transfer characteristics of CO2 absorption into MEA/[Bmim][BF4] aqueous solutions in a microchannel
US20030145894A1 (en) Capillary reactor distribution device and method
Yang et al. Mass transfer characteristics of bubbly flow in microchannels
Shen et al. Numbering-up strategies of micro-chemical process: Uniformity of distribution of multiphase flow in parallel microchannels
Plouffe et al. Liquid–liquid mass transfer in a serpentine micro-reactor using various solvents
Yao et al. Bubble/droplet formation and mass transfer during gas–liquid–liquid segmented flow with soluble gas in a microchannel
Dang et al. Formation characteristics of Taylor bubbles in a microchannel with a converging shape mixing junction
RU2614283C1 (ru) Устройство для диспергирования в жидкости капель или пузырей в микроканалах и способ его эксплуатации
Su et al. Effect of viscosity on the hydrodynamics of liquid processes in microchannels
Yang et al. Experimental study of microbubble coalescence in a T-junction microfluidic device
Yu et al. Experiment and prediction of droplet formation in microfluidic cross-junctions with different bifurcation angles
Guo et al. Pressure drop model of gas-liquid flow with mass transfer in tree-typed microchannels
Surya et al. Alternating and merged droplets in a double T-junction microchannel
Abiev Effect of contact-angle hysteresis on the pressure drop under slug flow conditions in minichannels and microchannels
Prakash et al. Liquid-liquid mass transfer in a serpentine miniature geometry-effect on pressure drop
JP4523386B2 (ja) マイクロチャンネル内表面の部分化学修飾方法とマイクロチャンネル構造体
JP2011509814A (ja) 不混和液の液体反応のためのマイクロ流体装置および方法
Matsuoka et al. Design strategy of a microchannel device for liquid–liquid extraction based on the relationship between mass transfer rate and two-phase flow pattern
Zheng et al. Bubble generation rules in microfluidic devices with microsieve array as dispersion medium
Zheng et al. Stability and pressure drop of gas–liquid micro-dispersion flows through a capillary
Sheng et al. Ideality analysis and general laws of bubble swarm microflow for large-scale gas–liquid microreaction processes

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190216