RU2612672C1 - Способ изготовления монокристаллических рабочих лопаток газовых турбин - Google Patents

Способ изготовления монокристаллических рабочих лопаток газовых турбин Download PDF

Info

Publication number
RU2612672C1
RU2612672C1 RU2015150282A RU2015150282A RU2612672C1 RU 2612672 C1 RU2612672 C1 RU 2612672C1 RU 2015150282 A RU2015150282 A RU 2015150282A RU 2015150282 A RU2015150282 A RU 2015150282A RU 2612672 C1 RU2612672 C1 RU 2612672C1
Authority
RU
Russia
Prior art keywords
blade
blades
gas turbines
crystal
allowance
Prior art date
Application number
RU2015150282A
Other languages
English (en)
Inventor
Сергей Анатольевич Валиахметов
Валерий Анатольевич Михайлов
Сергей Германович Хаютин
Original Assignee
Акционерное общество "Научно-производственный центр газотурбостроения "Салют" (АО "НПЦ газотурбостроения "Салют")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-производственный центр газотурбостроения "Салют" (АО "НПЦ газотурбостроения "Салют") filed Critical Акционерное общество "Научно-производственный центр газотурбостроения "Салют" (АО "НПЦ газотурбостроения "Салют")
Priority to RU2015150282A priority Critical patent/RU2612672C1/ru
Application granted granted Critical
Publication of RU2612672C1 publication Critical patent/RU2612672C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/286Particular treatment of blades, e.g. to increase durability or resistance against corrosion or erosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • B22D27/045Directionally solidified castings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Изобретение относится к металлургии и может быть использовано для производства монокристаллических рабочих лопаток газовых турбин с повышенными характеристиками по ресурсу и рабочей температуре. При изготовлении монокристаллических рабочих лопаток газовых турбин отливают монокристаллическую заготовку лопатки заданной кристаллографической ориентации, удаляют с поверхности отливки пригар и остатки керамики пескоструйной обработкой с последующим контролем размеров лопатки для определения величины подлежащего удалению абразивной обработкой припуска. После удаления припуска осуществляют травление обработанной абразивом поверхности лопатки для удаления дефектного поверхностного слоя с искаженной кристаллической структурой. Затем проводят высокотемпературный отжиг лопатки. Изобретение позволяет повысить качество лопаток за счет стабилизации монокристаллической структуры рабочих лопаток турбин в процессе их производства. 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к металлургии и может быть использовано для производства монокристаллических рабочих лопаток газовых турбин с повышенными характеристиками по ресурсу и рабочей температуре.
Известен способ изготовления рабочей лопатки газовой турбины, согласно которому на первой стадии ее изготовления отливают заготовку рабочей лопатки, при этом для формирования каналов охлаждения в лопатке в процессе литья используют литьевые стержни, которые устанавливают внутри профильной части лопатки и в хвостовике, на второй стадии изготовления удаляют стержень из канала в хвостовике отлитой лопатки и полученное отверстие механически обрабатывают, на третьей стадии удаляют стержень из внутреннего объема рабочей лопатки и обрабатывают поверхность отверстия мокрым травлением, а на четвертой стадии в указанный канал рабочей лопатки вводят вставку, которую на пятой стадии изготовления присоединяют к рабочей лопатке посредством пайки. Далее следует длительный цикл обработки, включая механическую и термическую.
(см. патент РФ №2543100, кл. F01D 5/08, 2015 г.).
Анализ известного решения показал, что качество полученных данным способом лопаток невысоко, так как литые изделия имеют большой разброс по припускам, наружная поверхность лопаток имеет невысокое качество, что приводит к необходимости последующей механической обработки, в результате чего на обработанных поверхностях образуется поверхностный дефектный слой, в котором при проведении термической обработки наблюдается процесс рекристаллизации, что значительно снижает срок эксплуатации лопаток и область их применения за счет невысокой термостойкости.
Известен способ изготовления монокристаллических лопаток для турбин авиационных двигателей точным литьем из жаропрочных сплавов на основе никеля, включающий отливку монокристаллической заготовки путем ее ориентированного роста в литейной форме из расплава с использованием монокристаллической затравки заданной кристаллографической ориентации с последующим удалением пригара и остатков керамики пескоструйной обработкой, т.е. «обдувкой» отливки порошком электрокорунда в струе сжатого воздуха. Далее полученную отливку контролируют на соответствие ее размеров заданным параметрам, включая измерение толщины стенок и входной кромки пера лопатки. Если толщина превышает допустимые значения, то по результатам измерений определяют величину недопустимого превышения (припуск). Припуск, превышающий допустимую величину, обычно составляет не более 0,1-0,15 мм, его удаляют шлифовкой, после чего проводят высокотемпературный отжиг лопатки при ~1300°С.
(см. Р.Е. Шалин, И.Л. Светлов, Е.Б. Качанов, В.Н. Толорайя «Монокристаллы никелевых жаропрочных сплавов», Москва, «Машиностроение», 1999 г., с. 187-190 - наиболее близкий аналог).
Анализ данного способа показал, что удаление с поверхности отливки пригара, остатков керамики и припуска путем пескоструйной обработки и шлифовки приводит к значительному искажению кристаллической решетки в поверхностном слое отливки (см., например, A.M. Сулима, В.А. Шулов, Ю.Д. Ягодкин «Поверхностный слой и эксплуатационные свойства деталей машин», Москва, «Машиностроение», 1988 г., с. 103-131). При последующем нагреве заготовки лопатки при ее термообработке - нагреве до достаточно высокой температуры это вызывает рекристаллизацию материала в данном слое. В результате на поверхности лопатки образуется поликристаллический слой, что резко снижает качество исходного монокристаллического литья. Возникающие при этом границы зерен являются местами концентрации напряжений и источником разрушения при высоких температурах. Таким образом, недостатком известного способа является нестабильность монокристаллической структуры, снижающая качество лопатки (в частности, рабочую температуру ее эксплуатации и ресурс). Формирование поликристаллического слоя на поверхности монокристаллической лопатки после механической обработки и высокотемпературной гомогенизации отмечается и в источнике - наиболее близком аналоге (Р.Е. Шалин и др., стр. 204-206).
В качестве средства борьбы с этим явлением возможно проведение гомогенизирующего отжига лопатки при минимальной температуре, при которой сохраняется небольшое количество эвтектики, которая тормозит рекристаллизацию. Однако такой отжиг требует слишком высокой точности поддержания температуры, что практически неосуществимо в промышленных условиях. В целом, использование гомогенизирующего отжига не решает проблему кардинально.
Аналогичная ситуация повторяется на других стадиях технологического процесса. При этом на разных этапах производства возможны неоднократные операции механического воздействия на поверхность лопатки типа абразивной или пескоструйной обработки в сочетании с последующим нагревом, способные вызвать рекристаллизацию. Так, лопатки турбины высокого давления авиадвигателя при изготовлении претерпевают неоднократную пескоструйную «обдувку», а также механическую зачистку отверстий пера лопатки и химико-термическую обработку при 1200°С. Наконец, условия эксплуатации предполагают рабочую температуру авиадвигателя порядка 1000 ч при температуре ~1000°С.
Таким образом, даже если в окончательно готовом состоянии лопатка остается монокристаллической, необходимо гарантировать, что она останется таковой и в процессе эксплуатации, а это возможно лишь в отсутствии даже локальных больших остаточных внутренних микронапряжений перед каждой операцией высокотемпературного (выше температуры рекристаллизации) нагрева.
Техническим результатом настоящего изобретения является повышение качества лопаток (ее термостойкости и ресурса) за счет стабилизации монокристаллической структуры рабочих лопаток турбин в процессе их производства.
Указанный результат обеспечивается тем, что в способе изготовления монокристаллических рабочих лопаток газовых турбин, включающем отливку монокристаллической заготовки лопатки заданной кристаллографической ориентации, удаление с поверхности отливки пригара и остатков керамики пескоструйной обработкой с последующим контролем размеров лопатки для определения величины подлежащего удалению припуска абразивной обработкой, а также высокотемпературный отжиг, новым является то, что после удаления припуска осуществляют травление обработанной абразивом поверхности лопатки для удаления дефектного поверхностного слоя с искаженной кристаллической структурой, а затем проводят высокотемпературный отжиг лопатки, причем толщина слоя, удаляемого травлением, составляет от 10 до 100 мкм в зависимости от материала, характера обработки и условий эксплуатации монокристаллического изделия.
Использование операции химического или электрохимического травления после интенсивного механического воздействия на поверхность лопатки перед технологическим (каждым технологическим) нагревом до температуры, превышающей температуру рекристаллизации, исключает формирование центров рекристаллизации и обеспечивает сохранение при нагреве монокристаллической структуры лопатки.
Сущность заявленного изобретения поясняется графическими материалами, на которых представлены микроструктуры образцов приповерхностного слоя лопатки:
- на фиг. 1 - микроструктура образцов №, №1, 3, 4, полученных при следующей последовательности обработки: обдувка поверхности электрокорундом; термообработка по режиму: ступенчатый нагрев до 1270°С; выдержка 75 мин; охлаждение до 500°С в вакууме, далее в струе аргона с воздухом;
- на фиг. 2 - микроструктура образца №2 - обработка та же, что для образцов №/№1, 3, 4, и дополнительно травление в смеси плавиковой и азотной кислот после обработки абразивом перед термообработкой.
Заявленный способ осуществляют следующим образом.
При реализации заявленного способа первоначально отливают заготовку лопатки.
Отливку заготовки проводят методом ее ориентированного роста в литейной форме из расплава с использованием монокристаллической затравки с заданной кристаллографической ориентацией. В результате проведения операции литья получают монокристаллическую заготовку с заданной кристаллографической ориентацией. Данная операция широко известна специалистам и нет необходимости подробно приводить ее в настоящей заявке. Данная отливка может быть получена, например, способами, раскрытыми в патентах РФ №/№2329120, 2492025.
После извлечения из литейной формы поверхность отлитой заготовки лопатки подвергают пескоструйной обработке для удаления пригара и фрагментов керамики литейной формы. Проведение пескоструйной обработки проводится по стандартным технологиям на действующем оборудовании и, как правило, проведение данного вида обработки не представляет сложностей для специалистов.
Далее определяют величину удаляемого припуска заготовки, для чего измеряют толщину стенок лопатки ультразвуковым толщиномером, и толщину входной кромки рентгеновским методом или методом Холла.
Удаление припуска осуществляют абразивной обработкой поверхностей заготовки. Это может быть шлифование абразивным кругом (определяется специалистом технологом для каждого вида заготовки). Для обработки одной заготовки могут быть использованы различные абразивные инструменты и абразивные среды. После абразивной обработки на поверхности заготовки образуется слой металла, в котором искажена кристаллическая решетка (дефектный слой).
Как показали исследования, толщина такого дефектного слоя для большинства размеров и форм лопаток находится в интервале от 30 до 50 мкм. Поэтому для проведения следующих операций, предусмотренных настоящим способом, следует руководствоваться приведенными выше значениями дефектного слоя или дополнительно проводить его измерение.
Как показала практика, удаление дефектного слоя толщиной меньше 10 мкм неэффективно, так как оно не гарантирует от рекристаллизации поверхностного слоя заготовки при ее нагреве, поскольку эта величина, как правило, соответствует нижней границе толщины дефектного слоя. Таким образом, есть риск, что дефектный слой не полностью удален и при последующем нагреве заготовки при проведении термообработки может стать источником рекристаллизации. Удаление дефектного слоя толщиной более 100 мкм неоправданно увеличивает трудоемкость и нецелесообразно, поскольку толщина дефектного слоя гарантированно не превышает эту величину.
Удаление дефектного слоя осуществляют травлением.
Операцию травления проводят в смеси или водном растворе азотной и/или плавиковой кислот, концентрацию которых выбирают в зависимости от материала лопатки. Процесс травления подробно описан в литературе (см., например, «Лаборатория металлографии». Ред. Лившиц Б.Г. М., Металлургия. 1970 г.) и нет необходимости в его подробном раскрытии. Операция травления выбрана именно потому, что она не оставляет после себя дефектного слоя на обработанной поверхности заготовки.
После травления дефектного слоя и промывки заготовки водой проводят заключительную операцию - высокотемпературный (гомогенизирующий) отжиг лопатки при температуре 1250-1280°С, получая в результате готовую монокристаллическую деталь (лопатку) либо заготовку, готовую к дальнейшей обработке.
Сущность заявленного способа иллюстрируется приведенным ниже примером его реализации.
Две монокристаллические лопатки турбины высокого давления из сплава ЖС32 были отлиты в печи УВНК методом высокоградиентного литья с использованием монокристаллических затравок. Отливки были подвергнуты пескоструйной обработке - обдуты порошком корунда с удалением поверхностного шлама. После этого отлитые и очищенные заготовки были переданы на контроль значений толщины стенок рентгеновским и ультразвуковым методами. В результате изменений были установлены участки недопустимого превышения толщины по боковой поверхности и входной кромке лопатки. Превышение толщины стенки пера и входной кромки сверх допустимой составило ~0,1 мм.
После проведения измерений обе отливки лопаток были прошлифованы абразивным кругом по боковой поверхности и входной кромке на глубину ~0,1 мм в отмеченных участках. После удаления припуска одна из заготовок была протравлена в течение 30 минут в смеси в равных пропорциях кислот HF и HNO3 с удалением искаженного шлифовкой слоя.
Для проведения травления состав травильного раствора может варьироваться в зависимости от конкретного состава сплава.
Далее травленый и нетравленый образцы подвергли высокотемпературному отжигу по режиму: ступенчатый нагрев до 1270°С, выдержка 75 мин, охлаждение до 500°С в вакууме, далее на воздухе с аргоном.
Металлографическое исследование образцов (было проведено на микроскопе Zeiss) показало, что лопатка, подвергнутая пескоструйной обработке, шлифовке и отжигу, имела рекристаллизированную поликристаллическую структуру поверхности, тогда как лопатка, поверхность которой перед отжигом была протравлена, сохранила монокристаллическую структуру поверхности. Структуры поверхностного слоя нетравленой и протравленной перед отжигом лопаток представлены на фиг. 1 и 2.
Из сопоставления микроструктур можно сделать вывод, что отжиг лопатки непосредственно после шлифования ее припуска приводит к рекристаллизации поверхностного слоя и потере монокристаллической структуры. Введение перед операцией отжига промежуточной операции травления удаляет поверхностный слой с искаженной кристаллической структурой и исключает рекристаллизацию, в результате лопатка после высокотемпературного отжига сохраняет монокристаллическую структуру.
В процессе получения монокристаллического изделия (детали) заготовка проходит множество операций от отливки монокристаллической заготовки до получения готового изделия, в том числе неоднократные операции механического воздействия на поверхность лопатки типа абразивной, пескоструйной, обработки резанием и пр., способные в сочетании с последующим нагревом вызвать рекристаллизацию. Так, лопатки турбины высокого давления авиадвигателя при изготовлении претерпевают неоднократную пескоструйную «обдувку», а также механическую зачистку отверстий и других поверхностей и химико-термическую обработку при 1200°С. Наконец, условия эксплуатации предполагают рабочую температуру авиадвигателя порядка 1000 часов при температуре ~1000°С.
Использование изобретения позволяет сохранить монокристаллическую структуру рабочей лопатки турбины в течение всего срока ее производства и эксплуатации.
Заявленный способ гарантирует сохранение монокристаллической структуры в процессе изготовления рабочей лопатки турбины, что повышает ее качество.
Способ прост в реализации и может быть осуществлен на стандартном оборудовании с использованием стандартных инструментов и рабочих сред для получения широкого спектра турбинных лопаток различных форм и размеров, что делает его практически универсальным.

Claims (2)

1. Способ изготовления монокристаллических рабочих лопаток газовых турбин, включающий отливку монокристаллической заготовки лопатки заданной кристаллографической ориентации, удаление с поверхности отливки пригара и остатков керамики пескоструйной обработкой с последующим контролем размеров лопатки для определения величины подлежащего удалению припуска, который удаляют абразивной обработкой, а также высокотемпературный отжиг, отличающийся тем, что после удаления припуска осуществляют травление обработанной абразивом поверхности лопатки для удаления дефектного поверхностного слоя с искаженной кристаллической структурой, а затем проводят высокотемпературный отжиг лопатки.
2. Способ по п. 1, отличающийся тем, что толщина слоя, удаляемого травлением, составляет от 10 до 100 мкм.
RU2015150282A 2015-11-25 2015-11-25 Способ изготовления монокристаллических рабочих лопаток газовых турбин RU2612672C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015150282A RU2612672C1 (ru) 2015-11-25 2015-11-25 Способ изготовления монокристаллических рабочих лопаток газовых турбин

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015150282A RU2612672C1 (ru) 2015-11-25 2015-11-25 Способ изготовления монокристаллических рабочих лопаток газовых турбин

Publications (1)

Publication Number Publication Date
RU2612672C1 true RU2612672C1 (ru) 2017-03-13

Family

ID=58458001

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015150282A RU2612672C1 (ru) 2015-11-25 2015-11-25 Способ изготовления монокристаллических рабочих лопаток газовых турбин

Country Status (1)

Country Link
RU (1) RU2612672C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184103A (ja) * 1988-01-20 1989-07-21 Sumitomo Electric Ind Ltd 半導体ウエハの切断方法
RU2254962C1 (ru) * 2004-01-22 2005-06-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ получения отливки из литейного никелевого сплава
US20090252613A1 (en) * 2004-12-23 2009-10-08 General Electric Company Repair of gas turbine blade tip without recoating the repaired blade tip
RU2411106C2 (ru) * 2008-09-18 2011-02-10 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Способ получения отливок с направленной структурой
RU2532621C1 (ru) * 2013-11-06 2014-11-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов (ФГУП "ВИАМ") Устройство для получения отливки турбинной лопатки с монокристаллической структурой

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184103A (ja) * 1988-01-20 1989-07-21 Sumitomo Electric Ind Ltd 半導体ウエハの切断方法
RU2254962C1 (ru) * 2004-01-22 2005-06-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ получения отливки из литейного никелевого сплава
US20090252613A1 (en) * 2004-12-23 2009-10-08 General Electric Company Repair of gas turbine blade tip without recoating the repaired blade tip
RU2411106C2 (ru) * 2008-09-18 2011-02-10 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Способ получения отливок с направленной структурой
RU2532621C1 (ru) * 2013-11-06 2014-11-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов (ФГУП "ВИАМ") Устройство для получения отливки турбинной лопатки с монокристаллической структурой

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Р.Е.ШАЛИН и др., Монокристаллы никелевых жаропрочных сплавов, Москва, "Машиностроение", 1999, стр. 187-190. *

Similar Documents

Publication Publication Date Title
US8714235B2 (en) High temperature directionally solidified and single crystal die casting
CN109724556B (zh) 镍基单晶高温合金精密铸造过程的再结晶倾向性评价方法
Di Foggia et al. Identification of critical key parameters and their impact to zero-defect manufacturing in the investment casting process
CN111761149A (zh) 一种消除高温合金电火花制孔孔壁重熔层的方法
RU2612672C1 (ru) Способ изготовления монокристаллических рабочих лопаток газовых турбин
Zhang et al. Effect of surface recrystallization on the creep rupture property of a single-crystal superalloy
CN106239036A (zh) 一种片状多孔结构单晶高温合金零件的制备工艺
JP2021095636A (ja) 耐ラフティング性ガンマプライム相を含む微細構造を有するニッケル基超合金およびニッケル基超合金から調製された物品
Li et al. Effects of hot isostatic pressing on microstructure and mechanical properties of Hastelloy X samples produced by selective laser melting
Zhongkui et al. Study on fatigue properties of turbine disk groove modeling specimens of GH4720 alloy
RU2587116C1 (ru) Устройство для получения отливок лопаток турбин
Chen et al. Relationship among microstructure, defects and performance of Ti60 titanium alloy fabricated by laser solid forming
JP2015517028A (ja) 単結晶(sx)または一方向凝固(ds)ニッケル基超合金製の部品を製造するための方法
Al-Jarba et al. Elevated temperature, high cycle fatigue behavior of carbon-containing single crystal Ni-Based superalloys
SUI et al. Microstructures and hardness of Ti-6Al-4V alloy staging castings under centrifugal field
Parenti et al. Green-state micromilling of AISI316L feedstock
RU2600608C1 (ru) Способ механической обработки резанием осесимметричных деталей
Bogachev et al. High temperature behaviour of a mechanically surface hardened single crystal nickel-based superalloy
JP2004161575A (ja) 多結晶シリコンインゴット及び部材の製造方法
Petrushin et al. Segregation of alloying elements in directionally solidified Re–Ru-containing Ni-based superalloys
RU2659555C1 (ru) Способ обработки резанием осесимметричных деталей
RU2340437C2 (ru) Способ изготовления заготовки пустотелой лопатки турбины газотурбинного двигателя
Simmonds et al. Analysis of surface scale on the Ni-based superalloy CMSX-10N and proposed mechanism of formation
RU2794312C1 (ru) Способ изготовления лезвий из сапфира
RU2602584C1 (ru) Способ изготовления монокристаллических затравок

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20190821