RU2611925C1 - Способ изготовления труб с комбинированной тепловой изоляцией для надземных теплотрасс - Google Patents

Способ изготовления труб с комбинированной тепловой изоляцией для надземных теплотрасс Download PDF

Info

Publication number
RU2611925C1
RU2611925C1 RU2015148690A RU2015148690A RU2611925C1 RU 2611925 C1 RU2611925 C1 RU 2611925C1 RU 2015148690 A RU2015148690 A RU 2015148690A RU 2015148690 A RU2015148690 A RU 2015148690A RU 2611925 C1 RU2611925 C1 RU 2611925C1
Authority
RU
Russia
Prior art keywords
thermal insulation
heat
layer
mineral wool
shells
Prior art date
Application number
RU2015148690A
Other languages
English (en)
Inventor
Ренат Ардинатович Нугайбеков
Эдуард Владимирович Валиков
Рустам Раисович Багманов
Наиль Махасимович Саттаров
Ольга Юрьевна Будник
Евгений Борисович Нарышкин
Original Assignee
Управляющая компания общество с ограниченной ответственностью "ТМС групп"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Управляющая компания общество с ограниченной ответственностью "ТМС групп" filed Critical Управляющая компания общество с ограниченной ответственностью "ТМС групп"
Priority to RU2015148690A priority Critical patent/RU2611925C1/ru
Application granted granted Critical
Publication of RU2611925C1 publication Critical patent/RU2611925C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/14Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups

Abstract

Изобретение относится к способам изготовления теплоизолированных труб для строительства надземных теплотрасс, эксплуатируемых при температуре теплоносителя 130°C и выше. В способе наружную поверхность стального трубного элемента (1) предварительно очищают от загрязнений и слоев коррозии. Далее накладывают первый слой (3) теплоизоляции, состоящий из кашированных алюминиевой фольгой скорлуп минеральной ваты на основе базальтовых пород. Скорлупы выполнены с U-образными замковыми соединениями (4) по длине и по торцам минеральной ваты с заранее вставленными центрирующими элементами (6), высота которых равна толщине первого теплоизоляционного слоя. Затем на наружную поверхность полученной первой теплоизоляционной поверхности устанавливают центрирующие наборные сегменты (7) и помещают в спиральновитую оболочку (2) из тонкой оцинкованной стали. После чего кольцевой зазор между внутренней поверхностью оболочки (2) и наружной поверхностью первого слоя (3) теплоизоляции герметизируют фланцами с двух сторон и через литьевое отверстие на фланце заполняют зазор (8) жестким пенополиуретаном. Повышаются эксплуатационные характеристики транспортирования теплоносителя. 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к теплоизолированным трубам, предназначенным для строительства надземных теплотрасс эксплуатируемых при постоянной температуре 130°C и выше транспортируемого теплоносителя, а именно к способам их изготовления.
Известен способ изготовления теплогидроизолированного изделия, содержащего стальной трубный элемент и охватывающую его тепловую изоляцию из ППУ в гидрозащитной спиральновитой оболочке из тонколистовой оцинкованной стали и включающего установку трубы в форме с размещенной концентрично трубе с зазором оболочки, заполнение кольцевой полости между трубой и оболочкой теплоизолирующим покрытием и выдержку времени на его структурирование, причем в качестве оболочек используют упрочненную тонкостенную трубу из листовой оцинкованной стали, например, снабдив ее ребрами жесткости и одновременным нанесением полимерного гидроизоляционного покрытия в процессе ее изготовления, причем ребра жесткости создают путем увеличения частоты замковых соединений отрезков стальных тонкостенных труб (см. патент RU №2200897, кл. F16L 59/00, 20.03.2003).
Недостатком данного способа является недостаточная адгезия по отношению к трубе и оболочке, что снижает прочностные свойства трубы при сдвиге в осевом и тангенциальном направлениях, что в конечном итоге ведет к снижению срока службы такой трубы, кроме того, данная технология нанесения теплоизоляции, например, из ППУ (см. ГОСТ 30732 и СТ 4937-001-18929664-04) позволяет изготавливать трубные изделия, которые рассчитаны для транспортировки теплоносителя с предельной постоянной температурой до 130°C.
Известна труба теплоизолированная, состоящая из размещенного на трубе теплоизолирующего покрытия, содержащего теплоотражающий и теплоизолирующий слои. Теплоизолирующее покрытие содержит слой базальтового полотна, намотанный на трубу и покрытый теплоотражающим слоем, причем покрытие дополнительно содержит наружный защитный слой и второй теплоотражающий слой, теплоизолирующий слой размещен между теплоотражающими слоями, а на наружном теплоотражающем слое размещен защитный наружный слой. Теплоизолированная труба выполняется, в основном, из металла, например, стали 12Х1МФ. Теплоизолирующее покрытие трубы является многослойным, каждый из слоев которого выполняет свои функции. Рассмотрим, каким образом сформировано теплоизолирующее покрытие. На поверхность трубы намотан слой 2 из тонкого базальтового полотна. На слой 2 наложен слой 3 теплоотражающего материала, например, тонкой фольги, предпочтительно, алюминиевой, на который помещен слой 4 теплоизолирующего материала, например войлока, который закрывают слоем 5 теплоотражающего материала (второй слой), например, фольги, предпочтительно, алюминиевой. На слой 5 может быть уложен слой 6 стеклопластика, на котором размещен защитный слой 7, представляющий собой, например, трубу из пластика (см. патент RU №121855, МПК E21B 17/00, F16L 59/00, 10.11.2012).
Недостатками данной конструкции являются высокое значение коэффициентов теплопроводности λ для применяемых материалов (базальтовое полотно ПДТС -2-20 λ ~0,062 Вт/(м⋅к), при температуре 300°C, мультикремнеземистый войлок МКРР-200 X ~0,055 Вт/(м⋅к), при температуре 250°C, базальтовый картон БВТМ - К/Ф1 λ ~0,093 Вт/(м⋅к), при температуре 300°C), что приводит к значительным тепловым потерям, а так же технология производства требует выполнения множественных последовательных операций для формирования данной конструкции теплоизоляции, что требует задействовать больших производственных площадей и технологического оборудования.
Наиболее близким по совокупности существенных признаков и достигаемому техническому результату к заявляемому техническому решению является способ изготовления теплогидроизолированного трубного изделия для прокладки надземных теплотрасс, заключающийся в том, что стальной трубный элемент покрывают теплоизоляцией и гидрозащитной спиральновитой оболочкой из тонколистовой оцинкованной стали, наружную поверхность трубного элемента предварительно очищают от загрязнений и слоев коррозии и одновременно обрабатывают фосфатирующим модификатором, включающим преобразователь ржавчины и антикоррозионный пленкообразователь, и таким образом формируют фосфатирующее покрытие, далее накладывают первый слой теплоизоляции, состоящий из фольгированной минеральной базальтовой ваты с волокнами ламельного типа плотностью 40-45 кг/м3, толщиной 40-50 мм, составляющей 45-55 об. % от общего объема теплоизоляции, и теплопроводностью при 50°C 0,05 Вт/м⋅°C, затем на полученную фольгированную поверхность устанавливают центрирующие кольца и трубный элемент с центрирующими кольцами помещают в спиральновитую оболочку, причем внутреннюю поверхность оболочки предварительно очищают от загрязнений путем ее обработки фосфатирующим модификатором, включающим преобразователь ржавчины и антикоррозионный пленкообразователь, посредством последнего формируют пленочное покрытие, затем кольцевой зазор между внутренней поверхностью оболочки и наружной поверхностью первого слоя теплоизоляции из фольгированной минеральной базальтовой ваты герметизируют фланцами с двух сторон гидрозащитной оболочки и через литьевое отверстие на фланце заполняют зазор жестким пенополиуретаном плотностью 75-80 кг/м3 и теплопроводностью при 50°C 0,03 Вт/м⋅°C, составляющим 45-55 об. % от общего объема теплоизоляции, (см. патент RU №2278316, кл. F16L 59/02 и F16L 59/10, 20.06.2006).
Недостатками указанного технического решения являются:
1) после нанесения второго слоя комбинированной изоляции, состоящего из вспененного ППУ плотностью 75-80 кг/м3, в процессе структурирования последний создает давление во внутреннем герметичном объеме в пределах 1,2-1,3 кгс/см2. Это позволяет первому слою минеральной ваты уплотняться от 30 до 50% от своего объема и плотно прилегать к стальному трубному элементу, что приводит к повышению коэффициента теплопроводности материала, а соответственно, и к увеличению тепловых потерь при транспортировке теплоносителя;
2) при нанесении на стальную трубу внутреннего слоя теплоизоляции из фольгированной минеральной базальтовой ваты с волокнами ламельного типа места стыков полотен минеральной базальтовой ваты между собой и с последующими полотнами не герметизируют, соответственно при процессе структурирования вспененного ППУ и создании давления во внутреннем герметичном объеме на стыках полотен минеральной базальтовой ваты образуются зазоры, заполненные вспененным ППУ, который при постоянной эксплуатации свыше 130°C выгорает и образует тепловой “мостик”, способствующий потере тепловой энергии теплоносителя;
3) центрирующие кольца устанавливают на поверхность теплоизоляционного слоя, состоящего из фольгированной минеральной базальтовой ваты с волокнами ламельного типа, которые не имеют достаточной прочности и под весом стальной трубы уплотняются, в результате конструкция теряет прочность крепления, нарушается соосность стальной трубы и гидрозащитной оболочки, при транспортных и погрузочно-разгрузочных работах разрушается теплоизоляционный слой из вспененного ППУ;
4) наружную поверхность стального трубного элемента обрабатывают фосфатирующим модификатором, включающим преобразователь ржавчины и антикоррозионный пленкообразователь, что приводит к дополнительным технологическим операциям и материальным затратам на изготовление.
Задачей заявленного технического решения является устранение вышеназванных недостатков прототипа, что позволяет повысить эксплуатационные характеристики транспортирования теплоносителя.
Поставленная задача решается за счет того, что в способе изготовления труб с комбинированной тепловой изоляцией для надземных теплотрасс, заключающемся в том, что наружную поверхность стальной трубы предварительно очищают от загрязнений и слоев коррозии, далее накладывают первый слой теплоизоляции, состоящий из минеральной ваты на основе базальтовых пород с заранее вставленными центрирующими элементами, высота которых равна толщине первого теплоизоляционного слоя, и помещают в спиральновитую оболочку из тонкой оцинкованной стали, после чего кольцевой зазор между внутренней поверхностью оболочки и наружной поверхностью первого слоя теплоизоляции герметизируют фланцами с двух сторон и через литьевое отверстие на фланце заполняют зазор жестким пенополиуретаном, первый теплоизоляционный слой состоит из кашированных алюминиевой фольгой скорлуп минеральной ваты на основе базальтовых пород, выполненных с U-образными замковыми соединениями по длине и по торцам минеральной ваты, затем на наружную поверхность полученной первой теплоизоляционной поверхности устанавливают центрирующие наборные сегменты.
Первый слой теплоизоляции, состоящий из кашированных алюминиевой фольгой скорлуп, выступает из тепловой изоляции, состоящей из жесткого пенополиуретана на длину от 5 до 25 мм с каждой стороны трубы с комбинированной тепловой изоляцией.
Выполнение первого слоя теплоизоляции из кашированных алюминиевой фольгой скорлуп минеральной ваты на основе базальтовых пород, выполненных с U-образными замковыми соединениями по длине и по торцам минеральной ваты, позволяет сохранить тепло, а установка на наружной поверхности центрирующих наборных сегментов обеспечивает соосность труб при транспортировке и погрузочно-разгрузочных работах, тем самым сохраняя теплоизоляционный слой.
Таким образом, технический результат достигнут, трубы с комбинированной теплоизоляцией обладают высокими эксплуатационными характеристиками при транспортировании теплоносителя
Кроме этого в заявленном техническом решении обеспечивается дополнительный технический результат, заключающийся в повышении допустимой температуры транспортирования теплоносителя, снижении себестоимости производства и повышение надежности работы трубопроводов из труб с комбинированной тепловой изоляцией.
Проведенный анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации, позволил установить, что аналог, характеризующийся признаками, тождественными существенным признакам заявляемого технического решения, не обнаружен. Сопоставительный анализ предлагаемого технического решения и выбранного из выявленных аналогов прототипа позволил установить наличие отличительных признаков в заявляемом решении, изложенных в формуле изобретения, следовательно, заявляемое техническое решение соответствует условиям патентоспособности изобретения: изобретательский уровень и новизна.
Изобретение поясняется чертежами:
Фиг. 1 - труба с комбинированной тепловой изоляцией в продольном разрезе.
Фиг. 2 - сечение А-А на фиг. 1.
Наружную поверхность стальной трубы 1 диаметром D от 25 до 1420 мм предварительно очищают от загрязнений и слоев коррозии, затем покрывают комбинированной теплоизоляцией и защитной спиральновитой оболочкой 2 из тонколистовой оцинкованной стали.
Первый слой теплоизоляции 3 состоит из кашированных алюминиевой фольгой скорлуп минеральной ваты на основе базальтовых пород, которые выполнены с U-образными замковыми соединениями по длине и по торцам 4 минеральной ваты. Поперечные и продольные стыки скорлуп герметизированы термостойким скотчем 5. В первый теплоизоляционный слой заранее вставлены центрирующие элементы 6 из стойких к термическому воздействию материалов, например из пенобетона, высота которых равна толщине первого теплоизоляционного слоя. На наружной поверхности первой теплоизоляционной поверхности на вставленные в скорлупы центрирующие элементы устанавливают центрирующие наборные сегменты из полимерных материалов 7 и помещают в спиральновитую оболочку 2 из тонкой оцинкованной стали. После чего кольцевой зазор между внутренней поверхностью оболочки 2 и наружной поверхностью первого слоя теплоизоляции герметизируют фланцами (на чертеже не показаны) с двух сторон и через литьевое отверстие на фланце заполняют зазор 8 жестким пенополиуретаном. Длина неизолированных концевых участков стальных труб выполнена с учетом требования ГОСТ 30732, и составляет L=150-20 мм для труб с комбинированной тепловой изоляцией с защитной оболочкой до 315 мм включительно и L=210-20 мм для труб с комбинированной тепловой изоляцией с защитной оболочкой свыше 315 мм. Для надежности и эффективности теплоизоляции сварных соединений при строительстве теплоизолированных трубопроводов первый слой теплоизоляции, состоящий из кашированных алюминиевой фольгой скорлуп выступает из тепловой изоляции, состоящей из жесткого пенополиуретана, на длину от 5 до 25 мм с каждой стороны трубы с комбинированной тепловой изоляцией.
Исключение нарушения соосности стальной трубы и защитной оболочки и минимальное уплотнение первого теплоизоляционного слоя 3 при полимеризации (вспенивании) жесткого пенополиуретана, а соответственно, исключение увеличения теплообмена транспортируемого теплоносителя с окружающей средой обеспечивают использованием кашированных алюминиевой фольгой скорлуп минеральной ваты на основе базальтовых пород с высокой механической прочностью и установкой центрирующих элементов высотой, равной толщине первого теплоизоляционного слоя 3 в самом первом теплоизоляционном слое.
При необходимости контроля влажности тепловой изоляции трубы с комбинированной тепловой изоляцией обеспечивают системой оперативного дистанционного контроля (ОДК).
При необходимости подогрева и/или поддержания заданной температуры теплоносителя в процессе транспортировки теплоносителя или в случае аварийной остановки трубы с комбинированной тепловой изоляцией обеспечивают системой электрообогрева, скин-системами, или аналоговыми системами поддержания температуры.
Использование всех существенных признаков формулы изобретения позволяет достичь заявляемого технического результата.
Способ изготовления труб с комбинированной тепловой изоляцией для надземных теплотрасс может быть осуществлен с использованием стандартного оборудования, современных материалов и технологий.

Claims (2)

1. Способ изготовления труб с комбинированной тепловой изоляцией для надземных теплотрасс, заключающийся в том, что наружную поверхность стального трубного элемента предварительно очищают от загрязнений и слоев коррозии, далее накладывают первый слой теплоизоляции, состоящий из минеральной ваты на основе базальтовых пород с заранее вставленными центрирующими элементами, высота которых равна толщине первого теплоизоляционного слоя, и помещают в спиральновитую оболочку из тонкой оцинкованной стали, после чего кольцевой зазор между внутренней поверхностью оболочки и наружной поверхностью первого слоя теплоизоляции герметизируют фланцами с двух сторон и через литьевое отверстие на фланце заполняют зазор жестким пенополиуретаном, отличающийся тем, что первый теплоизоляционный слой состоит из кашированных алюминиевой фольгой скорлуп минеральной ваты на основе базальтовых пород, выполненных с U-образными замковыми соединениями по длине и по торцам минеральной ваты, затем, на наружную поверхность полученной первой теплоизоляционной поверхности, устанавливают центрирующие наборные сегменты.
2. Способ по п. 1, отличающийся тем, что первый слой теплоизоляции, состоящий из кашированных алюминиевой фольгой скорлуп, выступает из тепловой изоляции состоящей из жесткого пенополиуретана на длину от 5 до 25 мм с каждой стороны трубы с комбинированной тепловой изоляцией.
RU2015148690A 2015-11-12 2015-11-12 Способ изготовления труб с комбинированной тепловой изоляцией для надземных теплотрасс RU2611925C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015148690A RU2611925C1 (ru) 2015-11-12 2015-11-12 Способ изготовления труб с комбинированной тепловой изоляцией для надземных теплотрасс

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015148690A RU2611925C1 (ru) 2015-11-12 2015-11-12 Способ изготовления труб с комбинированной тепловой изоляцией для надземных теплотрасс

Publications (1)

Publication Number Publication Date
RU2611925C1 true RU2611925C1 (ru) 2017-03-01

Family

ID=58459248

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015148690A RU2611925C1 (ru) 2015-11-12 2015-11-12 Способ изготовления труб с комбинированной тепловой изоляцией для надземных теплотрасс

Country Status (1)

Country Link
RU (1) RU2611925C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5996643A (en) * 1998-09-18 1999-12-07 Stonitsch; Lawrence J. Foam insulation system for pipes
RU2200897C1 (ru) * 2001-07-23 2003-03-20 Загиров Магсум Мударисович Способ теплоизоляции трубы для подземной прокладки
RU2278316C1 (ru) * 2005-04-20 2006-06-20 Анатолий Афанасьевич Игнатов Способ изготовления теплогидроизолированного трубного изделия для прокладки надземных теплотрасс
RU72524U1 (ru) * 2007-12-12 2008-04-20 Закрытое акционерное общество "Сибпромкомплект" Труба для надземного трубопровода
WO2011045567A1 (en) * 2009-10-13 2011-04-21 Pioneer Lining Technology Limited Lined pipes with insulation
RU121855U1 (ru) * 2012-07-06 2012-11-10 Закрытое акционерное общество "КОМПОМАШ-ТЭК" Труба теплоизолированная

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5996643A (en) * 1998-09-18 1999-12-07 Stonitsch; Lawrence J. Foam insulation system for pipes
RU2200897C1 (ru) * 2001-07-23 2003-03-20 Загиров Магсум Мударисович Способ теплоизоляции трубы для подземной прокладки
RU2278316C1 (ru) * 2005-04-20 2006-06-20 Анатолий Афанасьевич Игнатов Способ изготовления теплогидроизолированного трубного изделия для прокладки надземных теплотрасс
RU72524U1 (ru) * 2007-12-12 2008-04-20 Закрытое акционерное общество "Сибпромкомплект" Труба для надземного трубопровода
WO2011045567A1 (en) * 2009-10-13 2011-04-21 Pioneer Lining Technology Limited Lined pipes with insulation
RU121855U1 (ru) * 2012-07-06 2012-11-10 Закрытое акционерное общество "КОМПОМАШ-ТЭК" Труба теплоизолированная

Similar Documents

Publication Publication Date Title
EP2245351B1 (en) Multilayer heat tracing insulation device and method
EP2045505A1 (en) Bendable pre-insulated pipeline assembly
RU2278316C1 (ru) Способ изготовления теплогидроизолированного трубного изделия для прокладки надземных теплотрасс
US20070074778A1 (en) Method for manufacturing and heat-insulated pipes for conveying hot or cold fluids
GB2365096A (en) Steel tube with heat insulation for subsea pipelines and method of producing same
US20130186504A1 (en) Pre-insulated piping system
US20160003405A1 (en) Shear increasing system
US20030075226A1 (en) Insulated pipework system
GB2136528A (en) Thermally insulated piping
US20080072988A1 (en) Glass Syntactic Polyurethane Insulated Product
RU2453758C2 (ru) Труба для транспортировки нефтепродукта
RU2611925C1 (ru) Способ изготовления труб с комбинированной тепловой изоляцией для надземных теплотрасс
RU49167U1 (ru) Трубный элемент с комбинированной теплоизоляцией в гидрозащитной оболочке
RU2661563C2 (ru) Способ изготовления труб с комбинированной тепловой изоляцией для теплотрасс
WO2015010162A1 (en) Insulation system
CN203857199U (zh) 滚动式内导向钢导管内置直埋预制复合保温蒸汽管
RU2672198C2 (ru) Теплоизолированная труба и способ ее изготовления
CN105257917A (zh) 变径式防腐耐高温地埋复合保温管道及安装方法
RU2602942C1 (ru) Способ изготовления теплоизолированной трубы
US10774976B2 (en) Systems and methods for insulating a pipe with a pre-applied vapor-barrier stop
WO2015099559A1 (ru) Способ изготовления изолированных труб и фасонных изделий для трубопроводов
RU2669218C1 (ru) Теплогидроизолированное трубопроводное изделие для высокотемпературных тепловых сетей, теплотрасс и технологических трубопроводов и способ его изготовления
RU2200897C1 (ru) Способ теплоизоляции трубы для подземной прокладки
CN205244645U (zh) 预制直埋蒸汽保温管
CN206221902U (zh) 一种预成型绝热管道