RU2608186C2 - Способ и система для управления группой, по меньшей мере, из двух спутников, выполненных с возможностью обеспечения обслуживания - Google Patents

Способ и система для управления группой, по меньшей мере, из двух спутников, выполненных с возможностью обеспечения обслуживания Download PDF

Info

Publication number
RU2608186C2
RU2608186C2 RU2012144413A RU2012144413A RU2608186C2 RU 2608186 C2 RU2608186 C2 RU 2608186C2 RU 2012144413 A RU2012144413 A RU 2012144413A RU 2012144413 A RU2012144413 A RU 2012144413A RU 2608186 C2 RU2608186 C2 RU 2608186C2
Authority
RU
Russia
Prior art keywords
satellite
satellites
longitude
group
average value
Prior art date
Application number
RU2012144413A
Other languages
English (en)
Other versions
RU2012144413A (ru
Inventor
Эрве СЭН
Жоэль АМАЛЬРИК
Пьер БАССАЛЕ
Ксавье РОЗЕ
Original Assignee
Таль
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Таль filed Critical Таль
Publication of RU2012144413A publication Critical patent/RU2012144413A/ru
Application granted granted Critical
Publication of RU2608186C2 publication Critical patent/RU2608186C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1085Swarms and constellations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/242Orbits and trajectories
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1007Communications satellites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1021Earth observation satellites

Abstract

Изобретение относится к технике связи и может использоваться в системах спутниковой связи. Технический результат состоит в повышении пропускной способности. Для этого в способе управления спутниками обеспечивается обслуживание с использованием в заданный момент времени, по меньшей мере, одной части из группы упомянутых спутников, в котором непрерывно или псевдонепрерывно вычисляют среднее значение долготы соответствующих восходящих узлов каждого спутника, и для каждого спутника применяют коррекцию траектории спутника путем регулирования долготы восходящего узла с уставкой, равной упомянутому текущему среднему значению. 2 н. и 5 з.п. ф-лы, 3 ил.

Description

Настоящее изобретение относится к способу управления группой, по меньшей мере, из двух спутников, выполненных с возможностью обеспечения обслуживания с использованием в заданный момент времени, по меньшей мере, одной части из группы упомянутых спутников.
Обслуживанием, обеспечиваемым группой спутников, может являться, например, обслуживание связи или обслуживание наблюдения.
Известны системы для управления группой спутников, часто именуемой флотилией спутников, когда они запущены на одну и ту же орбиту или на орбиты, для которых совместно используют некоторые параметры орбиты.
Искусственный спутник представляет собой объект, изготовленный человеком, который запущен в космос при помощи ракеты-носителя, и который перемещается под действием силы тяготения вокруг планеты или естественного спутника, такого как, например, луна. Скорость, сообщенная спутнику ракетой, позволяет ему удерживаться практически неограниченно в пространстве, описывая орбиту вокруг небесного тела. Последняя орбита, определенная в зависимости от задачи спутника, может иметь различную форму: гелиосинхронную, геостационарную, эллиптическую, круговую и т.д., и может быть расположена на больших или меньших высотах, которые классифицируют как низкую, среднюю, высокую или эллиптическую и т.д. орбиту.
Искусственный спутник состоит из полезной нагрузки, определяемой, в частности, той задачей, которую он должен выполнять, и платформы, которая часто является стандартизованной, выполняя такие функции поддержки, как, например, обеспечение энергией, сообщение движения, регулирование подачи тепла, сохранение ориентации и обеспечение связи. Контроль за спутником осуществляет наземный центр управления, который отправляет команды и производит сбор данных, собираемых посредством сети наземных станций. Для выполнения своей задачи спутник должен оставаться на опорной орбите и точно ориентировать свои приборы: необходима работа через регулярные промежутки времени, для коррекции естественных нарушений орбиты, создаваемых в случае искусственного спутника Земли, помимо прочего, неоднородностями гравитационного поля, влиянием солнца и луны и сопротивлением среды, создаваемым атмосферой, существующей на низкой орбите.
Продолжительность процесса обслуживания, обеспечиваемого группой спутников, связана с массой загруженного топлива и с его расходом.
Значительная часть энергии, обеспечиваемой этим топливом, загруженным на борт спутника, служит для поддержания номинальной траектории его орбиты и для ориентации его приборов.
Одним из факторов, ограничивающим продолжительность космического полета, является использование ресурсов, которые являются загруженными и невозобновляемыми, например, топлива. Это оказывает такое влияние, что определенные решения относительно орбиты являются практически недостижимыми вследствие избыточных затрат, которые они имели бы с точки зрения расхода топлива.
Одной из задач настоящего изобретения является заметное ограничение потребления топлива для каждого спутника из группы спутников, что позволяет обеспечивать обслуживание так, чтобы упомянутые спутники могли обеспечивать это обслуживание в течение более длительного промежутка времени при одном и том же количестве топлива, загруженного на борт спутника.
Согласно одному аспекту настоящего изобретения, предложен способ управления группой, по меньшей мере, из двух спутников, выполненных с возможностью обеспечения обслуживания с использованием в заданный момент времени, по меньшей мере, одной части из группы упомянутых спутников, в которой непрерывно или псевдонепрерывно вычисляют среднее значение долготы соответствующих восходящих узлов каждого спутника, и для каждого спутника управляют коррекцией траектории спутника путем регулирования долготы восходящего узла с уставкой, равной упомянутому текущему среднему значению.
Следовательно, спутники не остаются на соответствующих им орбитах, но обеспечена возможность их дрейфа при сохранении долготы восходящего узла каждой из них с уставкой, равной текущему среднему значению долготы соответствующих восходящих узлов каждого спутника.
Таким образом, расход топлива для каждого спутника значительно уменьшен по сравнению с удержанием группы спутников на соответствующих им исходных орбитах при сохранении предоставляемого обслуживания.
Предложенный способ состоит в ослаблении "топливных" ограничений в случае флотилии или группировки спутников за счет разрешения дрейфа некоторых из отдельных параметров орбиты каждого спутника, поскольку одновременное наличие нескольких спутников позволяет передавать обслуживание, которое должно быть обеспечено, даже в случае изменения параметров орбиты, исключительно при условии, что управление каждым спутником осуществляют вблизи общего среднего векового дрейфа флотилии спутников.
Долгота восходящих узлов определена в описании Фиг.1.
Согласно одному из вариантов осуществления, долготу восходящего узла упомянутых спутников измеряют, соответственно, тогда, когда спутник находится в пределах видимости его наземной станции управления.
Таким образом, эти результаты измерений, необходимые для вычисления уставки, доступны в том самом месте, из которого средства дистанционного управления, фиксирующие уставку, отправляют ее на спутник.
В одном из вариантов осуществления наземные станции управления соединены сетью связи.
Таким образом, управление спутниками могут осуществлять географически различные станции, поскольку тот факт, что они связаны сетью связи, позволяет каждой из них иметь все результаты измерений долготы восходящих узлов, необходимые для вычисления ее среднего значения.
Согласно одному из вариантов осуществления, для группы упомянутых спутников используют одну наземную станцию управления.
Таким образом, больше не требуется передача значений долготы восходящих узлов, и эта одна станция может непосредственно выполнять вычисление среднего значения.
В одном из вариантов осуществления управление для коррекции траектории спутника, когда упомянутый спутник участвует в обеспечении упомянутого обслуживания, может быть отложено до того момента, когда спутник больше не участвует в обеспечении упомянутого обслуживания.
Таким образом, увеличена эксплуатационная готовность спутника, поскольку коррекции траекторий, которые обычно приводят к недоступности обслуживания (например, из-за отклонения от заданного положения вследствие ориентации реактивной струи для коррекции скорости и т.д.), происходят в тот момент времени, когда на этом спутнике обслуживание не используется.
Согласно одному варианту осуществления вычисления и управление выполняются автономно посредством группы спутников, причем последние, опционально, могут быть способными поддерживать связь друг с другом для широковещательной передачи значений долготы их восходящих узлов, которые необходимы для вычисления упомянутого среднего значения.
Согласно другому аспекту настоящего изобретения, также предложена система для управления группой, по меньшей мере, из двух спутников, выполненных с возможностью обеспечения обслуживания с использованием в заданный момент времени, по меньшей мере, одной части из этой группы упомянутых спутников, содержащая средство для непрерывного или псевдонепрерывного вычисления среднего значения прямых восхождений соответствующего восходящего узла каждого спутника и средство для управления, для каждого спутника, коррекцией траектории спутника путем регулирования прямого восхождения восходящего узла с уставкой, равной упомянутому текущему среднему значению.
Во всем приведенном выше описании термин "псевдонепрерывный" означает, что изменение контролируемого параметра (прямого восхождения восходящего узла) является медленным по сравнению с периодом обращения спутников по орбите: другими словами, для вычисления среднего значения этих параметров для нескольких спутников не требуется выполнять абсолютно синхронные измерения одновременно. Например, совершенно пригодны для использования результаты измерений, которые разнесены по орбите. Следовательно, для получения среднего значения, можно удовлетворится использованием среднего значения результатов измерений, выполненных в различные моменты для каждого спутника на протяжении одного и того же дня, просто путем выполнения этих измерений тогда, когда упомянутые спутники входят в зону видимости соответствующей им станции (соответствующих им станций). Именно этот способ вычисления среднего значения по результатам измерений, которые не являются в точности одновременными, именуют "псевдонепрерывным".
Настоящее изобретение станет лучше понятным при изучении нескольких вариантов его осуществления, которые описаны как примеры, не являющиеся ограничивающими, и проиллюстрированы на приложенных чертежах, на которых изображено следующее:
- Фиг.1 схематично иллюстрирует используемые физические параметры;
- Фиг.2 схематично иллюстрирует этапы способа согласно одному из аспектов настоящего изобретения;
- Фиг.3 иллюстрирует пример управляемой системы согласно одному из аспектов настоящего изобретения.
На различных чертежах элементы, имеющие идентичные условные обозначения, являются аналогичными.
На Фиг.1 показаны обычные переменные, используемые для определения орбит спутников.
Эллиптическая орбита EL спутника может быть определена в пространстве согласно шести параметрам, что позволяет очень точно вычислять полную траекторию. Два из этих параметров, то есть эксцентриситет и большая полуось, определяют траекторию в одной плоскости, а три другие параметра, а именно наклон i, долгота ΩNA восходящего узла NA и аргумент ω перигелия определяют ориентацию плоскости в пространстве, а последний параметр, то есть время прохождения через перигелий, определяет положение спутника.
Большая полуось a равна половине расстояния, которое отделяет перигей от апогея. Этот параметр определяет абсолютный размер эллиптической или круговой орбиты.
Эксцентриситет e эллипса представляет собой расстояние от фокусов до центра эллипса, то есть отношение расстояния между центром и одним фокусом к большой полуоси. Для эллиптической траектории 0<e<1.
Наклон i представляет собой угол, который плоскость орбиты образует с опорной плоскостью, которой в этом случае является плоскость экватора EQ.
Долгота ΩNA восходящего узла NA представляет собой угол между направлением точки PV весеннего равноденствия и линией узлов, соединяющей восходящий узел NA и нисходящий узел ND в плоскости экватора. Направлением точки PV весеннего равноденствия является прямая линия, содержащая солнце и точку PV весеннего равноденствия (астрономическую опорную точку, соответствующую положению солнца во время весеннего равноденствия). Линия узлов представляет собой прямую линию, к которой принадлежат восходящий узел (точка орбиты, в которой объект проходит на север от экватора) и нисходящий узел (точка орбиты, в которой объект проходит на юг от экватора).
Аргумент перигея ω представляет собой угол, образованный линией узлов и направлением перигея (прямая линия, к которой принадлежат планета (или центральный объект) и перигей траектории объекта) в плоскости орбиты. Долгота Ωp перигея равна сумме долготы ΩNA восходящего узла NA и аргумента перигея.
На Фиг.2 схематично проиллюстрированы этапы способа управления группой, по меньшей мере, из двух спутников, выполненных с возможностью обеспечения обслуживания с использованием в заданный момент времени, по меньшей мере, одной части из группы упомянутых спутников, согласно одному из аспектов настоящего изобретения.
Непрерывно или псевдонепрерывно вычисляют среднее значение ΩM(t) (этап 21) долготы соответствующих восходящих узлов Ωi(t) каждого спутника с индексом i, и для каждого спутника применяют коррекцию траектории спутника (этап 22) путем регулирования долготы восходящего узла Ωi(t) с уставкой, равной упомянутому текущему среднему значению ΩM(t).
Долготу восходящего узла Ωi(t) упомянутых спутников измеряют, соответственно, тогда, когда спутник находится в пределах видимости его наземной станции управления.
Наземные станции управления могут быть связаны сетью связи. Для группы упомянутых спутников может использоваться одна наземная станция управления.
Коррекция траектории спутника, запланированная на тот момент времени, когда спутник участвует в обеспечении обслуживания, может быть отложена до того момента, когда спутник больше не участвует в обеспечении упомянутого обслуживания. Таким образом, предоставление обслуживания не нарушается.
В качестве варианта, вычисления и управление могут осуществляться автономно группой спутников, и для этого не требуется наличие наземной станции.
На Фиг.3 показан пример группировки с тремя спутниками S1, S2 и S3 в трех плоскостях орбиты, отстоящих одна от другой на угол 120°, для срока службы группировки, составляющего пятнадцать лет, с управлением, относящимся к прямому восхождению восходящего узла Ωi(t), то есть при удержании спутника на заданной орбите корректируют только лишь отклонения относительно общей части или среднего значения ΩM(t) перемещения для всей группировки, причем общую часть или среднее значение перемещения не корректируют.
Эта стратегия удержания спутника на заданной орбите позволяет существенно уменьшить средние ежегодные издержки на удержание спутника на заданной орбите. В этом примере эти издержки уменьшены со 150-180 м/с за год до всего лишь 15-30 м/с за год.
Достигнутая таким образом экономия (потребляемого) топлива непосредственно приводит к увеличению потенциально возможной продолжительности срока службы для спутника, а это означает, что возможно либо спроектировать более легкий спутник (с меньшим количеством топлива) для того же самого срока службы, либо получить более длительный срок службы путем применения настоящего изобретения для уже существующих или даже для уже запущенных спутников.
В случае флотилии из существующих спутников настоящее изобретение приводит к видоизменению процедур для удержания спутников на заданной орбите, которое достигает кульминации, например, в индивидуальных временных диаграммах маневров, предусматривающих различные маневры в различные моменты времени, что, в среднем, приводит к меньшему расходу топлива.

Claims (8)

1. Способ управления группой, по меньшей мере, из двух спутников, выполненных с возможностью обеспечения обслуживания, с использованием в заданный момент времени, по меньшей мере, одной части из группы упомянутых спутников, в котором непрерывно или псевдонепрерывно вычисляют среднее значение (ΩM(t)) долготы (Ωi(t)) соответствующих восходящих узлов каждого спутника, и для каждого спутника управляют коррекцией траектории спутника путем регулирования долготы восходящего узла (Ωi(t)) с уставкой, равной упомянутому текущему среднему значению (ΩM(t)).
2. Способ по п.1, в котором долготу восходящего узла (Ωi(t)) упомянутых спутников измеряют, соответственно, тогда, когда спутник находится в пределах видимости его наземной станции управления.
3. Способ по п.2, в котором наземные станции управления соединены посредством сети связи.
4. Способ по п.1, в котором для группы упомянутых спутников используют одну наземную станцию управления.
5. Способ по п.1, в котором управление для коррекции траектории спутника, применяемое тогда, когда упомянутый спутник участвует в обеспечении упомянутого обслуживания, может быть отложено до того момента, когда спутник больше не участвует в обеспечении упомянутого обслуживания.
6. Способ по п.1, в котором вычисления и управление выполняются автономно группой спутников, причем последние, опционально, могут быть способными поддерживать связь друг с другом для широковещательной передачи значений долготы их восходящего узла, которые являются необходимыми для вычисления упомянутого среднего значения.
7. Система для управления группой, по меньшей мере, из двух спутников (S1, S2, S3), выполненных с возможностью обеспечения обслуживания с использованием в заданный момент времени, по меньшей мере, одной части из группы упомянутых спутников,
содержащая средство для непрерывных или псевдонепрерывных вычислений среднего значения (ΩM(t)) долготы (Ωi(t)) соответствующих восходящих узлов каждого спутника и средство для управления, для каждого спутника, коррекцией траектории спутника путем регулирования долготы восходящего узла (Ωi(t)) с уставкой, равной упомянутому текущему среднему значению (ΩM(t)).
RU2012144413A 2011-10-28 2012-10-18 Способ и система для управления группой, по меньшей мере, из двух спутников, выполненных с возможностью обеспечения обслуживания RU2608186C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1103290 2011-10-28
FR1103290A FR2982045B1 (fr) 2011-10-28 2011-10-28 Procede et systeme de commande d'un ensemble d'au moins deux satellites adaptes pour fournir un service

Publications (2)

Publication Number Publication Date
RU2012144413A RU2012144413A (ru) 2014-04-27
RU2608186C2 true RU2608186C2 (ru) 2017-01-17

Family

ID=47010423

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012144413A RU2608186C2 (ru) 2011-10-28 2012-10-18 Способ и система для управления группой, по меньшей мере, из двух спутников, выполненных с возможностью обеспечения обслуживания

Country Status (8)

Country Link
US (1) US8783620B2 (ru)
EP (1) EP2586711B1 (ru)
JP (1) JP6199021B2 (ru)
CA (1) CA2792580C (ru)
DK (1) DK2586711T3 (ru)
ES (1) ES2538093T3 (ru)
FR (1) FR2982045B1 (ru)
RU (1) RU2608186C2 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9309010B2 (en) * 2014-01-10 2016-04-12 The Boeing Company Methods and apparatus for controlling a plurality of satellites using node-synchronous eccentricity control
US10053241B2 (en) * 2016-12-01 2018-08-21 The Boeing Company Systems and methods for multi-spacecraft distributed ascent
US20180155066A1 (en) * 2016-12-01 2018-06-07 Electronics And Telecommunications Research Institute Method and apparatus for controlling orbit of collocated satellite
CN108055069A (zh) * 2017-12-11 2018-05-18 中国人民解放军战略支援部队航天工程大学 低轨通信和导航增强混合星座维持控制边界计算及控制方法
CN114715430B (zh) * 2021-03-31 2022-11-08 中国科学院国家空间科学中心 一种多星自动线性编队和时变基线生成的系统
CN113184220B (zh) * 2021-04-21 2021-11-19 中国人民解放军63923部队 一种地球同步轨道通信卫星的轨道控制方法及装置
US11820535B2 (en) * 2021-09-17 2023-11-21 Maxar Space Llc Small satellite constellation for worldwide surveillance
CN115196046B (zh) * 2022-09-19 2022-12-13 航天东方红卫星有限公司 一种太阳同步轨道卫星超寿运行轨控策略确定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120007A (en) * 1989-03-11 1992-06-09 British Aerospace Public Limited Company Geostationary satellite system
US5506780A (en) * 1991-10-23 1996-04-09 Deutsche Forschungsanstalt Fur Luft- Und Raumfahrt E.V. Apparatus for orbit control of at least two co-located geostationary satellites
RU2220886C2 (ru) * 1996-12-31 2004-01-10 Сосьете Насьональ Д'Этюд э де Констрюксьон де Мотер Д'Авиасьон "СНЕКМА" Способ одновременного выведения нескольких спутников на не являющиеся компланарными орбиты с использованием сильно эксцентрических орбит и атмосферного торможения
RU2284950C2 (ru) * 2004-09-02 2006-10-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ управления кластером находящихся на геостационарной орбите спутников (варианты)
RU2304549C2 (ru) * 2005-02-22 2007-08-20 Севастиян Дмитриевич Гнатюк Автономная бортовая система управления космического аппарата гасад-2а

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2727934A1 (fr) * 1994-12-08 1996-06-14 Aerospatiale Satellite geostationnaire stabilise 3-axes a surveillance radar de son espace environnant
JP3483746B2 (ja) * 1997-11-14 2004-01-06 宇宙開発事業団 西回り赤道周回衛星及び該衛星を用いた気象衛星システム
JP3837544B2 (ja) * 2003-05-09 2006-10-25 独立行政法人情報通信研究機構 静止軌道または静止軌道近傍を通過する軌道を有する物体のスキャン観測方法
US7270299B1 (en) * 2004-03-23 2007-09-18 Northrop Grumman Corporation Space based change detection using common ground track constellations
US7720604B1 (en) * 2005-06-01 2010-05-18 Lockheed Martin Corporation Stationkeeping optimization for inclined elliptical satellite orbit constellations
US7664578B2 (en) * 2006-07-26 2010-02-16 The Boeing Company Optimizing initial inclinations and RAANs of a satellite constellation
US8205839B2 (en) * 2006-11-06 2012-06-26 The Boeing Company Methods and apparatus for node-synchronous eccentricity control
US7823836B2 (en) * 2006-12-04 2010-11-02 The Boeing Company Optimal sun safe attitude for satellite ground tracking
US8099186B2 (en) * 2006-12-22 2012-01-17 The Boeing Company Satellite navigation using long-term navigation information and autonomous orbit control
US8676501B2 (en) * 2006-12-22 2014-03-18 The Boeing Company Satellite navigation using long-term navigation information
US7744037B2 (en) * 2007-04-11 2010-06-29 National Defense University Calculating method for deducing possibilities of all possible scenarios of satellite members in low earth satellite constellation
US7918420B2 (en) * 2007-07-17 2011-04-05 The Boeing Company System and methods for simultaneous momentum dumping and orbit control
US20130062471A1 (en) * 2010-01-14 2013-03-14 Wah L. Lim Inclined orbit satellite communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120007A (en) * 1989-03-11 1992-06-09 British Aerospace Public Limited Company Geostationary satellite system
US5506780A (en) * 1991-10-23 1996-04-09 Deutsche Forschungsanstalt Fur Luft- Und Raumfahrt E.V. Apparatus for orbit control of at least two co-located geostationary satellites
RU2220886C2 (ru) * 1996-12-31 2004-01-10 Сосьете Насьональ Д'Этюд э де Констрюксьон де Мотер Д'Авиасьон "СНЕКМА" Способ одновременного выведения нескольких спутников на не являющиеся компланарными орбиты с использованием сильно эксцентрических орбит и атмосферного торможения
RU2284950C2 (ru) * 2004-09-02 2006-10-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ управления кластером находящихся на геостационарной орбите спутников (варианты)
RU2304549C2 (ru) * 2005-02-22 2007-08-20 Севастиян Дмитриевич Гнатюк Автономная бортовая система управления космического аппарата гасад-2а

Also Published As

Publication number Publication date
DK2586711T3 (en) 2015-06-01
JP6199021B2 (ja) 2017-09-20
EP2586711A1 (fr) 2013-05-01
EP2586711B1 (fr) 2015-03-04
FR2982045A1 (fr) 2013-05-03
CA2792580A1 (en) 2013-04-28
US20130105632A1 (en) 2013-05-02
JP2013095416A (ja) 2013-05-20
FR2982045B1 (fr) 2013-12-27
RU2012144413A (ru) 2014-04-27
US8783620B2 (en) 2014-07-22
ES2538093T3 (es) 2015-06-17
CA2792580C (en) 2019-01-15

Similar Documents

Publication Publication Date Title
RU2608186C2 (ru) Способ и система для управления группой, по меньшей мере, из двух спутников, выполненных с возможностью обеспечения обслуживания
JP6659576B2 (ja) 人工衛星配置を展開するための方法
US7664578B2 (en) Optimizing initial inclinations and RAANs of a satellite constellation
CN107298186B (zh) 一种基于激光载荷的同轨面卫星自主相对位置保持方法
US9309010B2 (en) Methods and apparatus for controlling a plurality of satellites using node-synchronous eccentricity control
US6135394A (en) Practical method and apparatus for satellite stationkeeping
CN109625323A (zh) 一种卫星化学推进变轨方法及系统
BR112013007565B1 (pt) método e sistema de satélite para latitudes circumpolares
CA2911417C (en) Eccentricity control for geosynchronous satellites
CN112629543A (zh) 一种大椭圆轨道及小倾角圆轨道的轨道规划方法
CN115015983B (zh) 光学遥感星座的长期在轨维持方法
EP1783050B1 (en) Ultrahigh altitude sun synchronous orbit satellite system
CN111268177A (zh) 一种静止轨道卫星分散式闭环自主位置保持控制方法
Biktimirov et al. A multi-satellite mission to illuminate the earth: Formation control based on impulsive maneuvers
Mukhayadi Efficient and high precision momentum bias attitude control for small satellite
WO2016125145A1 (en) Method and system for station keeping of geo satellites
Lee CubeSat constellation implementation and management using differential drag
Fantino et al. Analysis of perturbations and station-keeping requirements in highly-inclined geosynchronous orbits
Moessner et al. The final two years: MESSENGER’s trajectory from the third year in orbit through Mercury impact
Konstantinov et al. Spacecraft Station-keeping on the Molniya Orbit Us...
Kimura Simplification of Orbit Maintenance for Navigation Mission of Quasi-Zenith Satellite System
Kameche et al. Development of an orbit analysis tool for LEO satellites
Brás et al. Evaluating strategies for ground track acquisition and orbital phasing
Hassett et al. LANDSAT-5 orbit adjust maneuver report
Skipper et al. Hybrid (ion and chemical) geo stationkeeping maneuver planning software