CN108055069A - 低轨通信和导航增强混合星座维持控制边界计算及控制方法 - Google Patents

低轨通信和导航增强混合星座维持控制边界计算及控制方法 Download PDF

Info

Publication number
CN108055069A
CN108055069A CN201711310130.5A CN201711310130A CN108055069A CN 108055069 A CN108055069 A CN 108055069A CN 201711310130 A CN201711310130 A CN 201711310130A CN 108055069 A CN108055069 A CN 108055069A
Authority
CN
China
Prior art keywords
constellation
satellite
right ascension
ascending node
low rail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711310130.5A
Other languages
English (en)
Inventor
胡敏
宋俊玲
侯迎春
侯妍
杨茗棋
徐家辉
杨雅君
肖龙龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peoples Liberation Army Strategic Support Force Aerospace Engineering University
Original Assignee
Peoples Liberation Army Strategic Support Force Aerospace Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peoples Liberation Army Strategic Support Force Aerospace Engineering University filed Critical Peoples Liberation Army Strategic Support Force Aerospace Engineering University
Priority to CN201711310130.5A priority Critical patent/CN108055069A/zh
Publication of CN108055069A publication Critical patent/CN108055069A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/46Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being of a radio-wave signal type

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Signal Processing (AREA)
  • Radio Relay Systems (AREA)

Abstract

本发明提供一种低轨通信和导航增强混合星座维持控制边界计算及控制方法,包括以下步骤:根据星座对地覆盖重数和观测仰角要求,计算卫星升交点赤经和相位角的控制边界;给卫星叠加随机的升交点赤经和相位角偏差,仿真低轨通信和导航增强混合星座的覆盖性能;分析摄动1年后卫星轨道倾角、升交点赤经和相位角相对漂移情况;计算卫星半长轴和轨道倾角偏置量,实现相对升交点赤经和相位角维持控制;给卫星标称半长轴和轨道倾角叠加半长轴和轨道倾角偏置量,分析摄动1年后卫星的轨道倾角、升交点赤经和相位角的相对漂移情况。按照本发明设计方法,能够明确低轨通信和导航增强混合星座维持控制需求,给出构型保持所需的卫星半长轴和轨道倾角偏置量。

Description

低轨通信和导航增强混合星座维持控制边界计算及控制方法
技术领域
本发明属于低轨通信和导航增强混合星座维持控制技术领域,具体涉及一种低轨通信和导航增强混合星座维持控制边界计算及控制方法。
背景技术
利用低轨卫星组网形成通信星座可以实现全球范围内不间断实时通信,例如铱星系统和全球星系统。铱星系统星座由66颗高度约为780km的卫星组成,卫星分布在6个轨道面上;全球星系统星座由48颗高度约为1414km的卫星组成,卫星分布在8个轨道平面上。卫星导航系统卫星主要分布在中轨道区域,例如美国的GPS、俄罗斯的GLONASS、中国的BDS以及欧盟的Galileo系统。利用低轨卫星星座形成导航增强系统,可以弥补中轨道全球卫星导航系统由于轨道高而带来的劣势,具有良好的应用前景。将低轨通信和导航增强功能统筹考虑,设计全球覆盖星座,是一个新颖的想法,目前国内外针对此类研究较少,缺乏这种特殊应用下的混合星座维持控制方法。
低轨通信和导航增强混合星座维持控制的难点在于,一是结合高观测仰角和对地覆盖重数要求,需要明确满足低轨通信和导航需求的星座漂移边界,为维持控制提供输入;二是由于低轨通信和导航增强混合星座卫星载荷要求高,需尽可能减少卫星控制频次,降低星座维护成本,实现星座长期、低能耗自主保持。
发明内容
针对现有技术存在的缺陷,本发明提供一种低轨通信和导航增强混合星座维持控制边界计算及控制方法,能够快速明确低轨通信和导航增强混合星座维持控制需求,计算星座构型保持所需的卫星半长轴和轨道倾角偏置量,实现低轨通信和导航增强混合星座的长期、低能耗自主构型保持。
本发明采用的技术方案如下:
本发明提供一种低轨通信和导航增强混合星座维持控制边界计算及控制方法,包括以下步骤,如图1所示:
步骤1:计算星座维持控制边界;
低轨通信和导航增强混合星座对地最小覆盖取两重覆盖,如图2所示,观测仰角取10°,将全球区域按照经纬度均为1°的间隔划分为64800个小网格,假设仿真时刻为t,此时第i个小网格可见星座卫星颗数为Ni,计算Ni颗卫星对第i个小网格满足覆盖重数和观测仰角要求时,允许的升交点赤经和相位角的漂移边界。
式中表示对第i个小网格满足覆盖要求时的卫星升交点赤经漂移边界最小值,表示对第i个小网格满足覆盖要求时的卫星相位角漂移边界最小值,ελ表示卫星相位角漂移边界,εΩ表示卫星升交点赤经漂移边界,ελ表示卫星相位角漂移边界,min()表示取最小值函数,j表示对第i个小网格可见的第j颗卫星,Ni为对第i个小网格可见星座卫星颗数。
根据全球区域网格划分情况,统计分析仿真t时刻时星座允许的升交点赤经和相位角的漂移边界最小值。
式中表示t时刻满足全部观测区域的卫星升交点赤经漂移边界最小值,表示t时刻满足全部观测区域的卫星相位角漂移边界最小值,表示对第i个小网格满足覆盖要求时的卫星升交点赤经漂移边界最小值,表示对第i个小网格满足覆盖要求时的卫星相位角漂移边界最小值,min()表示取最小值函数,l表示第l个计算的小网格,64800为小网格总个数。
假设星座的覆盖周期为T,仿真总步数为k,仿真步长h为h=T/k,统计轨道周期内每个时刻星座卫星满足全部观测区域的卫星升交点赤经和相位角的漂移边界最小值。
式中表示整个星座的升交点赤经漂移边界最小值,表示整个星座的相位角漂移边界最小值,表示t时刻满足全部观测区域的卫星升交点赤经漂移边界最小值,表示t时刻满足全部观测区域的卫星相位角漂移边界最小值,min()表示取最小值函数,m表示第m个计算时刻,k为仿真总步数。
步骤2:仿真边界内星座覆盖性能:
在星座中每颗卫星标称升交点赤经和相位角基础上,利用蒙特卡洛方法,给星座中所有卫星叠加随机的升交点赤经和相位角偏差,偏差值取控制边界内的均匀分布,仿真低轨通信和导航增强混合星座的覆盖性能,验证星座中所有卫星的升交点赤经和相位角偏差取不同允许值时,低轨通信和导航增强混合星座的覆盖性能。
步骤3:分析星座长期相对漂移情况:
考虑地球非球形摄动、大气阻力、日月三体引力摄动、太阳光压摄动等,利用长期演化分析模型,分析摄动1年后星座卫星的轨道倾角、升交点赤经和相位角的相对漂移情况;以Walker 100/10/9:893.814km,55°低轨通信和导航增强混合星座为例,图3给出了轨道倾角漂移情况,图4给出了升交点赤经相对漂移情况,图5给出了相位角相对漂移情况。
步骤4:计算半长轴和轨道倾角偏置量:
由升交点赤经相对摄动运动方程可知,相对升交点赤经变化率主要由卫星轨道半长轴捕获偏差、偏心率偏差和倾角偏差引起的,设半长轴捕获误差为Δa,偏心率偏差Δe,倾角射入误差Δi,则升交点赤经相对漂移率方程表示为:
式中表示卫星轨道升交点赤经相对漂移率,表示卫星轨道升交点赤经漂移率,a*表示卫星轨道标称半长轴,Δa表示卫星轨道半长轴捕获偏差,e表示卫星轨道偏心率,Δe表示卫星轨道偏心率偏差,tan()表示正切函数,i表示卫星轨道倾角,Δi表示卫星轨道倾角偏差。
低轨通信和导航星座为圆轨道,偏心率为零。式(4)表明:通过调整半长轴和倾角,可以实现相对升交点赤经差的维持控制。
由相位相对摄动运动方程可知,相对相位变化率主要由卫星轨道半长轴捕获偏差、偏心率偏差和倾角偏差引起的,设半长轴捕获误差为Δa,偏心率偏差Δe,倾角射入误差Δi,则相位角相对漂移率方程表示为:
式中表示卫星轨道相位相对漂移率,n*表示卫星轨道标称角速度,a*表示卫星轨道标称半长轴,Δa表示卫星轨道半长轴捕获偏差,表示卫星轨道近地点幅角变化率,e表示卫星轨道偏心率,表示卫星质量变化率,Δe表示卫星轨道偏心率偏差,表示卫星轨道升交点赤经漂移率,sin()表示正弦函数,i表示卫星轨道倾角,Δi表示卫星轨道倾角偏差。
低轨通信和导航星座为圆轨道,偏心率为零。式(5)表明:通过调整半长轴和倾角,可以实现相对相位角差的维持控制。
步骤5:验证星座维持控制效果:
在星座中所有卫星标称半长轴和轨道倾角基础上,叠加卫星半长轴和轨道倾角偏置量,利用长期演化分析模型,分析摄动1年后星座卫星的轨道倾角、升交点赤经和相位角的相对漂移情况,验证控制效果。图6给出了半长轴和倾角偏置后,低轨通信和导航星座摄动1年后,相对升交点赤经的漂移情况。
本发明提供的低轨通信和导航增强混合星座维持控制边界计算及控制方法,有益效果如下:
(1)可以根据星座对地覆盖重数和观测仰角要求,快速计算出星座中所有卫星的升交点赤经和相位角的控制边界,明确星座维持控制需求,为星座维持控制提供输入;
(2)能够根据相对升交点赤经和相对相位摄动运动方程,计算卫星半长轴和轨道倾角偏置量,该方法主要利用偏置量补偿主要摄动力的长期影响,可以实现相对升交点赤经和相位角的维持控制,无需频繁的维持控制,从而降低卫星燃料消耗和由于频繁的维持控制导致的服务中断。
(3)本发明涉及了控制边界计算、星座性能仿真、星座演化分析、星座偏置量计算等内容,可以在分析控制需求、计算控制量的同时,实现星座性能的仿真验证,增加控制方法的可信度。
附图说明
图1为本发明提供的低轨通信和导航增强混合星座维持控制边界计算及控制方法的流程示意图;
图2为低轨通信和导航增强混合星座对地覆盖示意图;
图3为低轨通信和导航增强混合星座轨道倾角漂移情况示意图;
图4为低轨通信和导航增强混合星座升交点赤经相对漂移情况示意图;
图5为低轨通信和导航增强混合星座相位角相对漂移情况示意图;
图6为参数偏置后的低轨通信和导航增强混合星座升交点赤经相对漂移情况示意图。
具体实施方式
本发明提供一种低轨通信和导航增强混合星座维持控制边界计算及控制方法,包括以下步骤,如图1所示:
步骤1:计算星座维持控制边界;
低轨通信和导航增强混合星座对地最小覆盖取两重覆盖,如图2所示,观测仰角取10°,将全球区域按照经纬度均为1°的间隔划分为64800个小网格,假设仿真时刻为t,此时第i个小网格可见星座卫星颗数为Ni,计算Ni颗卫星对第i个小网格满足覆盖重数和观测仰角要求时,允许的升交点赤经和相位角的漂移边界。
式中表示对第i个小网格满足覆盖要求时的卫星升交点赤经漂移边界最小值,表示对第i个小网格满足覆盖要求时的卫星相位角漂移边界最小值,ελ表示卫星相位角漂移边界,εΩ表示卫星升交点赤经漂移边界,ελ表示卫星相位角漂移边界,min()表示取最小值函数,j表示对第i个小网格可见的第j颗卫星,Ni为对第i个小网格可见星座卫星颗数。
根据全球区域网格划分情况,统计分析仿真t时刻时星座允许的升交点赤经和相位角的漂移边界最小值。
式中表示t时刻满足全部观测区域的卫星升交点赤经漂移边界最小值,表示t时刻满足全部观测区域的卫星相位角漂移边界最小值,表示对第i个小网格满足覆盖要求时的卫星升交点赤经漂移边界最小值,表示对第i个小网格满足覆盖要求时的卫星相位角漂移边界最小值,min()表示取最小值函数,l表示第l个计算的小网格,64800为小网格总个数。
假设星座的覆盖周期为T,仿真总步数为k,仿真步长h为h=T/k,统计轨道周期内每个时刻星座卫星满足全部观测区域的卫星升交点赤经和相位角的漂移边界最小值。
式中表示整个星座的升交点赤经漂移边界最小值,表示整个星座的相位角漂移边界最小值,表示t时刻满足全部观测区域的卫星升交点赤经漂移边界最小值,表示t时刻满足全部观测区域的卫星相位角漂移边界最小值,min()表示取最小值函数,m表示第m个计算时刻,k为仿真总步数。
步骤2:仿真边界内星座覆盖性能:
在星座中每颗卫星标称升交点赤经和相位角基础上,利用蒙特卡洛方法,给星座中所有卫星叠加随机的升交点赤经和相位角偏差,偏差值取控制边界内的均匀分布,仿真低轨通信和导航增强混合星座的覆盖性能,验证星座中所有卫星的升交点赤经和相位角偏差取不同允许值时,低轨通信和导航增强混合星座的覆盖性能。
步骤3:分析星座长期相对漂移情况:
考虑地球非球形摄动、大气阻力、日月三体引力摄动、太阳光压摄动等,利用长期演化分析模型,分析摄动1年后星座卫星的轨道倾角、升交点赤经和相位角的相对漂移情况;以Walker 100/10/9:893.814km,55°低轨通信和导航增强混合星座为例,图3给出了轨道倾角漂移情况,图4给出了升交点赤经相对漂移情况,图5给出了相位角相对漂移情况。
步骤4:计算半长轴和轨道倾角偏置量:
由升交点赤经相对摄动运动方程可知,相对升交点赤经变化率主要由卫星轨道半长轴捕获偏差、偏心率偏差和倾角偏差引起的,设半长轴捕获误差为Δa,偏心率偏差Δe,倾角射入误差Δi,则升交点赤经相对漂移率方程表示为:
式中表示卫星轨道升交点赤经相对漂移率,表示卫星轨道升交点赤经漂移率,a*表示卫星轨道标称半长轴,Δa表示卫星轨道半长轴捕获偏差,e表示卫星轨道偏心率,Δe表示卫星轨道偏心率偏差,tan()表示正切函数,i表示卫星轨道倾角,Δi表示卫星轨道倾角偏差。
低轨通信和导航星座为圆轨道,偏心率为零。式(4)表明:通过调整半长轴和倾角,可以实现相对升交点赤经差的维持控制。
由相位相对摄动运动方程可知,相对相位变化率主要由卫星轨道半长轴捕获偏差、偏心率偏差和倾角偏差引起的,设半长轴捕获误差为Δa,偏心率偏差Δe,倾角射入误差Δi,则相位角相对漂移率方程表示为:
式中表示卫星轨道相位相对漂移率,n*表示卫星轨道标称角速度,a*表示卫星轨道标称半长轴,Δa表示卫星轨道半长轴捕获偏差,表示卫星轨道近地点幅角变化率,e表示卫星轨道偏心率,表示卫星质量变化率,Δe表示卫星轨道偏心率偏差,表示卫星轨道升交点赤经漂移率,sin()表示正弦函数,i表示卫星轨道倾角,Δi表示卫星轨道倾角偏差。
低轨通信和导航星座为圆轨道,偏心率为零。式(5)表明:通过调整半长轴和倾角,可以实现相对相位角差的维持控制。
步骤5:验证星座维持控制效果:
在星座中所有卫星标称半长轴和轨道倾角基础上,叠加卫星半长轴和轨道倾角偏置量,利用长期演化分析模型,分析摄动1年后星座卫星的轨道倾角、升交点赤经和相位角的相对漂移情况,验证控制效果。图6给出了半长轴和倾角偏置后,低轨通信和导航星座摄动1年后,相对升交点赤经的漂移情况。
综上所述,本发明提供的低轨通信和导航增强混合星座维持控制边界计算及控制方法,充分考虑了低轨通信和导航增强混合星座维持控制每个阶段需要考虑的因素,给出了低轨通信和导航增强混合星座维持控制的分析步骤,按照所述设计方法,能够计算得到满足用户需求、控制频次少、燃料消耗少的低轨通信和导航增强混合星座维持控制方法。具体具有以下优点:
(1)可以根据星座对地覆盖重数和观测仰角要求,快速计算出星座中所有卫星的升交点赤经和相位角的控制边界,明确星座维持控制需求,为星座维持控制提供输入;
(2)能够根据相对升交点赤经和相对相位摄动运动方程,计算卫星半长轴和轨道倾角偏置量,该方法主要利用偏置量补偿主要摄动力的长期影响,可以实现相对升交点赤经和相位角的维持控制,无需频繁的维持控制,从而降低卫星燃料消耗和由于频繁的维持控制导致的服务中断。
(3)本发明涉及了控制边界计算、星座性能仿真、星座演化分析、星座偏置量计算等内容,可以在分析控制需求、计算控制量的同时,实现星座性能的仿真验证,增加控制方法的可信度。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视本发明的保护范围。

Claims (6)

1.一种低轨通信和导航增强混合星座维持控制边界计算及控制方法,其特征在于,包括以下步骤:
步骤1:计算星座维持控制边界;
步骤2:仿真边界内星座覆盖性能;
步骤3:分析星座长期相对漂移情况;
步骤4:计算半长轴和轨道倾角偏置量;
步骤5:验证星座维持控制效果。
2.根据权利要求1所述的低轨通信和导航增强混合星座维持控制边界计算及控制方法,其特征在于,
步骤1:计算星座维持控制边界;
低轨通信和导航增强混合星座对地最小覆盖取两重覆盖,观测仰角取10°,将全球区域按照经纬度均为1°的间隔划分为小网格,按照仿真步长,计算轨道周期内每一时刻星座中每颗卫星满足覆盖重数和观测仰角要求时,允许的升交点赤经和相位角的漂移边界。统计轨道周期内每颗卫星对每个采样点允许的升交点赤经和相位角的漂移边界最小值,得到整个星座的升交点赤经和相位角的控制边界,即星座维持控制需求。
3.根据权利要求1所述的低轨通信和导航增强混合星座维持控制边界计算及控制方法,其特征在于,
步骤2:仿真边界内星座覆盖性能:
在星座中每颗卫星标称升交点赤经和相位角基础上,利用蒙特卡洛方法,给星座中所有卫星叠加随机的升交点赤经和相位角偏差,偏差值取控制边界内的均匀分布,仿真低轨通信和导航增强混合星座的覆盖性能。
4.根据权利要求1所述的低轨通信和导航增强混合星座维持控制边界计算及控制方法,其特征在于,
步骤3:分析星座长期相对漂移情况:
考虑地球非球形摄动、大气阻力、日月三体引力摄动、太阳光压摄动等,利用长期演化分析模型,分析摄动1年后星座卫星的轨道倾角、升交点赤经和相位角的相对漂移情况。
5.根据权利要求1所述的低轨通信和导航增强混合星座维持控制边界计算及控制方法,其特征在于,
步骤4:计算半长轴和轨道倾角偏置量:
根据升交点赤经和相位角相对摄动运动方程,计算卫星半长轴和轨道倾角偏置量,补偿主要摄动力的长期影响,实现相对升交点赤经和相位角的维持控制。
6.根据权利要求1所述的低轨通信和导航增强混合星座维持控制边界计算及控制方法,其特征在于,
步骤5:验证星座维持控制效果:
在星座中所有卫星标称半长轴和轨道倾角基础上,叠加卫星半长轴和轨道倾角偏置量,利用长期演化分析模型,分析摄动1年后星座卫星的轨道倾角、升交点赤经和相位角的相对漂移情况,验证控制效果。
CN201711310130.5A 2017-12-11 2017-12-11 低轨通信和导航增强混合星座维持控制边界计算及控制方法 Pending CN108055069A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711310130.5A CN108055069A (zh) 2017-12-11 2017-12-11 低轨通信和导航增强混合星座维持控制边界计算及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711310130.5A CN108055069A (zh) 2017-12-11 2017-12-11 低轨通信和导航增强混合星座维持控制边界计算及控制方法

Publications (1)

Publication Number Publication Date
CN108055069A true CN108055069A (zh) 2018-05-18

Family

ID=62123948

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711310130.5A Pending CN108055069A (zh) 2017-12-11 2017-12-11 低轨通信和导航增强混合星座维持控制边界计算及控制方法

Country Status (1)

Country Link
CN (1) CN108055069A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109521441A (zh) * 2018-11-20 2019-03-26 中国人民解放军战略支援部队航天工程大学 北斗卫星导航系统中轨道卫星废弃轨道优化设计方法
CN109639338A (zh) * 2018-11-27 2019-04-16 中国空间技术研究院 一种适用于通导遥一体化应用全球覆盖星座及其设计方法
CN110198184A (zh) * 2019-05-22 2019-09-03 航天科工空间工程发展有限公司 一种低轨星座系统间频谱共存星座设计方法
CN110717273A (zh) * 2019-10-11 2020-01-21 内蒙古第一机械集团股份有限公司 一种工艺过程仿真边界条件构建方法
CN110855344A (zh) * 2019-11-19 2020-02-28 中国科学院微小卫星创新研究院 一种基于基准卫星的相位维持方法
CN111398999A (zh) * 2020-03-25 2020-07-10 中国科学院微小卫星创新研究院 基于低轨通信星座的用户终端及搜救系统
CN112231873A (zh) * 2020-10-15 2021-01-15 中国西安卫星测控中心 一种meo星座轨位冲突解决方法
CN112769466A (zh) * 2020-12-22 2021-05-07 火眼位置数智科技服务有限公司 低轨卫星星座构型保持方法
CN113189619A (zh) * 2021-04-02 2021-07-30 中国空间技术研究院 一种低轨星座相位保持参数估计方法
CN113778112A (zh) * 2021-08-13 2021-12-10 北京九天微星科技发展有限公司 一种严格回归轨道平面外管道控制的优化方法及装置
CN114006646A (zh) * 2021-09-27 2022-02-01 中国人民解放军战略支援部队航天工程大学 一种Walker星座构型维持的轨道控制频次分析方法及装置
CN115118325A (zh) * 2022-06-09 2022-09-27 中国人民解放军军事科学院国防科技创新研究院 多层星座间可见性能的长期分析方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6764049B1 (en) * 1997-05-21 2004-07-20 Hitachi, Ltd. Artificial satellite with an orbit having a long staying time in a zenith direction, an orbit control method and a communication system therewith
US20090243914A1 (en) * 2008-03-31 2009-10-01 General Motors Corporation Methods and Simulation Tools for Predicting GPS Performance in the Broad Operating Environment
CA2792580A1 (en) * 2011-10-28 2013-04-28 Thales Method and system for controlling a set of at least two satellites adapted to provide a service
CN105183927A (zh) * 2015-05-11 2015-12-23 上海宇航系统工程研究所 一种多星分离参数优化方法
CN105353384A (zh) * 2014-08-18 2016-02-24 中国人民解放军装备学院 一种导航星座备份方法
CN106249253A (zh) * 2016-07-20 2016-12-21 中国人民解放军装备学院 低轨通信和导航增强混合星座的优化设计方法
CN107168372A (zh) * 2017-06-30 2017-09-15 清华大学 基于在轨参数辨识和偏置的卫星跟飞长期摄动补偿方法
CN107402391A (zh) * 2017-07-10 2017-11-28 中国人民解放军装备学院 一种导航卫星星座兼容与互操作分析方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6764049B1 (en) * 1997-05-21 2004-07-20 Hitachi, Ltd. Artificial satellite with an orbit having a long staying time in a zenith direction, an orbit control method and a communication system therewith
US20090243914A1 (en) * 2008-03-31 2009-10-01 General Motors Corporation Methods and Simulation Tools for Predicting GPS Performance in the Broad Operating Environment
CA2792580A1 (en) * 2011-10-28 2013-04-28 Thales Method and system for controlling a set of at least two satellites adapted to provide a service
CN105353384A (zh) * 2014-08-18 2016-02-24 中国人民解放军装备学院 一种导航星座备份方法
CN105183927A (zh) * 2015-05-11 2015-12-23 上海宇航系统工程研究所 一种多星分离参数优化方法
CN106249253A (zh) * 2016-07-20 2016-12-21 中国人民解放军装备学院 低轨通信和导航增强混合星座的优化设计方法
CN107168372A (zh) * 2017-06-30 2017-09-15 清华大学 基于在轨参数辨识和偏置的卫星跟飞长期摄动补偿方法
CN107402391A (zh) * 2017-07-10 2017-11-28 中国人民解放军装备学院 一种导航卫星星座兼容与互操作分析方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
于登云等: "《航天与力学》", 30 November 2015 *
付小宁等: "《数据处理及模型化方法》", 30 June 2016 *
孟云鹤: "《航天器编队飞行导论》", 30 April 2014 *
张洪波等: "《航天器轨道力学理论与方法》", 30 October 2015 *
项军华: "卫星星座构形控制与设计研究", 《中国博士学位论文全文数据库工程科技Ⅱ辑》 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109521441A (zh) * 2018-11-20 2019-03-26 中国人民解放军战略支援部队航天工程大学 北斗卫星导航系统中轨道卫星废弃轨道优化设计方法
CN109521441B (zh) * 2018-11-20 2023-04-11 中国人民解放军战略支援部队航天工程大学 北斗卫星导航系统中轨道卫星废弃轨道优化设计方法
CN109639338A (zh) * 2018-11-27 2019-04-16 中国空间技术研究院 一种适用于通导遥一体化应用全球覆盖星座及其设计方法
CN109639338B (zh) * 2018-11-27 2020-12-04 中国空间技术研究院 一种适用于通导遥一体化应用的全球覆盖星座的设计方法
CN110198184A (zh) * 2019-05-22 2019-09-03 航天科工空间工程发展有限公司 一种低轨星座系统间频谱共存星座设计方法
CN110717273B (zh) * 2019-10-11 2023-03-17 内蒙古第一机械集团股份有限公司 一种工艺过程仿真边界条件构建方法
CN110717273A (zh) * 2019-10-11 2020-01-21 内蒙古第一机械集团股份有限公司 一种工艺过程仿真边界条件构建方法
CN110855344A (zh) * 2019-11-19 2020-02-28 中国科学院微小卫星创新研究院 一种基于基准卫星的相位维持方法
CN111398999A (zh) * 2020-03-25 2020-07-10 中国科学院微小卫星创新研究院 基于低轨通信星座的用户终端及搜救系统
CN112231873A (zh) * 2020-10-15 2021-01-15 中国西安卫星测控中心 一种meo星座轨位冲突解决方法
CN112231873B (zh) * 2020-10-15 2024-03-26 中国西安卫星测控中心 一种meo星座轨位冲突解决方法
CN112769466A (zh) * 2020-12-22 2021-05-07 火眼位置数智科技服务有限公司 低轨卫星星座构型保持方法
CN113189619B (zh) * 2021-04-02 2023-05-09 中国空间技术研究院 一种低轨星座相位保持参数估计方法
CN113189619A (zh) * 2021-04-02 2021-07-30 中国空间技术研究院 一种低轨星座相位保持参数估计方法
CN113778112A (zh) * 2021-08-13 2021-12-10 北京九天微星科技发展有限公司 一种严格回归轨道平面外管道控制的优化方法及装置
CN113778112B (zh) * 2021-08-13 2024-05-14 北京九天微星科技发展有限公司 一种严格回归轨道平面外管道控制的优化方法及装置
CN114006646A (zh) * 2021-09-27 2022-02-01 中国人民解放军战略支援部队航天工程大学 一种Walker星座构型维持的轨道控制频次分析方法及装置
CN114006646B (zh) * 2021-09-27 2023-09-29 中国人民解放军战略支援部队航天工程大学 一种Walker星座构型维持的轨道控制频次分析方法及装置
CN115118325A (zh) * 2022-06-09 2022-09-27 中国人民解放军军事科学院国防科技创新研究院 多层星座间可见性能的长期分析方法
CN115118325B (zh) * 2022-06-09 2023-07-21 中国人民解放军军事科学院国防科技创新研究院 多层星座间可见性能的长期分析方法

Similar Documents

Publication Publication Date Title
CN108055069A (zh) 低轨通信和导航增强混合星座维持控制边界计算及控制方法
CN106249253B (zh) 低轨通信和导航增强混合星座的优化设计方法
van den IJssel et al. Precise science orbits for the Swarm satellite constellation
CN102591343B (zh) 基于两行根数的卫星轨道维持控制方法
CN104298647B (zh) 基于低轨道地球卫星的地影时刻预报的星上确定方法
CN104501804B (zh) 一种基于gps测量数据的卫星在轨轨道预报方法
CN104296751B (zh) 一种多星敏感器构型布局设计方法
CN104332707A (zh) 一种用于低轨星载天线跟踪地面站的方法
CN103257653A (zh) 一种基于燃料消耗优化的卫星编队构形控制方法
CN109146157A (zh) 一种基于太阳同步回归轨道的共轨迹应急侦察星座优化设计方法
CN103684628B (zh) 一种目标轨道与星下点轨迹同时捕获方法
CN103591950B (zh) 一种敏捷卫星的结构布局参数确定方法
CN104048664A (zh) 一种导航卫星星座自主定轨的方法
Hartjes et al. Contrail mitigation through 3D aircraft trajectory optimization
CN100442015C (zh) 一种航天器天文/多普勒组合导航方法
CN105487405B (zh) 低低跟踪重力测量卫星半物理仿真系统
CN109639338A (zh) 一种适用于通导遥一体化应用全球覆盖星座及其设计方法
CN103985060A (zh) 一种基于测光数据的光伏电站发电量计算方法
Zhang et al. Dynamics of the tongue of ionizations during the geomagnetic storm on September 7, 2015
CN102681547B (zh) 用于igso星下点轨迹交点经度维持控制的方法
Solomentsev et al. Three-dimensional assimilation model of the ionosphere for the European region
Lofgren A model for simulation of the climate and hydrology of the Great Lakes basin
Palo et al. TIME‐GCM results for the quasi‐two‐day wave
Xin et al. Impacts of upper tropospheric cooling upon the late spring drought in East Asia simulated by a regional climate model
CN102645224B (zh) 一种基于星间伪距极值的编队星座构型维持控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180518