RU2608176C1 - Способ позиционирования удаленного объекта с помощью дальномерно-угломерных приборов - Google Patents

Способ позиционирования удаленного объекта с помощью дальномерно-угломерных приборов Download PDF

Info

Publication number
RU2608176C1
RU2608176C1 RU2015145060A RU2015145060A RU2608176C1 RU 2608176 C1 RU2608176 C1 RU 2608176C1 RU 2015145060 A RU2015145060 A RU 2015145060A RU 2015145060 A RU2015145060 A RU 2015145060A RU 2608176 C1 RU2608176 C1 RU 2608176C1
Authority
RU
Russia
Prior art keywords
positioning
observation points
coordinates
goniometric
measured
Prior art date
Application number
RU2015145060A
Other languages
English (en)
Inventor
Игорь Евгеньевич Монвиж-Монтвид
Сергей Иванович Ермиков
Original Assignee
Акционерное общество "Калужский научно-исследовательский институт телемеханических устройств"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Калужский научно-исследовательский институт телемеханических устройств" filed Critical Акционерное общество "Калужский научно-исследовательский институт телемеханических устройств"
Priority to RU2015145060A priority Critical patent/RU2608176C1/ru
Application granted granted Critical
Publication of RU2608176C1 publication Critical patent/RU2608176C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/22Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/30Determining absolute distances from a plurality of spaced points of known location

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Изобретение относится к области навигационных систем и может быть использовано для позиционирования удаленных объектов. Достигаемый технический результат - повышение точности и достоверности позиционирования объекта, а также упрощение процедуры прицеливания за счет уменьшения точек наблюдения, ввода критерия правильного выбора этих точек и критерия попадания лучей на объект. Указанный результат достигается тем, что способ позиционирования удаленного объекта осуществляется с помощью дальномерно-угломерных приборов для определения координат удаленных объектов, недоступных для непосредственного позиционирования, при этом с помощью разницы магнитных азимутов определяется правильность расположения позиций наблюдения, с помощью расстояний и углов подъема находятся координаты, с помощью сравнения разницы магнитных азимутов с расчетным углом сходимости проводится проверка попадания лучей на объект. 4 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области навигационных систем и может быть использовано для позиционирования удаленных объектов на основе информации, получаемой от двух и более пространственно разнесенных дальномерно-угломерных узлов.
Как в военных, так и гражданских областях приходится решать задачи, основанные на определении координат удаленных объектов, недоступных для непосредственного позиционирования с помощью, например, спутникового навигационного приемника (СИП). Позиционирование удаленных объектов в гражданской сфере востребовано при проведении геологоразведочных и строительных работ в условиях труднодоступности в горной, лесистой или болотистой местности. В военной области поставленные задачи решаются в целях разведки и целеуказания, при этом особенно остро стоят проблемы удобства использования, точности и достоверности получаемой информации.
В настоящее время широкое применение получили индивидуальные дальномерно-угломерные приборы (ДУП), снабженные дальномером (как правило, лазерным) и средствами для измерения вертикальных и горизонтальных углов (обычно это магнитометры). Направив луч прибора на позиционируемый объект можно получить с его помощью сферические координаты объекта по отношению к точке наблюдения, где располагается ДУП (наклонную дальность, магнитный азимут и угол места). Для определения собственных координат (привязки к местности) ДУП может непосредственно включать либо подключаются к приборам, содержащим СНП.
Позиционирование объектов удобно проводить в связанной с поверхностью земли декартовой локальной системе координат (ЛСК), переведя в нее предварительно координаты пунктов наблюдения. Затем, при необходимости, можно провести обратные преобразования из ЛСК в используемую рабочую систему координат (СК), например в систему координат Гаусса-Крюгера либо геодезическую.
Чаще всего на практике используют способ позиционирования удаленных объектов методом прямой засечки, базирующимся на найденных координатах ДУП и определенных с его помощью сферических координатах объекта: наклонной дальности, магнитного азимута и угла подъема. В ЛСК «восток-север-верх» с началом в точке наблюдения, с учетом собственных координат ДУП и магнитного склонения ,координаты объекта могут быть определены по известным формулам преобразования сферических координат в декартовы:
Figure 00000001
где ρ - наклонная дальность, β - угол магнитного азимута, α - угол подъема объекта, λ - магнитное склонение в пункте наблюдения.
Далее, при необходимости, проводят преобразование координат в выбранную СК.
Способ прост в исполнении, но имеет ряд недостатков, таких как низкая точность из-за погрешности определения магнитного азимута и магнитного склонения, невозможность использования вблизи металлических конструкций и в зонах магнитных аномалий, возможность грубой ошибки позиционирования из-за отсутствия критерия попадания луча на удаленный объект (ошибка прицеливания).
Для позиционирования с помощью ДУП может быть использован способ (ангуляция), основанный на определении углов на объект с двух позиций (Дардари Д. Методы спутникового и наземного позиционирования. Перспективы развития технологий обработки сигналов. М.: Техносфера, 2012, с. 128, 129).
Позиция определяется в ходе решения треугольника, у которого найдено основание (расстояние между позициями наблюдения) и два прилежащих к нему угла на объект.
Данный способ исключает грубую ошибку прицеливания, но сохраняются и даже могут быть ухудшены за счет двойного использования угловых измерений остальные недостатки:
- низкая точность из-за погрешности определений магнитных азимутов и магнитных склонений;
- невозможность работы вблизи металлических конструкций и в зонах магнитных аномалий.
Наиболее близким к предлагаемому способу является латерационный (основанный на определении расстояний) способ позиционирования, при котором позицию объекта определяют пересечением сфер с центрами в трех либо более позициях наблюдения и с радиусами, найденными с помощью дальномера (Дардари Д. Методы спутникового и наземного позиционирования. Перспективы развития технологий обработки сигналов. М.:Техносфера, 2012, с. 126).
Для k точек наблюдения (k≥3), если координаты в ЛСК i-й точки наблюдения обозначить (xi, yi, zi), а расстояние от нее до объекта ρi, определить позицию объекта можно в ходе решения системы уравнений:
Figure 00000002
При k=3 помимо основного решения получают и побочное решение, которое должно быть выявлено и отброшено; при k>3 имеют избыточность данных, которая позволяет избавиться от неопределенности и уточнить позицию объекта.
Этот способ более универсален и обеспечивает более высокую по сравнению с предыдущими точность позиционирования объекта за счет более высокой точности измерения линейных расстояний по сравнению с измерением угловых параметров и за счет исключения из расчетов магнитного склонения.
Недостатками данного способа является то, что для позиционирования требуется не менее трех не расположенных на одной прямой точек наблюдения (четырех - если нет логической возможности отбросить побочное решение), точность позиционирования существенно зависит от взаимного расположения точек наблюдения (геометрический фактор), которое не всегда может быть обеспечено для достижения необходимой точности в условиях наземного позиционирования с относительно плоским расположением объектов и точек наблюдения (Генике А.А., Побединский Г.Г. Глобальные спутниковые системы определения местоположения и их применение в геодезии. - М. - Картгеоцентр. - 2004. - с. 170-173), возможна грубая ошибка прицеливания из-за отсутствия критерия попадания луча ДУП на удаленный объект.
Целью изобретения является повышение точности и достоверности позиционирования объекта, а так же упрощение процедуры прицеливания за счет уменьшения точек наблюдения, ввода критерия правильного выбора этих точек и критерия попадания лучей на объект.
Для достижения цели предложен способ пространственного позиционирования удаленного объекта с помощью дальномерно-угломерных приборов, заключающийся в том, что координаты удаленного объекта определяют с использованием нескольких, предварительно измеренных с помощью дальномерно-угломерных приборов расстояний до объекта, при этом в процессе определения расстояний лучи приборов наводятся на объект с точек наблюдения, координаты которых известны. Число необходимых точек наблюдения снижено до двух, используют измеренные с помощью приборов не только расстояния, но и угловые координаты объекта (магнитные азимуты и углы подъема) по отношению к точкам наблюдения, введен критерий выбора точек наблюдения, позволяющий обеспечить необходимую точность позиционирования, введен критерий попадания лучей дальномерно-угломерных приборов на объект в процессе измерений. При этом используют измеренные с помощью дальномерно-угломерных приборов углы подъема и два расстояния до объекта для определения его координат в плане (координат X, Y на горизонтальной плоскости), используют угол подъема и расстояние до объекта, измеренные с помощью дальномерно-угломерного прибора от одной из точек наблюдения, для определения высоты расположения объекта (координата Z), используют разность магнитных азимутов на объект измеренных с помощью дальномерно-угломерных приборов с обеих точек наблюдения для проверки возможности обеспечения необходимой точности позиционирования и (при необходимости) выдачи рекомендаций по смене точки наблюдения, используют измеренные с помощью дальномерно-угломерных приборов магнитные азимуты объекта с обеих точек наблюдения и угол подъема на объект с одной из точек наблюдения для проверки попадания лучей дальномерно-угломерных приборов на объект в процессе измерения и (при необходимости) выдачи предупреждения об ошибке измерения.
Способ вычисления координат удаленного объекта в ЛСК, центр которой совмещен с ближайшим к объекту пунктом наблюдения, состоит из следующих основных шагов (на фиг. 1 показана поясняющая схема пространственного позиционирования, а на фиг. 2 - ее горизонтальная проекция):
Шаг 1. Направляя лучи дальномерно-угломерного прибора на позиционируемый объект, с каждой из двух точек наблюдения получают два комплекта сферических координат объекта.
Шаг 2 (Предварительное позиционирование). Определяют декартовы координаты объекта методом прямой засечки (1) из ближайшего к объекту пункта наблюдения (Xп, Yп, Zп) (расчетная позиция в целях упрощения показана лишь на фиг. 2).
Шаг 3 (Проверка геометрического фактора и критерий выбора точек наблюдения). Определяют приближенный угол сходимости, как приведенной (по модулю 2π) абсолютной разности между магнитными азимутами на объект с обеих точек наблюдения (dm). Если dm выходит за обеспечивающий необходимую точность диапазон (для большинства задач этот диапазон находится в пределах 30÷150°), то выдается признак недостоверности позиционирования с рекомендацией по смене позиции наблюдения и с ориентировочными координатами прямой засечки: X=Xп, Y=Yп, Z=Zп. Прекращают процедуру вычислений.
Шаг 4. Проецируют на горизонтальную плоскость треугольник, образованный расстоянием между пунктами наблюдения (ρ0) и дистанциями от пунктов наблюдения до объекта (ρ1, ρ2):
Figure 00000003
Шаг 5. Определяют по трем сторонам полученного треугольника (r0, r1, r2) угол при вершине (фиг. 2):
Figure 00000004
Шаг 6 (критерий попадания лучей на объект). Проводят сравнение между полученным углом при вершине (В) и dm (см. шаг 2). Если сравниваемые значения отличаются друг от друга на допустимую пороговую величину, то осуществляют переход к следующему шагу, в противном случае выдается признак ошибочности засечки и процедуру вычислений прекращают.
Шаг 6. Пересечением окружностей определяют два варианта координат в плане (координат на горизонтальной плоскости) точки схода лучей (фиг. 2):
Figure 00000005
Из 2-х полученных в ходе решения системы уравнений (5) расчетных решений B(Xp1, Yp1), B'(Xp2, Yp2) оставляют вариант (X, Y), ближайший к точке (Xп, Yп). Фиксируют высоту объекта: Z=Zп. Процедуру вычислений заканчивают.
Достигаемым техническим результатом предлагаемого способа позиционирования удаленного объекта является повышение точности и достоверности позиционирования объекта, а также упрощение процедуры позиционирования за счет уменьшения точек наблюдения, ввода критерия правильного выбора этих точек и критерия попадания лучей на объект в процессе измерения.

Claims (5)

1. Способ позиционирования удаленного объекта с помощью дальномерно-угломерных приборов, заключающийся в том, что координаты удаленного объекта определяют с использованием нескольких, предварительно измеренных с помощью дальномерно-угломерных приборов расстояний до объекта, при этом в процессе определения расстояний лучи приборов наводятся на объект с точек наблюдения, координаты которых известны, отличающийся тем, что число необходимых точек наблюдения снижено до двух, используют измеренные с помощью приборов не только расстояния, но и угловые координаты объекта - магнитные азимуты и углы подъема, по отношению к точкам наблюдения, введен критерий выбора точек наблюдения, позволяющий обеспечить необходимую точность позиционирования, введен критерий попадания лучей дальномерно-угломерных приборов на объект в процессе измерений.
2. Способ по п. 1, отличающийся тем, что используют измеренные с помощью дальномерно-угломерных приборов углы подъема и два расстояния до объекта для определения его плановых координат X, Y на горизонтальной плоскости.
3. Способ по п. 1, отличающийся тем, что используют угол подъема и расстояние до объекта, измеренные с помощью дальномерно-угломерного прибора от одной из точек наблюдения, для определения высоты расположения объекта - координата Z.
4. Способ по п. 1, отличающийся тем, что используют разность магнитных азимутов на объект измеренных с помощью дальномерно-угломерных приборов с обеих точек наблюдения для проверки возможности обеспечения необходимой точности позиционирования и (при необходимости) выдачи рекомендаций по смене точки наблюдения.
5. Способ по п. 1, отличающийся тем, что используют измеренные с помощью дальномерно-угломерных приборов магнитные азимуты объекта с обеих точек наблюдения и угол подъема на объект с одной из точек наблюдения для проверки попадания лучей дальномерно-угломерных приборов на объект в процессе измерения и, при необходимости, выдачи предупреждения об ошибке измерения.
RU2015145060A 2015-10-20 2015-10-20 Способ позиционирования удаленного объекта с помощью дальномерно-угломерных приборов RU2608176C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015145060A RU2608176C1 (ru) 2015-10-20 2015-10-20 Способ позиционирования удаленного объекта с помощью дальномерно-угломерных приборов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015145060A RU2608176C1 (ru) 2015-10-20 2015-10-20 Способ позиционирования удаленного объекта с помощью дальномерно-угломерных приборов

Publications (1)

Publication Number Publication Date
RU2608176C1 true RU2608176C1 (ru) 2017-01-17

Family

ID=58455902

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015145060A RU2608176C1 (ru) 2015-10-20 2015-10-20 Способ позиционирования удаленного объекта с помощью дальномерно-угломерных приборов

Country Status (1)

Country Link
RU (1) RU2608176C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2703258C1 (ru) * 2019-04-18 2019-10-16 Валерий Владимирович Хуторцев Латерационный способ однопозиционной радиолокации подвижных источников радиосигнала на дорожной сети

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5764785A (en) * 1995-08-21 1998-06-09 Jones; Mark F. Object identification system
WO2002063241A1 (fr) * 2001-02-08 2002-08-15 Nkk Corporation Procede de mesure de coordonnees tridimensionnelles, dispositif de mesure de coordonnees tridimensionnelles et procede permettant la construction d"une structure de grande dimension
DE202006017419U1 (de) * 2006-11-13 2007-01-11 Schein, Bernd, Dipl.-Ing. Sicheres Ortungs- und Auffindungssystem für Personen und Gegenstände
RU108136U1 (ru) * 2010-09-06 2011-09-10 Открытое Акционерное Общество "Научно-Производственное Объединение "Волго" Комплекс панорамного видеонаблюдения и контроля территории
RU2567865C1 (ru) * 2014-07-01 2015-11-10 Акционерное общество "Калужский научно-исследовательский институт телемеханических устройств" (АО "КНИИТМУ") Способ позиционирования удаленного объекта с помощью дальномерно-угломерных приборов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5764785A (en) * 1995-08-21 1998-06-09 Jones; Mark F. Object identification system
WO2002063241A1 (fr) * 2001-02-08 2002-08-15 Nkk Corporation Procede de mesure de coordonnees tridimensionnelles, dispositif de mesure de coordonnees tridimensionnelles et procede permettant la construction d"une structure de grande dimension
DE202006017419U1 (de) * 2006-11-13 2007-01-11 Schein, Bernd, Dipl.-Ing. Sicheres Ortungs- und Auffindungssystem für Personen und Gegenstände
RU108136U1 (ru) * 2010-09-06 2011-09-10 Открытое Акционерное Общество "Научно-Производственное Объединение "Волго" Комплекс панорамного видеонаблюдения и контроля территории
RU2567865C1 (ru) * 2014-07-01 2015-11-10 Акционерное общество "Калужский научно-исследовательский институт телемеханических устройств" (АО "КНИИТМУ") Способ позиционирования удаленного объекта с помощью дальномерно-угломерных приборов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ДАРДАРИ Д. Методы спутникового и наземного позиционирования. Москва, Техносфера, 2012, с.126. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2703258C1 (ru) * 2019-04-18 2019-10-16 Валерий Владимирович Хуторцев Латерационный способ однопозиционной радиолокации подвижных источников радиосигнала на дорожной сети

Similar Documents

Publication Publication Date Title
US6281841B1 (en) Direction determining apparatus
CN108061889A (zh) Ais与雷达角度系统偏差的关联方法
JP2017154729A (ja) 航空機着陸システム及び方法
RU2567865C1 (ru) Способ позиционирования удаленного объекта с помощью дальномерно-угломерных приборов
RU2623452C1 (ru) Способ навигации движущихся объектов
US10184799B2 (en) Systems and methods for targeting objects of interest in denied GPS environments
RU2471152C1 (ru) Способ навигации летательных аппаратов
RU2515469C1 (ru) Способ навигации летательных аппаратов
RU2601494C1 (ru) Способ определения координат летательных аппаратов на основе использования двух дирекционных углов и одного угла места
RU2559820C1 (ru) Способ навигации движущихся объектов
RU2608176C1 (ru) Способ позиционирования удаленного объекта с помощью дальномерно-угломерных приборов
RU2713193C1 (ru) Способ межпозиционного отождествления результатов измерений и определения координат воздушных целей в многопозиционной радиолокационной системе
RU2667115C1 (ru) Способ позиционирования объекта засечкой азимута с первого измерительного пункта и угла места с дальностью - со второго
RU2677586C1 (ru) Способ позиционирования объекта засечкой дальности и угла места с первого измерительного пункта и угла места - со второго
CA3141746C (en) Improvements in and relating to targeting
RU2645549C2 (ru) Способ определения координат летательных аппаратов с использованием одного дирекционного угла и двух углов места
RU2536320C1 (ru) Способ навигации летательных аппаратов
Reshetyuk Direct georeferencing with GPS in terrestrial laser scanning
RU2564552C1 (ru) Способ навигации летательного аппарата по радиолокационным изображениям земной поверхности
RU2684733C2 (ru) Способ определения положения объекта засечкой с двух измерительных пунктов по азимуту, углу места и дальности
Tomaštik et al. Compass measurement–still a suitable surveying method in specific conditions
RU2253126C1 (ru) Способ отождествления пеленгов источников радиоизлучений в угломерных двухпозиционных пассивных радиолокационных системах
RU2426073C1 (ru) Способ навигации движущихся объектов
WO2015194966A1 (en) Method and system for quality control and correction of position data from navigation satellites in areas with obstructing objects
CN110045403A (zh) 一种基于大地坐标系的测距方法和测距装置