RU2607225C2 - Способ измерения полей температуры на поверхности исследуемого объекта с помощью люминесцентных преобразователей температуры (ЛПТ) - Google Patents

Способ измерения полей температуры на поверхности исследуемого объекта с помощью люминесцентных преобразователей температуры (ЛПТ) Download PDF

Info

Publication number
RU2607225C2
RU2607225C2 RU2015115392A RU2015115392A RU2607225C2 RU 2607225 C2 RU2607225 C2 RU 2607225C2 RU 2015115392 A RU2015115392 A RU 2015115392A RU 2015115392 A RU2015115392 A RU 2015115392A RU 2607225 C2 RU2607225 C2 RU 2607225C2
Authority
RU
Russia
Prior art keywords
temperature
luminescent
luminescence
rhodamine
radiation
Prior art date
Application number
RU2015115392A
Other languages
English (en)
Other versions
RU2015115392A (ru
Inventor
Николай Анатольевич Маслов
Владимир Михайлович Анискин
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН)
Priority to RU2015115392A priority Critical patent/RU2607225C2/ru
Publication of RU2015115392A publication Critical patent/RU2015115392A/ru
Application granted granted Critical
Publication of RU2607225C2 publication Critical patent/RU2607225C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/20Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using thermoluminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/16Esters of inorganic acids
    • C09D101/18Cellulose nitrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/22Luminous paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/26Thermosensitive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Изобретение относится к способу измерения полей температуры на поверхности исследуемого объекта с помощью люминесцентных преобразователей температуры. Способ включает нанесение на поверхность покрытия, люминесцирующего при освещении возбуждающим излучением, интенсивность люминесценции которого зависит от температуры. Композиция для покрытия включает нитролак или полиуретановый лак, равномерно смешанный при нормальных условиях с двумя люминофорами - чувствительным к температуре родамином и нечувствительным к температуре люминофором. При освещении возбуждающим люминесценцию излучением указанные люминофоры люминесцируют в разных областях спектра. Искомое распределение температуры на поверхности объекта получают методом компьютерной обработки двух изображений, одновременно зарегистрированных в спектральных интервалах используемых люминофоров. Вычисленное отношение интенсивностей не зависит от яркости возбуждающего люминесценцию источника, толщины нанесения слоя лака, геометрических характеристик объекта исследования. Изобретение обеспечивает повышение достоверности результата визуального контроля температуры на поверхности объекта, а также возможность одновременного контроля температуры в непрерывном режиме по всей поверхности или выборочно на конкретном участке объекта. 3 ил.

Description

Предложенное техническое решение относится к люминесцентным композициям, люминесцирующие свойства которых используют для измерения температуры поверхности исследуемого объекта, на которые они нанесены тонким прозрачным слоем и включает цифровую визуализацию процессов с помощью устройств регистрации изображений, сформированных с помощью излучения. Такие устройства относятся к средствам регистрации оптических изображений и могут быть использованы в системах скоростной цифровой съемки для исследования быстропротекающих процессов, когда изображение объекта исследования формируют с помощью различных видов излучений.
Известен метод призменного делителя изображений при измерении распределения давления методом двухцветных люминесцентных преобразователей (ЛПД), описанный в журнале Приборы и техника эксперимента, 2001, №1, С. 149 /1/. Описан призменный делитель изображений, обеспечивающий одновременную регистрацию двух спектрально-разделенных изображений с помощью одной цифровой камеры. Суть метода заключается в том, что поверхность модели покрывается чувствительной к давлению краской - люминесцентным преобразователем давления. При испытаниях модели исследуемую поверхность освещают возбуждающим люминофор ультрафиолетовым излучением и регистрируют с помощью средств цифровой видеотехники распределение интенсивности люминесценции. Из полученных видеоизображений методом цифровой обработки получают искомое распределение давления. Данный метод предназначен исключительно для измерения давления.
Известен метод люминесцентных преобразователей температуры (ЛПТ), описанный в журнале Ученые записки ЦАГИ, Том XXXVIII, 2007, №1-2, с. 94 /2/, который использовался для измерения давления на поверхности объекта. Модель также покрывается слоем измерительной люминесцентной краски на основе европия и кумаринового красителя. Интенсивность люминесценции ЛПТ-покрытия при освещении возбуждающим излучением зависит от температуры и не зависит от давления. Импульсное освещение позволяет измерять мгновенное распределение температуры окрашенной поверхности в потоке. Для этого необходимо зарегистрировать (например, с помощью п.з.с.-камеры) два распределения интенсивности ЛПТ-покрытия: одно - в потоке на исследуемом режиме (рабочее), другое - при известной температуре без потока (опорное). Отношение интенсивностей рабочего и опорного изображений определяется только температурой.
Недостатком метода является необходимость использования мощного импульсного ультрафиолетового источника света для возбуждения люминесценции, что делает метод технически сложным.
За прототип выбран способ для измерения температуры по соотношению интенсивностей люминесценции в спектральных интервалах, описанный в статье Lavieille Р. и др. Evaporating and combusting droplet temperature measurements using two-color laser-induced fluorescence // Exp. Fluids. 2001. T. 31. С. 45-55 /3/.
В статье предлагается новая технология, позволяющая с помощью лазерно-индуцированной люминесценции выполнять измерения температуры испаряющихся и сгорающих капель, основанная на изменении спектра люминесценции вещества (родамина) от изменения температуры. Целью работы было исследование процесса горения спрея из жидкости, состоящей из этилового спирта с низкой концентрацией родамина В. Капли облучают аргоновым лазером с длиной волны излучения 514 нм, тем самым возбуждают люминесценцию родамина. По результатам измерений спектр люминесценции родамина зависит от температуры: в области 525-545 нм интенсивность люминесценции от температуры зависит слабо; в области 570-670 нм с ростом температуры интенсивность падает на 3% на градус К. Таким образом, по соотношению интенсивностей люминесценции в этих спектральных интервалах можно определять температуру жидкости. С помощью оптической системы направляют излучение люминесценции капель на два фотоэлектронных умножителя (ФЭУ): перед одним стоит интерференционный фильтр, пропускающий свет в диапазоне 520-540 нм; перед вторым - пропускающий свет с длиной волны больше 590 нм. Разделив сигнал, измеренный первым ФЭУ, на сигнал, измеренный вторым ФЭУ, измеряют температуру капли во время сгорания.
Недостатком прототипа можно считать то, что данный метод можно использовать только для измерения температуры жидкости. Данная оптическая система не позволяет определять распределение температур, а проводит измерение только в одной точке.
Для определения распределения температуры по поверхности исследуемого объекта можно использовать люминесцирующие покрытия, содержащие в своей композиции данный люминесцентный краситель (родамин) в полимерной матрице. Из уровня техники известны различные люминесцирующие покрытия и способы их нанесения.
Известен способ получения прозрачной пленки, описанный в патенте WO 2008/110567, «Photovoltaic modules with improved quantum efficiency» /4/, который выбран прототипом люминесцирующего покрытия. По данному способу прозрачная пленка входит в состав фотоэлектрического модуля в качестве структурного элемента и/или защитного слоя и предназначена для преобразования падающего электромагнитного излучения с помощью люминесцентного материала, который поглощает падающий свет в спектральном диапазоне от 300 до 500 нм, предпочтительно при 400 нм, где фотоэлектрический модуль имеет низкое значение внешней квантовой эффективности, и вторично излучает в спектральном диапазоне от 400 до 700 нм, где ФЭП имеет высокое значение внешней квантовой эффективности. Люминесцентный материал содержит хотя бы одно из следующих веществ: органический люминесцентный материал, предпочтительно родамин, кумарин, рубрен (ru-brine), краситель для лазеров (laser dye), AIq3, TPD, Gaq2CI; периленовый краситель, и др. Для образования на поверхности ФЭП слоя (пленки), содержащего люминесцентный материал, используется метод термического ламинирования с применением различных полимерных материалов на основе поливинилацетатных, полиакрилатных и полиэпоксидных матриц.
Данное изобретение не предназначено для измерения температуры, в них используются различные люминесцирующие красители, а не только родамин. Как меняются их свойства и при изменении температуры и возможно ли использовать двухцветную систему регистрации из прототипа для подобного типа покрытий неизвестно.
Для люминесцентной визуализации распределения температур, необходима одновременная запись двух изображений в двух спектральных интервалах. Из уровня техники известно множество систем, позволяющих это сделать.
Задачей изобретения является получение качественных результатов измерений температуры с помощью создания люминесцирующего прозрачного покрытия на поверхности исследуемого объекта.
Поставленная задача выполняется благодаря тому, что способ измерения полей температуры на поверхности исследуемого объекта с помощью люминесцентных преобразователей температуры (ЛПТ) включает нанесение на исследуемую поверхность тонкого слоя покрытия люминесцирующего при освещении возбуждающим излучением, интенсивность люминесценции которого зависит от температуры. Люминесцирующее покрытие для измерения распределения температуры по поверхности исследуемого объекта, включает родамин и оптически прозрачный полимер. Согласно изобретению покрытие выполнено на основе полимерной композиции, имеющей в своем составе нитролак или полиуретановый лак, смешанный при комнатной температуре до образования однородной массы с родамином и люминесцирующим пигментом, при этом пигмент не взаимодействует с родамином и интенсивность люминесценции его не зависит от температуры поверхности исследуемого объекта, а спектральный диапазон люминесценции пигмента, лежащий в пределах длин волн λп1п2, отличается от спектрального диапазона люминесценции смешанного с полимером родамина, лежащего в пределах длин волн λp1p2. В качестве полимерной композиции используют нитролак или полиуретановый лак, в качестве пигмента использовали зеленый люминесцентный краситель для художественных красок, полученный путем растворения пигмента из акриловых красок производства «ЗАО Завод художественных красок «Невская палитра» в спирте. В качестве пигмента возможно использовать и другие красители, нечувствительные к температуре. Для измерения распределения температуры по поверхности исследуемого объекта на поверхность исследуемого объекта наносят люминесцирующее покрытие с определенными (присущие ему) калибровочными данными - зависимостью отношения интенсивностей флуоресценции родамина и выбранного (опорного) пигмента от температуры в данной полимерной композиции, и сушат при нормальных условиях до образования тонкой полимерной пленки. На покрытие воздействуют возбуждающим люминесценцию излучением и с помощью оптической системы одновременной регистрации и компьютерной обработки получают два цифровых изображения исследуемого объекта: первое с помощью оптического фильтра, пропускающего излучение в спектральной полосе, соответствующей излучению родамина λp1p2, второе - с помощью оптического фильтра, пропускающего излучение в спектральной полосе, соответствующей полосе излучения люминесцирующего пигмента λп1п2. Можно использовать любую другую оптическую систему, позволяющую с помощью подходящего метода цифровой (компьютерной) обработки получить отношения интенсивностей флуоресценции родамина и опорного люминофора для каждого пикселя изображения. При использовании в качестве опорного пигмента зеленого пигмента для художественных красок, поскольку λp1p2 и λп1п2 не перекрываются, компьютерная обработка заключается в следующем: интенсивность для изображения в первой спектральной полосе попиксельно (в каждой точке поверхности) делится на интенсивность для изображения во второй спектральной полосе; затем по результату деления и с учетом калибровочных данных - зависимости отношения интенсивности люминесценции в спектральном интервале родамина λp1p2 к интенсивности люминесценции в спектральном интервале пигмента λп1п2 от температуры, устанавливают распределение температуры в каждой точке поверхности объекта.
Технический результат предлагаемого изобретения заключается в простоте измерения полей температуры исследуемого объекта с помощью люминесцирующего покрытия.
На фиг. 1 изображены спектры люминесценции нитролака, смешанного с родамином, нанесенного на медную поверхность и высушенного при температурах 25°С и 50°С.
На фиг. 2 изображены спектры люминесценции нитролака, смешанного с родамином и зеленым люминесцентным пигментом, нанесенного на медную поверхность и высушенного при температурах 25°С и 40°С.
На фиг. 3 градациями серого изображено распределение температуры по поверхности затупленного конуса, полученные в аэродинамическом эксперименте в разные моменты времени.
Способ измерения полей температуры на поверхности исследуемого объекта с помощью люминесцентных преобразователей температуры (ЛПТ) осуществляется следующим образом. Изготавливают люминесцирующее полимерное покрытие, в качестве чувствительного к температуре люминофора в нем используют родамин. Родамин хорошо окрашивает практически любую поверхность, однако при высыхании, как правило, практически перестает люминесцировать. Его можно смешать с буферной средой, формирующей устойчивое оптически прозрачное покрытие после высыхания. При этом поведение родамина может различаться, в зависимости от среды. При смешивании, например, с ПВА, акриловым лаком после высыхания родамин также практически не люминесцирует. При смешивании с нитролаком или с полиуретановым лаком получающееся покрытие способно сильно люминесцировать под воздействием возбуждающего излучения. Возбуждающее излучение для родамина может быть любым с длиной волны менее 560 нм и выбирается из соображений удобства и эффективности. Для возбуждения люминесценции в эксперименте был использован синий светодиод с полосовым светофильтром (полоса пропускания 450-470 нм). При этом спектр люминесценции зависит от среды, в которой находится родамин: в прототипе максимум излучения растворенного в спирте родамина приходится на 570 нм, у используемого полимерного покрытия - на 600 нм. Температурная зависимость сохраняется, чем выше температура, тем ниже основной пик (см. фиг. 1). Однако для измерения температуры поверхности исследуемого объекта использовать абсолютный уровень интенсивности излучения затруднительно, так как на результат будут влиять: колебания яркости источника возбуждающего излучения, геометрия оптической системы, толщина нанесения слоя полученного люминесцирующего покрытия. При этом наблюдается аналогичный с прототипом эффект: в области 550-560 нм интенсивность люминесценции от температуры не зависит, ее можно использовать в качестве опорного сигнала. Можно также проводить измерения в двух спектральных полосах: результат деления сигналов будет зависеть только от температуры, влияние всех прочих факторов будет одинаково и при делении даст 1.
Однако интенсивность люминесценции в независящем от температуры регионе спектра мала. Чтобы увеличить опорный сигнал, помимо родамина в лак добавляют дополнительный люминофор (опорный). Люминесцирующее покрытие выполняют из оптически прозрачной жидкой полимерной композиции, имеющей в своем составе нитролак или полиуретановый лак, смешанный при нормальных условиях до образования однородной массы с родамином В(С) и, как пример, опорный люминофор - зеленый пигмент для художественных красок, полученный путем растворения пигмента из акриловых красок производства «ЗАО Завод художественных красок «Невская палитра» в спирте, люминесценция которого также эффективно возбуждается излучением использованного светодиода. В результате в спектре люминесценции полимерной композиции наблюдаются два пика: первый - на длине волны 510 нм, определяющийся люминесценцией зеленого пигмента, от температуры не зависит; второй - на длине волны 600 нм, определяющийся люминесценцией родамина, который снижается при увеличении температуры на поверхности объекта (см. фиг. 2). Можно использовать любой пигмент, который химически не взаимодействует с родамином, не влияет на его флуоресценцию и интенсивность люминесценции которого не зависит от температуры поверхности исследуемого объекта, а диапазон спектра люминесценции пигмента λп1п2, отличается от диапазона люминесценции родамина λp1p2. При этом следует выбирать источник излучения, эффективно возбуждающий флуоресценцию как родамина так и используемого пигмента. Данный эффект можно использовать для измерения распределения температуры по поверхности исследуемого объекта. После нанесения на поверхность люминесцирующего покрытия его сушат при нормальных комнатных условиях до образования тонкой полимерной пленки и воздействуют возбуждающим люминесценцию излучением, например излучением синего светодиода. После высыхания покрытия, родамин способен люминесцировать в спектральном диапазоне λp1p2 (580-620 нм при использовании полиуретанового лака); а люминесцирующий пигмент в диапазоне λп1п2 (480-550 нм для зеленого люминесцирующего пигмента для художественных красок). Для полученного люминесцирующего покрытия в высохшем состоянии строится калибровочная кривая - зависимость отношения интенсивности люминесценции в спектральном интервале родамина λp1p2 к интенсивности люминесценции в спектральном интервале пигмента λп1п2 от температуры (см. фиг. 2).
Для визуализации процессов, происходящих на поверхности исследуемого объекта, используют известную оптическую систему (см. Приборы и техника эксперимента, 2001, №1, С. 149). Одновременно регистрируют два цифровых изображения объекта - с помощью оптического фильтра, пропускающего излучение в спектральной полосе, соответствующей излучению родамина λp1p2, и с помощью оптического фильтра, пропускающего излучение в спектральной полосе, соответствующей полосе излучения люминесцирующего пигмента λп1п2, интенсивность для изображения в первой спектральной полосе попиксельно (в каждой точке поверхности) делится на интенсивность для изображения во второй спектральной полосе, по результату деления и калибровочной кривой устанавливается распределение температуры по всей поверхности объекта (см. фиг. 3).
Технический эффект заключается в том, что вычисленное отношение интенсивностей не зависит от яркости выбранного возбуждающего люминесценцию источника, толщины нанесения слоя лака, геометрических характеристик объекта исследования.
Техническим результатом изобретения является возможность одновременного контроля температуры в непрерывном режиме по всей поверхности объекта или выборочно на конкретном участке исследуемого объекта и повышение достоверности результата визуального контроля температуры на исследуемой поверхности.
Источники информации
1. Кулеш В.П. и др. Использование призменного делителя изображений при измерении распределения давления методом двухцветных люминесцентных преобразователей // Приборы и техника эксперимента. - 2001. - №1. - С. 149.
2. Мошаров В.Е. и др. Измерение полей тепловых потоков в трубах кратковременного действия с помощью люминесцентных преобразователей температуры // Ученые записки ЦАГИ. - 2007. - Т. 38. - №. 1-2. - С. 94-101.
3. Lavieille Р. и др. Evaporating and combusting droplet temperature measurements using two-color laser-induced fluorescence // Exp. Fluids. - 2001. - T. 31. - C. 45-55. – прототип.
4. Патент WO 2008/110567, МПК C09K 11/00, 2008 г.

Claims (1)

  1. Способ измерения полей температуры на поверхности исследуемого объекта с помощью люминесцентных преобразователей температуры (ЛПТ), включающий нанесение на исследуемую поверхность тонкого слоя покрытия, люминесцирующего при освещении возбуждающим излучением, интенсивность люминесценции которого зависит от температуры, отличающийся тем, что наносимое покрытие выполнено на основе полимерной композиции, имеющей в своем составе нитролак или полиуретановый лак, равномерно смешанный при нормальных условиях с двумя люминофорами: чувствительным к температуре родамином и нечувствительным к температуре люминофором, при этом смешанные в лаке люминофоры не взаимодействуют друг с другом и при освещении возбуждающим люминесценцию излучением люминесцируют в разных областях спектра, что позволяет получать искомое распределение температуры на поверхности исследуемого объекта методом компьютерной обработки двух изображений, одновременно зарегистрированных в спектральных интервалах используемых люминофоров.
RU2015115392A 2015-04-23 2015-04-23 Способ измерения полей температуры на поверхности исследуемого объекта с помощью люминесцентных преобразователей температуры (ЛПТ) RU2607225C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015115392A RU2607225C2 (ru) 2015-04-23 2015-04-23 Способ измерения полей температуры на поверхности исследуемого объекта с помощью люминесцентных преобразователей температуры (ЛПТ)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015115392A RU2607225C2 (ru) 2015-04-23 2015-04-23 Способ измерения полей температуры на поверхности исследуемого объекта с помощью люминесцентных преобразователей температуры (ЛПТ)

Publications (2)

Publication Number Publication Date
RU2015115392A RU2015115392A (ru) 2016-11-20
RU2607225C2 true RU2607225C2 (ru) 2017-01-10

Family

ID=57759486

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015115392A RU2607225C2 (ru) 2015-04-23 2015-04-23 Способ измерения полей температуры на поверхности исследуемого объекта с помощью люминесцентных преобразователей температуры (ЛПТ)

Country Status (1)

Country Link
RU (1) RU2607225C2 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004460A (ja) * 1999-06-25 2001-01-12 Osaka Gas Co Ltd 温度測定方法及び温度測定装置及び感温塗料
RU2238529C1 (ru) * 2003-04-24 2004-10-20 Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет) Способ бесконтактного измерения температуры поверхности нагретых тел
JP2006126014A (ja) * 2004-10-28 2006-05-18 National Institute Of Advanced Industrial & Technology 感温蛍光材料、温度測定方法及び温度分布測定方法
RU2330249C1 (ru) * 2006-12-07 2008-07-27 Федеральное государственное унитарное предприятие "Летно-исследовательский институт имени М.М. Громова" Способ определения поля температур нагретой поверхности высокоскоростного летательного аппарата
US20130215929A1 (en) * 2012-02-16 2013-08-22 Semprius, Inc. Indirect temperature measurements of direct bandgap (multijunction) solar cells using wavelength shifts of sub-junction luminescence emission peaks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004460A (ja) * 1999-06-25 2001-01-12 Osaka Gas Co Ltd 温度測定方法及び温度測定装置及び感温塗料
RU2238529C1 (ru) * 2003-04-24 2004-10-20 Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет) Способ бесконтактного измерения температуры поверхности нагретых тел
JP2006126014A (ja) * 2004-10-28 2006-05-18 National Institute Of Advanced Industrial & Technology 感温蛍光材料、温度測定方法及び温度分布測定方法
RU2330249C1 (ru) * 2006-12-07 2008-07-27 Федеральное государственное унитарное предприятие "Летно-исследовательский институт имени М.М. Громова" Способ определения поля температур нагретой поверхности высокоскоростного летательного аппарата
US20130215929A1 (en) * 2012-02-16 2013-08-22 Semprius, Inc. Indirect temperature measurements of direct bandgap (multijunction) solar cells using wavelength shifts of sub-junction luminescence emission peaks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
МОШАРОВ В.Н. и др. Измерение полей тепловых потоков в трубах кратковременного действия с помощью люминесцентных преобразователей температуры. Ж. Ученые записки ЦАГИ, 2007, т. XXXVIII, 1-2, с. 94-101. *

Also Published As

Publication number Publication date
RU2015115392A (ru) 2016-11-20

Similar Documents

Publication Publication Date Title
Hradil et al. Temperature-corrected pressure-sensitive paint measurements using a single camera and a dual-lifetime approach
CN105241575B (zh) 基于宽带荧光光谱的强度比测温方法
Basu et al. Study of the mechanism of degradation of pyrene-based pressure sensitive paints
Cerretani et al. Temperature dependent excited state relaxation of a red emitting DNA-templated silver nanocluster
Hashemi et al. Temperature measurements using YAG: Dy and YAG: Sm under diode laser excitation (405 nm)
Egami et al. Development of fast response bi-luminophore pressure-sensitive paint by means of an inkjet printing technique
Someya et al. Instantaneous 2D imaging of temperature in an engine cylinder with flame combustion
Someya Particle-based temperature measurement coupled with velocity measurement
CN105203041B (zh) 一种宽带荧光积分强度比测量应变的方法
JP2005029767A (ja) 感圧・感温複合機能塗料
RU2607225C2 (ru) Способ измерения полей температуры на поверхности исследуемого объекта с помощью люминесцентных преобразователей температуры (ЛПТ)
JP5896444B2 (ja) 圧力分布と速度分布の同時計測法
Mitsuo et al. Development of lifetime imaging system for pressure-sensitive paint
JP2004177247A (ja) 二酸化炭素測定方法
Stich et al. Fluorescence sensing and imaging using pressure-sensitive paints and temperature-sensitive paints
Martinez Schramm et al. Development of ultra-fast temperature sensitive paints for hypersonic high speed flows
JP2009092615A (ja) 3層構造の感圧塗料薄膜センサー
CN104374761A (zh) 脉冲激光加热法温敏涂料响应时间测量装置及测试方法
Sakamura et al. Development and characterization of a pressure-sensitive luminescent coating based on Pt (II)-porphyrin self-assembled monolayers
JP2008286564A (ja) 複合分子センサ
Hashemi et al. Surface thermography using dual channel imaging based on the blue and red emission of Ba3MgSi2O8: Eu2+, Mn2+
Euler et al. The spectrally resolved luminescence decay of thermographic phosphors
JP2018532112A (ja) 低バックグラウンドシグナルを有する有機系蛍光センサ
JP2017219397A (ja) 感圧塗料、感圧センサ、圧力計測装置、計測方法及びプログラム
Schramm et al. Calibration of fast-response temperature sensitive paints for their application in hypersonic high enthalpy flows