RU2606725C2 - Способы и системы для конденсации CO2 - Google Patents

Способы и системы для конденсации CO2 Download PDF

Info

Publication number
RU2606725C2
RU2606725C2 RU2014110121A RU2014110121A RU2606725C2 RU 2606725 C2 RU2606725 C2 RU 2606725C2 RU 2014110121 A RU2014110121 A RU 2014110121A RU 2014110121 A RU2014110121 A RU 2014110121A RU 2606725 C2 RU2606725 C2 RU 2606725C2
Authority
RU
Russia
Prior art keywords
stream
cooling
cooled
condensed
temperature
Prior art date
Application number
RU2014110121A
Other languages
English (en)
Other versions
RU2014110121A (ru
Inventor
Мигель Анхель ГОНСАЛЕС-САЛАЗАР
Витторио МИКЕЛАССИ
Кристиан ВОГЕЛЬ
Original Assignee
Дженерал Электрик Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дженерал Электрик Компани filed Critical Дженерал Электрик Компани
Publication of RU2014110121A publication Critical patent/RU2014110121A/ru
Application granted granted Critical
Publication of RU2606725C2 publication Critical patent/RU2606725C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0027Oxides of carbon, e.g. CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0225Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using other external refrigeration means not provided before, e.g. heat driven absorption chillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/80Separating impurities from carbon dioxide, e.g. H2O or water-soluble contaminants
    • F25J2220/82Separating low boiling, i.e. more volatile components, e.g. He, H2, CO, Air gases, CH4
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/80Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/80Integration in an installation using carbon dioxide, e.g. for EOR, sequestration, refrigeration etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/908External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Treating Waste Gases (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

В соответствии с одним аспектом настоящего изобретения предложены способы конденсации диоксида углерода (СО2) из потока СО2. Способ включает (i) сжатие и охлаждение потока СО2 с образованием частично охлажденного потока CO2, причем частично охлажденный поток СО2 охлаждают до первой температуры. Способ включает (ii) охлаждение частично охлажденного потока CO2 до второй температуры посредством магнитокалорического охлаждения с образованием охлажденного потока СО2. Способ дополнительно включает (iii) конденсацию по меньшей мере части CO2 в охлажденном потоке CO2 с образованием конденсированного потока CO2. Также предложены системы для конденсации диоксида углерода (CO2) из потока CO2. Изобретение направлено на повышение эффективности процесса конденсации CO2. 3 н. и 17 з.п. ф-лы, 10 ил.

Description

Настоящее изобретение относится к способам и системам для конденсации диоксида углерода (СО2) с использованием магнитокалорического охлаждения. Более конкретно, настоящее изобретение относится к способам и системам для конденсации CO2 при сжатии с промежуточным охлаждением и каскадом насосов (pumping train) с применением магнитокалорического охлаждения.
Уровень техники
Энергетические процессы, которые основаны на сжигании углеродсодержащего топлива, обычно производят СО2 в качестве побочного продукта. Желательно улавливать или иным образом отделять СО2 из газовой смеси, чтобы предотвратить высвобождение СО2 в окружающую среду и/или использовать СО2 в энергетическом процессе или в других процессах. Также желательно сжижать/конденсировать отделенный СО2, чтобы облегчить транспортировку и хранение отделенного СО2. Сжатие СО2, сжижение и нагнетание с применением каскада насосов могут быть использованы для сжижения СО2 для требуемых конечных применений. Однако способы конденсации/сжижения СО2 могут быть энергоемкими.
Таким образом, существует потребность в эффективных способах и системах для конденсации СО2. Кроме того, существует потребность в эффективных способах и системах для конденсации CO2 при сжатии с промежуточным охлаждением и нагнетании с применением каскада насосов.
Краткое описание изобретения
В соответствии с одним аспектом настоящего изобретения предложен способ конденсации диоксида углерода (СО2) из потока СО2. Способ включает (i) сжатие и охлаждение потока СО2 с образованием частично охлажденного потока СО2, причем частично охлажденный поток СО2 охлаждают до первой температуры. Способ включает (ii) охлаждение частично охлажденного потока CO2 до второй температуры посредством магнитокалорического охлаждения с образованием охлажденного потока CO2. Способ дополнительно включает (iii) конденсацию по меньшей мере части СО2 в охлажденном потоке СО2 при второй температуре с образованием конденсированного потока СО2.
В соответствии с другим аспектом настоящего изобретения предложен способ конденсации диоксида углерода (СО2) из потока СО2. Способ включает (i) охлаждение потока СО2 в первой ступени охлаждения, включающей первый теплообменник, с образованием первого частично охлажденного потока СО2. Способ дополнительно включает (ii) сжатие первого частично охлажденного потока СО2 с образованием первого сжатого потока СО2. Способ дополнительно включает (iii) охлаждение первого сжатого потока СО2 во второй ступени охлаждения, включающей второй теплообменник, с образованием второго частично охлажденного потока СО2. Способ дополнительно включает (iv) сжатие второго частично охлажденного потока СО2 с образованием второго сжатого потока СО2. Способ дополнительно включает (v) охлаждение второго сжатого потока СО2 до первой температуры в третьей ступени охлаждения, включающей третий теплообменник, с образованием частично охлажденного потока СО2. Способ дополнительно включает (vi) охлаждение частично охлажденного потока СО2 до второй температуры посредством магнитокалорического охлаждения с образованием охлажденного потока СО2. Способ дополнительно включает (vii) конденсацию по меньшей мере части CO2 в охлажденном потоке СО2 при второй температуре с образованием конденсированного потока СО2.
В соответствии с еще одним аспектом настоящего изобретения предложена система для конденсации диоксида углерода (СО2) из потока СО2. Система включает (i) одну или более чем одну ступень сжатия, выполненную с возможностью приема потока СО2. Система дополнительно включает (ii) одну или более чем одну ступень охлаждения, гидравлически сообщающуюся с одной или более чем одной ступенью сжатия, причем сочетание одной или более чем одной ступени сжатия и одной или более чем одной ступени охлаждения выполнено с возможностью сжатия и охлаждения потока СО2 до первой температуры с образованием частично охлажденного потока СО2. Система дополнительно включает (iii) ступень магнитокалорического охлаждения, выполненную с возможностью приема частично охлажденного потока СО2 и охлаждения частично охлажденного потока CO2 до второй температуры с образованием охлажденного потока СО2. Система дополнительно включает (iv) ступень конденсации, выполненную с возможностью конденсации части СО2 в охлажденном потоке СО2 при второй температуре, посредством чего конденсируют СО2 из охлажденного сжатого потока СО2 с образованием конденсированного потока СО2.
Другие воплощения, аспекты, признаки и преимущества настоящего изобретения станут очевидными специалистам в данной области из следующего подробного описания, прилагаемых чертежей и прилагаемой формулы изобретения.
Краткое описание чертежей
Эти и другие признаки, аспекты и преимущества настоящего изобретения станут более понятными после прочтения нижеследующего подробного описания со ссылкой на прилагаемые чертежи, на которых одинаковые символы обозначают одинаковые детали на всех чертежах, где:
Фиг. 1 представляет собой блок-схему для способа конденсации СО2 из потока СО2 в соответствии с одним воплощением настоящего изобретения.
Фиг. 2 представляет собой блок-схему для способа конденсации СО2 из потока СО2 в соответствии с одним воплощением настоящего изобретения.
Фиг. 3 представляет собой блок-схему системы для конденсации СО2 из потока СО2 в соответствии с одним воплощением настоящего изобретения.
Фиг. 4 представляет собой блок-схему системы для конденсации СО2 из потока СО2 в соответствии с одним воплощением настоящего изобретения.
Фиг. 5 представляет собой блок-схему системы для конденсации СО2 из потока СО2 в соответствии с одним воплощением настоящего изобретения.
Фиг. 6 представляет собой блок-схему системы для конденсации СО2 из потока СО2 в соответствии с одним воплощением настоящего изобретения.
Фиг. 7 представляет собой блок-схему системы для конденсации СО2 из потока СО2 в соответствии с одним воплощением настоящего изобретения.
Фиг. 8 представляет собой блок-схему системы для конденсации СО2 из потока СО2 в соответствии с одним воплощением настоящего изобретения.
Фиг. 9 представляет собой блок-схему системы для конденсации СО2 из потока СО2 в соответствии с одним воплощением настоящего изобретения.
Фиг. 10 представляет собой график зависимости давления от температуры для СО2.
Подробное описание изобретения
Как будет подробно описано ниже, воплощения настоящего изобретения включают способы и системы, пригодные для конденсации СО2. Как было отмечено ранее, сжижение и нагнетание СО2 может потребовать высокого расхода энергии. Например, давление приблизительно 6 МПа (60 бар) может потребоваться для сжижения СО2 при 20°C. В некоторых воплощениях промежуточная ступень магнитного охлаждения предпочтительно понижает температуру СО2 до менее чем 0°C, что существенно снижает потребляемую мощность системы в целом. В некоторых воплощениях, в зависимости от коэффициента эффективности системы магнитокалорического охлаждения, при применении способов и систем, описанных в данном документе, можно достичь общего повышения эффективности, составляющего от приблизительно 10 процентов до приблизительно 15 процентов.
Приближенные формулировки, используемые здесь в описании и формуле изобретения, могут быть применены для модификации любого количественного представления, которое допустимо изменять, не приводя к изменению основной функции, с которой оно связано. Соответственно, значение, измененное с применением термина или терминов, таких как "приблизительно", не ограничено точно заданным значением. В некоторых случаях приближенные формулировки могут относиться к точности инструмента для измерения значения.
В следующем описании и формуле изобретения формы единственного числа включают названные объекты во множественном числе, если контекст явно не указывает иное.
В одном воплощении, как показано на Фиг. 1 и 3, предложен способ 10 конденсации диоксида углерода из потока CO2. Термин "поток CO2", используемый здесь, относится к потоку смеси газа CO2, выделяющегося в результате обработки топлива, такого как природный газ, биомасса, бензин, дизельное топливо, уголь, горючие сланцы, мазут, битуминозные пески и их сочетания. В некоторых воплощениях поток СО2 включает поток СО2, выделяемого газовой турбиной. В конкретных воплощениях поток СО2 включает смесь газа СО2, выделяемого электростанцией, работающей на сжигании угля или природного газа.
В некоторых воплощениях поток СО2 дополнительно включает одно или более из следующих веществ: азот, диоксид азота, кислород или водяной пар. В некоторых воплощениях поток CO2 дополнительно включает примеси или загрязняющие вещества, примеры которых включают (но не ограничиваются перечисленным) азот, оксиды азота, оксиды серы, монооксид углерода, сероводород, несгоревшие углеводороды, твердые частицы и их сочетания. В конкретных воплощениях поток CO2 по существу не содержит примесей или загрязняющих веществ. В конкретных воплощениях поток CO2 по существу включает углекислый газ.
В некоторых воплощениях количество примесей или загрязняющих веществ в потоке СО2 составляет менее чем приблизительно 50 мольных процентов. В некоторых воплощениях количество примесей или загрязняющих веществ в потоке CO2 составляет менее чем приблизительно 20 мольных процентов. В некоторых воплощениях количество примесей или загрязняющих веществ в потоке СО2 находится в диапазоне от приблизительно 10 мольных процентов до приблизительно 20 мольных процентов. В некоторых воплощениях количество примесей или загрязняющих веществ в потоке CO2 составляет менее чем приблизительно 5 мольных процентов.
В одном воплощении способ включает прием потока 101 CO2, как показано на Фиг. 3, после обработки углеводородов, сжигания, газификации или из аналогичной электростанции (не показано). Как показано на Фиг. 1 и 3, на стадии 11 способ 10 включает сжатие и охлаждение потока 101 СО2 с образованием частично охлажденного потока 201 СО2. В некоторых воплощениях поток 101 СО2 может быть сжат с использованием одной или более чем одной ступени 120 сжатия. В некоторых воплощениях поток СО2 может быть охлажден с использованием одной или более чем одной ступени 110 охлаждения.
В некоторых воплощениях поток 101 СО2 может быть сжат до требуемого давления с использованием одной или более чем одной ступени 120 сжатия, как показано на Фиг. 3. Как показано на Фиг. 3, в некоторых воплощениях ступень 120 сжатия может дополнительно включать один или более чем один компрессор, такой как 121 и 122. Следует отметить, что на Фиг. 3 два компрессора 121 и 122 показаны только в качестве примерного воплощения, и фактическое количество компрессоров и их индивидуальная конфигурация могут изменяться в зависимости от требуемого конечного результата. В одном воплощении поток 101 СО2 может быть сжат до давления и температуры, требуемых для стадий 12 и 13 магнитного охлаждения и конденсации, соответственно. В некоторых воплощениях поток 101 СО2 может быть сжат до давления в интервале от приблизительно 1 МПа (10 бар) до приблизительно 6 МПа (60 бар) перед стадией 12 магнитного охлаждения. В конкретных воплощениях поток 101 СО2 может быть сжат до давления в интервале от приблизительно 2 МПа (20 бар) до приблизительно 4 МПа (40 бар) перед стадией 12 магнитного охлаждения.
В некоторых воплощениях поток 101 СО2 может быть охлажден до требуемой температуры с использованием одной или более чем одной ступени 110 охлаждения, как показано на Фиг. 3. Как показано на Фиг. 3, в некоторых воплощениях ступень 110 охлаждения может дополнительно включать один или более чем один теплообменник, такой как 111, 112 и 113. Следует отметить, что на Фиг. 3 три теплообменника 111, 112 и 113 показаны только как примерное воплощение, и фактическое количество теплообменников и их индивидуальная конфигурация могут изменяться в зависимости от требуемого конечного результата. В некоторых воплощениях один или более из теплообменников может быть охлажден с использованием охлаждающей среды. В некоторых воплощениях один или более из теплообменников может быть охлажден с использованием охлаждающего воздуха, охлаждающей воды или и того и другого, как показано позицией 115 на Фиг. 3. В некоторых воплощениях ступень охлаждения может дополнительно включать один или более чем один промежуточный охладитель для охлаждения потока 101 выходящих газов, не влияя на давление.
Кроме того, следует отметить, что на Фиг. 3 конфигурация ступени 110 охлаждения и ступени 120 сжатия показана только как примерное воплощение, и фактическая конфигурация может изменяться в зависимости от требуемого конечного результата. Например, в некоторых других воплощениях способ может включать охлаждение потока СО2 в теплообменнике 111 перед сжатием потока СО2 в компрессоре 121 (не показано).
В некоторых воплощениях способ дополнительно включает охлаждение потока 101 СО2 до первой температуры посредством расширения потока СО2 в одном или более чем одном расширителе 123, как показано на Фиг. 8. В некоторых воплощениях способ включает стадию расширения, которая снижает давление в потоке 101 СО2 от абсолютных уровней давления, превышающих 2 МПа (20 бар), до уровней давления, составляющих приблизительно 2 МПа (20 бар), посредством чего уменьшают температуру потока 101 СО2 до более низких значений, чем можно достичь воздушным или водяным охлаждением. Не будучи связанными какой-либо теорией, полагают, что при использовании стадии расширения общая энергоемкость стадии 12 магнитокалорического охлаждения может быть уменьшена, так как температура частично охлажденного потока СО2 на входе стадии магнитокалорического охлаждения может быть ниже, чем без стадии расширения. В некоторых воплощениях работа, полученная на стадии расширения, может быть дополнительно использована на стадии 12 магнитокалорического охлаждения.
В одном воплощении поток 101 СО2 может быть охлажден до температуры и давления, требуемых для стадий 12 и 13 магнитного охлаждения и конденсации. В одном воплощении способ включает сжатие и охлаждение потока 101 СО2 с образованием частично охлажденного потока 201 СО2, как показано на Фиг. 3. В одном воплощении способ дополнительно включает охлаждение потока 101 СО2 до первой температуры посредством расширения потока СО2 в одном или более чем одном расширителе 123 с образованием частично охлажденного потока 201 CO2, как показано на Фиг. 8.
В одном воплощении способ включает охлаждение частично охлажденного потока 201 СО2 до первой температуры. В некоторых воплощениях частично охлажденный поток 201 СО2 может быть охлажден до температуры в интервале от приблизительно 5°C до приблизительно 35°C перед стадией 12 магнитного охлаждения. В конкретных воплощениях частично охлажденный поток 201 CO2 может быть охлажден до температуры в интервале от приблизительно 10°C до приблизительно 25°C перед стадией 12 магнитного охлаждения.
Как было отмечено ранее, при отсутствии дополнительной стадии магнитного охлаждения, CO2 в частично охлажденном потоке 201 CO2, как правило, сжижается при температуре в интервале от приблизительно 20°C до приблизительно 25°C. Температура конденсации определяется температурой охлаждающей среды, которая может представлять собой охлаждающую воду или воздух. Как показано на Фиг. 10, при температуре конденсации в интервале от приблизительно 20°C до приблизительно 25°C для сжижения CO2 требуется абсолютное давление приблизительно 6 МПа (60 бар). В противоположность этому, при охлаждении потока СО2 до температуры в интервале от приблизительно -25°C до приблизительно 0°C более низкое давление может быть преимущественно использовано для конденсации CO2 из частично охлажденного потока 201 СО2.
В одном воплощении способ дополнительно включает на стадии 12 охлаждение частично охлажденного потока 201 СО2 до второй температуры с использованием магнитокалорического охлаждения с образованием охлажденного потока 302 СО2, как показано на Фиг. 1 и 3. В одном воплощении способ включает охлаждение частично охлажденного потока 201 CO2 с использованием ступени 200 магнитокалорического охлаждения, как показано на Фиг. 3.
В некоторых воплощениях ступень 200 магнитокалорического охлаждения включает теплообменник 212 и внешнее магнитокалорическое охлаждающее устройство 211. В некоторых воплощениях магнитокалорическое охлаждающее устройство 211 выполнено с возможностью обеспечения охлаждения в теплообменнике 212, как показано на Фиг. 3.
В одном воплощении магнитокалорическое охлаждающее устройство 211 включает холодный и горячий теплообменник, постоянный магнит или индукционную катушку, регенератор магнитокалорического материала и цикл жидкого теплоносителя. В одном воплощении жидкий теплоноситель прокачивают через регенератор и теплообменник с использованием жидкостного насоса (не показан).
В одном воплощении магнитокалорическое охлаждающее устройство работает на активном магнитном цикле регенерации (АМЦР) и обеспечивает охлаждающую способность жидкого теплоносителя посредством последовательного намагничивания и размагничивания магнитокалорического регенератора с обратимым теплопередающим потоком. В некоторых воплощениях последовательное намагничивание и размагничивание магнитокалорического регенератора может быть осуществлено с использованием роторной установки, где регенератор проходит через канал магнитной системы. В некоторых других воплощениях последовательное намагничивание и размагничивание магнитокалорического регенератора может быть осуществлено с использованием возвратно-поступательного линейного устройства. Пример магнита и магнитокалорического охлаждающего устройства описан в заявке на патент США № 12/392115, поданной 25 февраля 2009 г., и включен в настоящий документ посредством ссылки во всей своей полноте для любых и всяких целей при условии, что он непосредственно не противоречит с изложенными здесь идеями изобретения.
В некоторых воплощениях тепло из горячего теплообменника может быть отдано в окружающую среду. В некоторых других воплощениях тепло из горячего теплообменника может быть отдано в обратный поток сконденсированного и сжиженного CO2 после нагнетания жидкого CO2, как будет описано здесь ниже.
Как было отмечено выше, ступень магнитокалорического охлаждения дополнительно включает теплообменник 212, в котором магнитокалорическое охлаждающее устройство 211 выполнено с возможностью обеспечения охлаждения в теплообменнике 212. В одном воплощении теплообменник 212 гидравлически сообщается с одной или более чем одной ступенью 110 охлаждения и с одной или более чем одной ступенью 120 сжатия. В одном воплощении теплообменник 212 гидравлически сообщается с частично охлажденным потоком 201 CO2, образованным после стадии 11 сжатия и охлаждения.
В некоторых воплощениях магнитокалорическое охлаждающее устройство 211 выполнено с возможностью обеспечения охлаждения в теплообменнике 212 таким образом, чтобы охладить частично охлажденный поток 201 CO2 до второй температуры. В одном воплощении вторая температура находится в диапазоне от приблизительно 0°C до приблизительно -25°C. В одном воплощении вторая температура находится в диапазоне от приблизительно 5°C до приблизительно -20°C. Как было отмечено ранее, стадия 13 охлаждения частично охлажденного потока CO2 в ступени магнитокалорического охлаждения дает в результате охлажденный поток CO2.
В некоторых воплощениях магнитокалорическое охлаждающее устройство 211 выполнено с возможностью обеспечения охлаждения в теплообменнике 212 таким образом, чтобы охладить частично охлажденный поток 201 CO2 до второй температуры, при которой CO2 конденсируется из охлажденного потока CO2. Как было отмечено выше, в некоторых воплощениях способ включает сжатие потока 101 CO2 до давления в интервале от приблизительно 2 МПа (20 бар) до приблизительно 4 МПа (40 бар). Как показано на Фиг. 10, при уровне давления 4 МПа (40 бар), CO2 конденсируется при температуре 5°C. Кроме того, как показано на Фиг. 10, при уровне давления 2 МПа (20 бар) CO2 конденсируется при температуре -20°C.
В одном воплощении способ дополнительно включает на стадии 13 конденсацию по меньшей мере части CO2 в охлажденном потоке CO2 при второй температуре, посредством чего конденсируют CO2 из охлажденного потока CO2 с образованием конденсированного потока 302 CO2. В одном воплощении способ включает конденсацию по меньшей мере части CO2 в охлажденном потоке CO2 при давлении в диапазоне от приблизительно 2 МПа (20 бар) до приблизительно 6 МПа (60 бар). В одном воплощении способ включает конденсацию по меньшей мере части CO2 в охлажденном потоке CO2 при давлении в диапазоне от приблизительно 2 МПа (20 бар) до приблизительно 4 МПа (40 бар). Соответственно, в некоторых воплощениях способ по настоящему изобретению предпочтительно позволяет конденсировать CO2 при более низком давлении.
В некоторых воплощениях способ включает выполнение стадий охлаждения частично охлажденного потока CO2 с образованием охлажденного потока 12 CO2 и конденсацию CO2 из охлажденного потока 13 CO2 одновременно. В некоторых других воплощениях способ включает выполнение стадий охлаждения частично охлажденного потока CO2 с образованием охлажденного потока 12 CO2 и конденсацию CO2 из охлажденного потока 13 CO2 последовательно.
Как показано на Фиг. 3, в некоторых воплощениях охлажденный поток CO2 может быть образован из частично охлажденного потока 201 CO2 в теплообменнике 212. В таких воплощениях часть CO2 из охлажденного потока CO2 конденсируется в самом теплогенераторе, образуя конденсированный поток 302 CO2, как показано на Фиг. 3.
В некоторых других воплощениях, как показано на Фиг. 4, охлажденный поток 301 CO2 образуется из частично охлажденного потока 201 CO2 в теплообменнике 212. Способ дополнительно включает перемещение охлажденного потока 301 CO2 в конденсатор 213, как показано на Фиг. 4. В таких воплощениях часть CO2 из охлажденного потока 301 CO2 конденсируется в конденсаторе 213 и образует конденсированный поток 302 CO2, как показано на Фиг. 4.
В некоторых воплощениях способ включает конденсацию по меньшей мере приблизительно 95 масс. % CO2 в потоке 101 CO2 с образованием конденсированного потока 302 CO2. В некоторых воплощениях способ включает конденсацию по меньшей мере приблизительно 90 масс. % CO2 в потоке 101 CO2 с образованием конденсированного потока 302 CO2. В некоторых воплощениях способ включает конденсацию от 50 масс. % до приблизительно 90 масс. % CO2 в потоке 101 CO2 с образованием конденсированного потока 302 CO2. В некоторых воплощениях способ включает конденсацию по меньшей мере приблизительно 99 масс. % CO2 в потоке 101 CO2 с образованием конденсированного потока 302 CO2.
В некоторых воплощениях, как было отмечено ранее, поток 101 CO2 дополнительно включает один или более чем один компонент помимо диоксида углерода. В некоторых воплощениях способ дополнительно возможно включает образование обедненного потока (показан пунктирной стрелкой 202) после стадий магнитокалорического охлаждения (стадия 12) и конденсации CO2 (стадия 13). Термин "обедненный поток" 202 относится к потоку, в котором содержание CO2 ниже, чем содержание CO2 в потоке 101 CO2. В некоторых воплощениях, как было отмечено ранее, почти весь CO2 в потоке CO2 конденсируется на стадии 13. В таких воплощениях обедненный поток CO2 по существу не содержит CO2. В некоторых других воплощениях, как было отмечено ранее, часть потока CO2 может не конденсироваться на стадии 13, а обедненный поток может включать несконденсированную газовую смесь CO2.
В некоторых воплощениях обедненный поток 202 может включать один или более чем один неконденсируемый компонент, который не может конденсироваться на стадии 13. В некоторых воплощениях обедненный поток 202 может включать один или более чем один жидкий компонент. В таких воплощениях обедненный поток может быть дополнительно выполнен с возможностью гидравлического сообщения с газожидкостным сепаратором. В некоторых воплощениях обедненный поток 202 может включать одно или более из следующих веществ: азот, кислород или диоксид серы.
В некоторых воплощениях способ может дополнительно включать осушение потока 101 CO2 перед стадией 11. В некоторых воплощениях способ может дополнительно включать осушение частично охлажденного потока 201 CO2 после стадии 11 и перед стадией 12. В некоторых воплощениях система 100 может дополнительно включать осушитель, выполненный с возможностью гидравлического сообщения (не показано) с потоком 101 CO2. В некоторых воплощениях система 100 может дополнительно включать осушитель, выполненный с возможностью гидравлического сообщения (не показано) с потоком 101 CO2.
В некоторых воплощениях способ дополнительно включает циркуляцию конденсированного потока 302 CO2 в одну или более чем одну ступень охлаждения, используемую для охлаждения потока CO2. Как показано на Фиг. 5, способ дополнительно включает циркуляцию конденсированного потока CO2 в теплообменник 113 через циркуляционный контур 303. В таких воплощениях способ дополнительно включает стадию рекуперации, где конденсированный поток CO2 циркулируют обратно для дополнительного охлаждения частично охлажденного потока 201 CO2 перед стадией 12 магнитокалорического охлаждения. В некоторых воплощениях стадия рекуперации может повысить эффективность стадии магнитокалорического охлаждения.
В некоторых воплощениях рекуперация конденсированного потока CO2 в теплообменнике 113 может привести к охлаждению частично охлажденного потока 201 CO2 ниже температуры, необходимой для конденсации CO2. В некоторых воплощениях способ может дополнительно включать конденсацию CO2 в частично охлажденном потоке 201 CO2 с образованием рекуперированного конденсированного потока 501 CO2, как показано на Фиг. 5.
В некоторых воплощениях способ дополнительно включает увеличение давления конденсированного потока 302 CO2 с использованием насоса 300, как показано на Фиг. 3. В воплощениях, включающих стадию рекуперации, способ может дополнительно включать увеличение давления рекуперированного конденсированного потока 501 CO2 с использованием насоса 300, как показано на Фиг. 5. В некоторых воплощениях способ включает увеличение давления конденсированного потока 3O2 CO2 или рекуперированного конденсированного потока 502 CO2 до давления, требуемого для секвестрации CO2 или для конечного применения. В некоторых воплощениях способ включает увеличение давления конденсированного потока 302 CO2 или рекуперированного конденсированного потока 502 CO2 до давления в интервале от приблизительно 15 МПа (150 бар) до приблизительно 18 МПа (180 бар).
В некоторых воплощениях способ дополнительно включает образование сжатого потока 401 CO2 после стадии нагнетания. В некоторых воплощениях способ дополнительно включает образование сверхкритического потока 401 CO2 после стадии нагнетания. В некоторых воплощениях, как было отмечено выше, сжатый поток 401 CO2 может быть использован для добычи нефти вторичным методом, хранения CO2 или секвестрации CO2.
В некоторых воплощениях предложена система 100 для конденсации диоксида углерода (CO2) из потока 101 CO2, как показано на Фиг. 3-9. В одном воплощении система 100 включает одну или более чем одну ступень 120 сжатия, выполненную с возможностью приема потока 101 CO2. Система 100 дополнительно включает одну или более чем одну ступень 110 охлаждения, гидравлически сообщающуюся с одной или более чем одной ступенью 120 сжатия. В одном воплощении сочетание одной или более чем одной ступени 120 сжатия и одной или более чем одной ступени 110 охлаждения выполнено с возможностью сжатия и охлаждения потока 101 CO2 до первой температуры с образованием частично охлажденного потока 201 CO2.
В одном воплощении система 100 дополнительно включает ступень 200 магнитокалорического охлаждения, выполненную с возможностью приема частично охлажденного потока 201 CO2 и охлаждения частично охлажденного потока 201 CO2 до второй температуры с образованием охлажденного потока 301 CO2. Как было отмечено ранее, ступень 200 магнитокалорического охлаждения дополнительно включает теплообменник 212, в котором магнитокалорическое охлаждающее устройство 211 выполнено с возможностью обеспечения охлаждения в теплообменнике 212. В одном воплощении теплообменник 212 гидравлически сообщается с одной или более чем одной ступенью 110 охлаждения и одной или более чем одной ступенью 120 сжатия.
Как было отмечено ранее, в некоторых воплощениях теплообменник 212 выполнен с возможностью конденсации части CO2 в частично охлажденном потоке 201 CO2 с образованием конденсированного потока 302 CO2. В некоторых других воплощениях система 100 дополнительно включает ступень 213 конденсации, выполненную с возможностью конденсации части CO2 в охлажденном потоке 301 CO2 при второй температуре, посредством чего конденсируют CO2 из охлажденного потока 301 CO2 с образованием конденсированного потока 302 CO2.
В некоторых воплощениях система 100 дополнительно включает насос 300, выполненный с возможностью приема конденсированного потока 302 CO2 и увеличения давления конденсированного потока 302 CO2. В некоторых воплощениях система дополнительно включает циркуляционный контур 303, выполненный с возможностью циркуляции части конденсированного потока 302 CO2 в одну или более чем одну ступень 110 охлаждения.
С учетом вышесказанного, системы и способы для конденсации CO2 из потока CO2 дополнительно описаны в данном документе в соответствии с некоторыми примерными воплощениями настоящего изобретения. На Фиг. 2 и 3 в одном воплощении предложен способ 20 конденсации диоксида углерода из потока 101 CO2. В одном воплощении способ включает на стадии 21 охлаждение потока 101 CO2 в первой ступени охлаждения, включающей первый теплообменник 111, с образованием первого частично охлажденного потока 102 CO2. В одном воплощении способ включает на стадии 22 сжатие первого частично охлажденного потока 102 CO2 в первом компрессоре 121 с образованием первого сжатого потока 103 CO2. В одном воплощении способ включает на стадии 23 охлаждение первого сжатого потока 103 CO2 во второй ступени охлаждения, включающей второй теплообменник 112, с образованием второго частично охлажденного потока 104 CO2. В одном воплощении способ включает на стадии 24 сжатие второго частично охлажденного потока 104 CO2 во втором компрессоре 122 с образованием второго сжатого потока 105 CO2. В одном воплощении способ включает на стадии 25 охлаждение второго сжатого потока 105 CO2 до первой температуры в третьей ступени охлаждения, включающей третий теплообменник 113, с образованием частично охлажденного потока 201 CO2.
В одном воплощении способ 20 включает на стадии 26 охлаждение частично охлажденного потока 201 CO2 до второй температуры посредством магнитокалорического охлаждения с использованием ступени 200 магнитокалорического охлаждения с образованием охлажденного потока CO2 (не показано). В некоторых воплощениях ступень 200 магнитокалорического охлаждения включает теплообменник 212 и внешнее магнитокалорическое охлаждающее устройство 211. В некоторых воплощениях магнитокалорическое охлаждающее устройство 211 выполнено с возможностью обеспечения охлаждения в теплообменнике 212, как показано на Фиг. 3.
В одном воплощении способ включает на стадии 27 конденсацию по меньшей мере части CO2 в охлажденном потоке CO2 при второй температуре, посредством чего конденсируют CO2 из охлажденного потока CO2 с образованием конденсированного потока 302 CO2. Как было отмечено ранее, в некоторых воплощениях охлажденный поток CO2 образуется из частично охлажденного потока 201 CO2 в теплообменнике 212. В таких воплощениях часть CO2 из охлажденного потока CO2 конденсируется в самом теплогенераторе с образованием конденсированного потока 302 CO2, как показано на Фиг. 3.
В некоторых воплощениях способ дополнительно включает увеличение давления конденсированного потока 302 CO2 с использованием насоса 300, как показано на Фиг. 3. В некоторых воплощениях способ дополнительно включает образование сжатого потока 401 CO2 после стадии нагнетания. В некоторых воплощениях, как было отмечено ранее, сжатый поток 401 CO2 может быть использован для добычи нефти вторичным методом, хранения CO2 или секвестрации CO2.
Как показано на Фиг. 4, в одном воплощении предложены способ и система для конденсации CO2 из потока 101 CO2. Способ и система аналогичны системе и способу, показанным на Фиг. 3, но отличаются тем, что способ дополнительно включает перемещение охлажденного потока 301 CO2 в конденсатор 213, как показано на Фиг. 4. В таких воплощениях часть CO2 из охлажденного потока 301 CO2 конденсируется в конденсаторе 213 и образует конденсированный поток 302 CO2, как показано на Фиг. 4.
Как показано на Фиг. 5, в одном воплощении предложены способ и система для конденсации CO2 из потока 101 CO2. Способ и система аналогичны системе и способу, показанным на Фиг. 3, но отличаются тем, что способ дополнительно включает циркуляцию части конденсированного потока 302 CO2 в третий теплообменник 113 через циркуляционный контур 303. Как было отмечено ранее, в некоторых воплощениях рекуперация конденсированного потока CO2 в теплообменник 113 может привести к охлаждению второго сжатого потока 105 CO2 ниже температуры, необходимой для конденсации CO2. В некоторых воплощениях способ может дополнительно включать конденсацию CO2 во втором сжатом потоке 105 CO2 с образованием рекуперированного конденсированного потока 501 CO2, как показано на Фиг. 5.
Как показано на Фиг. 6, в одном воплощении предложены способ и система для конденсации CO2 из потока 101 CO2. Способ и система аналогичны системе и способу, показанным на Фиг. 4, но отличаются тем, что способ дополнительно включает циркуляцию части конденсированного потока CO2 в третий теплообменник 113 через циркуляционный контур 303. Как было отмечено ранее, в некоторых воплощениях рекуперация конденсированного потока CO2 в теплообменник 113 может привести к охлаждению второго сжатого потока 105 CO2 ниже температуры, необходимой для конденсации CO2. В некоторых воплощениях способ может дополнительно включать конденсацию CO2 во втором сжатом потоке 105 CO2 с образованием рекуперированного конденсированного потока 501 CO2, как показано на Фиг. 6.
Как показано на Фиг. 7, в одном воплощении предложены способ и система для конденсации CO2 из потока 101 CO2. Способ и система аналогичны системе и способу, показанным на Фиг. 3, но отличаются тем, что способ дополнительно включает циркуляцию части сжатого потока 401 CO2 в третий теплообменник 113 через циркуляционный контур 403. Как было отмечено ранее, в некоторых воплощениях рекуперация сжатого потока 401 CO2 в третий теплообменник 113 может привести к охлаждению второго сжатого потока 105 CO2 ниже температуры, необходимой для конденсации CO2. В некоторых воплощениях способ может дополнительно включать конденсацию CO2 во втором сжатом потоке 105 CO2 с образованием рекуперированного конденсированного потока 501 CO2, как показано на Фиг. 7.
Как показано на Фиг. 8, в одном воплощении предложены способ и система для конденсации CO2 из потока 101 CO2. Способ и система аналогичны системе и способу, показанным на Фиг. 3, но отличаются тем, что способ дополнительно включает формирование третьего частично охлажденного потока 106 CO2 в третьем теплообменнике 113. Способ дополнительно включает охлаждение третьего частично охлажденного потока 106 CO2 до первой температуры посредством расширения третьего частично охлажденного потока 106 CO2 в одном или более чем одном расширителе 123 перед стадией магнитокалорического охлаждения с образованием частично охлажденного потока 201 CO2, как показано на Фиг. 8.
Как показано на Фиг. 9, в одном воплощении предложены способ и система для конденсации CO2 из потока 101 CO2. Способ и система аналогичны системе и способу, показанным на Фиг. 8, но отличаются тем, что третья ступень охлаждения дополнительно включает четвертый теплообменник 114, а способ дополнительно включает циркуляцию части сжатого потока 401 CO2 в четвертый теплообменник 114 через циркуляционный контур 403. Способ дополнительно включает формирование четвертого частично охлажденного потока 107 CO2 после стадии расширения и перемещение четвертого частично охлажденного потока 107 CO2 в четвертый теплообменник 114. Как было отмечено ранее, в некоторых воплощениях рекуперация сжатого потока 401 CO2 в четвертом теплообменнике 114 может привести к охлаждению четвертого частично охлажденного потока 107 CO2 ниже температуры, необходимой для конденсации CO2. В некоторых воплощениях способ может дополнительно включать конденсацию CO2 в четвертом частично охлажденном потоке 107 CO2 с образованием рекуперированного конденсированного потока 501 CO2, как показано на Фиг. 9.
Как было отмечено ранее, некоторые воплощения изобретения позволяют преимущественно охлаждать сверхкритический CO2 до более низких температур с последующей конденсацией при более низких давлениях, чем те, которые доступны с применением традиционных способов охлаждения, таких как парокомпрессионная дистилляция. Не будучи связанными какой-либо теорией, полагают, что сжатие сверхкритического CO2 может быть менее эффективным, чем нагнетание жидкого CO2. Таким образом, в некоторых воплощениях способ уменьшает издержки на менее эффективной стадии сжатия CO2. В некоторых воплощениях способ может уменьшить общие издержки сжижения и нагнетания CO2 путем повышения эффективности системы сжатия и нагнетания. В некоторых воплощениях стадия магнитокалорического охлаждения может уменьшить издержки более чем на 10%. В некоторых воплощениях стадия магнитокалорического охлаждения может уменьшить издержки более чем на 20 %. В некоторых воплощениях общая производительность установки может быть повышена с применением одного или более чем одного воплощения способа, описанного здесь.
Кроме того, некоторые воплощения изобретения преимущественно позволяют улучшить диапазон работоспособности систем сжатия и сжижения CO2. В традиционных системах сжатия и сжижения CO2 температура окружающей среды охлаждающего воздуха или охлаждающей воды может ограничить диапазон работоспособности. Сверхкритический CO2 нельзя сжижать при температурах выше приблизительно 32°C, которая является критической температурой для CO2. Таким образом, когда температура окружающей среды выше 30°C, сжижение CO2 может быть затруднено без дополнительного внешнего охлаждения. В некоторых воплощениях стадия магнитного охлаждения может преимущественно позволить охлаждение CO2 до докритического диапазона, тем самым позволяя работать системам сжатия и сжижения при любых условиях окружающей среды.
В данном описании использованы примеры для раскрытия изобретения, включая наилучший способ его осуществления, а также дана возможность любому специалисту в данной области осуществить изобретение на практике, включая создание и использование любых устройств или систем и выполнение любых включенных способов. Патентоспособный объем изобретения определен формулой изобретения и может включать другие примеры, которые могут предложить специалисты в данной области. Подразумевается, что такие другие примеры находятся в пределах объема формулы изобретения, если они включают структурные элементы, которые не отличаются от дословных формулировок, использованных в формуле изобретения, или если они включают эквивалентные структурные элементы с несущественными отличиями от дословных формулировок, использованных в формулы изобретения.

Claims (36)

1. Способ конденсации диоксида углерода (CO2) из потока CO2, включающий:
(i) сжатие и охлаждение потока CO2 с образованием частично охлажденного потока CO2, причем частично охлажденный поток CO2 охлаждают до первой температуры;
(ii) охлаждение частично охлажденного потока CO2 до второй температуры посредством магнитокалорического охлаждения с образованием охлажденного потока CO2; и
(iii) конденсацию по меньшей мере части CO2 в охлажденном потоке CO2 с образованием конденсированного потока CO2.
2. Способ по п. 1, в котором стадия (iii) включает конденсацию по меньшей мере части CO2 в охлажденном потоке CO2 при давлении в интервале от приблизительно 2 МПа (20 бар) до приблизительно 6 МПа (60 бар).
3. Способ по п. 1, в котором стадия (iii) включает конденсацию по меньшей мере части CO2 в охлажденном потоке CO2 при давлении в интервале от приблизительно 2 МПа (20 бар) до приблизительно 4 МПа (40 бар).
4. Способ по п. 1, в котором первая температура находится в интервале от приблизительно 5°C до приблизительно 35°C.
5. Способ по п. 1, в котором вторая температура находится в интервале от приблизительно 0°C до приблизительно -25°C.
6. Способ по п. 1, в котором стадия (i) включает охлаждение потока CO2 с использованием одной или более чем одной ступени охлаждения, включающей один или более чем один теплообменник.
7. Способ по п. 1, дополнительно включающий циркуляцию части конденсированного потока CO2 в одну или более чем одну ступень охлаждения, используемую для охлаждения потока CO2.
8. Способ по п. 1, в котором стадия (i) включает охлаждение потока CO2 до первой температуры посредством расширения потока CO2 в одном или более чем одном расширителе.
9. Способ по п. 1, в котором стадия (ii) включает охлаждение частично охлажденного потока CO2 с использованием роторного магнитокалорического охлаждающего устройства.
10. Способ по п. 1, дополнительно включающий увеличение давления конденсированного потока CO2 с использованием насоса с образованием сжатого потока CO2.
11. Способ конденсации диоксида углерода (CO2) из потока CO2, включающий:
(i) охлаждение потока CO2 в первой ступени охлаждения, включающей первый теплообменник, с образованием первого частично охлажденного потока CO2;
(ii) сжатие первого частично охлажденного потока CO2 с образованием первого сжатого потока CO2;
(iii) охлаждение первого сжатого потока CO2 во второй ступени охлаждения, включающей второй теплообменник, с образованием второго частично охлажденного потока CO2;
(iv) сжатие второго частично охлажденного потока CO2 с образованием второго сжатого потока CO2;
(v) охлаждение второго сжатого потока CO2 до первой температуры в третьей ступени охлаждения, включающей третий теплообменник, с образованием частично охлажденного потока CO2;
(vi) охлаждение частично охлажденного потока CO2 до второй температуры посредством магнитокалорического охлаждения с образованием охлажденного потока CO2; и
(vii) конденсацию по меньшей мере части CO2 в охлажденном потоке CO2 при второй температуре, посредством чего конденсируют CO2 из охлажденного потока CO2 с образованием конденсированного потока CO2.
12. Способ по п. 11, дополнительно включающий циркуляцию части конденсированного потока CO2 в третий теплообменник.
13. Способ по п. 11, в котором третья ступень охлаждения дополнительно включает расширитель, а стадия (v) дополнительно включает охлаждение потока CO2 до первой температуры посредством расширения второго сжатого потока CO2 в расширителе.
14. Способ по п. 13, в котором третья ступень охлаждения дополнительно включает четвертый теплообменник, а способ дополнительно включает циркуляцию части конденсированного потока CO2 в четвертый теплообменник.
15. Система для конденсации диоксида углерода (CO2) из потока CO2, включающая:
(i) одну или более чем одну ступень сжатия, выполненную с возможностью приема потока CO2;
(ii) одну или более чем одну ступень охлаждения, гидравлически сообщающуюся с одной или более чем одной ступенью сжатия,
в которой сочетание одной или более чем одной ступени сжатия и одной или более чем одной ступени охлаждения выполнено с возможностью сжатия и охлаждения потока CO2 до первой температуры с образованием частично охлажденного потока CO2;
(iii) ступень магнитокалорического охлаждения, выполненную с возможностью приема частично охлажденного потока CO2 и охлаждения частично охлажденного потока CO2 до второй температуры с образованием охлажденного потока CO2; и
(iv) ступень конденсации, выполненную с возможностью конденсации части CO2 в охлажденном потоке CO2 при второй температуре, посредством чего конденсируют CO2 из охлажденного потока CO2 с образованием конденсированного потока CO2.
16. Система по п. 15, в которой ступень магнитокалорического охлаждения включает магнитокалорическое охлаждающее устройство и теплообменник,
причем теплообменник гидравлически сообщается с одной или более чем одной ступенью охлаждения и одной или более чем одной ступенью сжатия.
17. Система по п. 15, дополнительно включающая насос, выполненный с возможностью приема конденсированного потока CO2 и увеличения давления конденсированного потока CO2.
18. Система по п. 15, в которой одна или более чем одна ступень охлаждения дополнительно включает расширитель.
19. Система по п. 15, в которой одна или более чем одна ступень охлаждения включает один или более чем один теплообменник, выполненный с возможностью охлаждения потока CO2 с использованием воздуха, воды или их сочетаний.
20. Система по п. 15, дополнительно включающая циркуляционный контур, выполненный с возможностью циркуляции части конденсированного потока CO2 в одну или более чем одну ступень охлаждения.
RU2014110121A 2011-09-30 2012-09-28 Способы и системы для конденсации CO2 RU2606725C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/249,464 US20130081409A1 (en) 2011-09-30 2011-09-30 Methods and systems for co2 condensation
US13/249,464 2011-09-30
PCT/US2012/057860 WO2013049532A2 (en) 2011-09-30 2012-09-28 Methods and systems for co2 condensation

Publications (2)

Publication Number Publication Date
RU2014110121A RU2014110121A (ru) 2015-11-10
RU2606725C2 true RU2606725C2 (ru) 2017-01-10

Family

ID=47046861

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014110121A RU2606725C2 (ru) 2011-09-30 2012-09-28 Способы и системы для конденсации CO2

Country Status (11)

Country Link
US (1) US20130081409A1 (ru)
EP (1) EP2815194A2 (ru)
JP (1) JP6154813B2 (ru)
KR (1) KR101983343B1 (ru)
CN (1) CN104471335B (ru)
AU (1) AU2012315807C1 (ru)
BR (1) BR112014005676B1 (ru)
CA (1) CA2848991C (ru)
MX (1) MX2014003880A (ru)
RU (1) RU2606725C2 (ru)
WO (1) WO2013049532A2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2806126C2 (ru) * 2018-10-05 2023-10-26 Граф Индастриз С.П.А. Заправочная станция для транспортных средств

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112017012856A2 (pt) * 2014-12-18 2018-01-09 Basf Se cascata magnetocalórica, regenerador magnetocalórico, bomba de calor, método para a fabricação de uma cascata magnetocalórica, método de bombeamento de calor
FR3033397A1 (fr) * 2015-03-06 2016-09-09 Air Liquide Procede de compression et de refroidissement d’un melange gazeux
CA3075639A1 (en) * 2017-09-19 2019-03-28 Honeywell International Inc. Heat transfer methods, systems and compositions
CN109813054B (zh) 2017-11-22 2021-03-30 斗山重工业建设有限公司 利用液化天然气的冷能的二氧化碳捕集装置及发电系统
IT201800009221A1 (it) * 2018-10-05 2020-04-05 Graf Spa Stazione di servizio per mezzi di trasporto
US11224837B2 (en) * 2018-11-12 2022-01-18 Linde Aktiengesellschaft Post-combustion carbon dioxide capture and compression
CN112678825A (zh) * 2020-12-31 2021-04-20 起时超临界高新技术(广州)有限公司 一种内置换热式超临界二氧化碳分离方法及设备
US11635255B1 (en) * 2022-04-08 2023-04-25 Axip Energy Services, Lp Liquid or supercritical carbon dioxide capture from exhaust gas
FR3137164A1 (fr) * 2022-06-24 2023-12-29 IFP Energies Nouvelles Système et procédé de compression de dioxyde de carbone avec compression polyphasique et pompe supercritique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1780250A (en) * 1930-03-27 1930-11-04 Frank G Campbell Method of and apparatus for liquefying gases
US6293106B1 (en) * 2000-05-18 2001-09-25 Praxair Technology, Inc. Magnetic refrigeration system with multicomponent refrigerant fluid forecooling
RU2175949C2 (ru) * 1999-07-27 2001-11-20 ЗАО "Центр ВМ-Технологий" Способ очистки диоксида углерода от низкокипящих примесей

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576283A (en) * 1980-06-12 1982-01-13 Nippon Oxygen Co Ltd Carbon dioxide removal of air separator
US5893275A (en) * 1997-09-04 1999-04-13 In-X Corporation Compact small volume liquid oxygen production system
US5927103A (en) * 1998-06-17 1999-07-27 Praxair Technology, Inc. Carbon dioxide production system with integral vent gas condenser
US6035662A (en) * 1998-10-13 2000-03-14 Praxair Technology, Inc. Method and apparatus for enhancing carbon dioxide recovery
US6210467B1 (en) * 1999-05-07 2001-04-03 Praxair Technology, Inc. Carbon dioxide cleaning system with improved recovery
JP2003532861A (ja) * 2000-05-05 2003-11-05 ユニヴァーシティ オブ ヴィクトリア イノヴェーション アンド デヴェロップメント コーポレイション 磁気冷凍を使用して流体を冷却し液化する装置及び方法
US6588215B1 (en) * 2002-04-19 2003-07-08 International Business Machines Corporation Apparatus and methods for performing switching in magnetic refrigeration systems using inductively coupled thermoelectric switches
GB2416389B (en) * 2004-07-16 2007-01-10 Statoil Asa LCD liquefaction process
EP1736719A1 (en) * 2005-06-20 2006-12-27 Haute Ecole d'Ingénieurs et de Gestion du Canton Continuously rotary magnetic refrigerator or heat pump
JP2008082663A (ja) * 2006-09-28 2008-04-10 Toshiba Corp 磁気冷凍デバイスおよび磁気冷凍方法
US8293030B2 (en) * 2007-04-05 2012-10-23 Universite De Lorraine Intermetallic compounds, their use and a process for preparing the same
US8555672B2 (en) * 2009-10-22 2013-10-15 Battelle Energy Alliance, Llc Complete liquefaction methods and apparatus
US8209988B2 (en) * 2008-09-24 2012-07-03 Husssmann Corporation Magnetic refrigeration device
EP2196251A1 (de) * 2008-12-04 2010-06-16 Siemens Aktiengesellschaft Kohlendioxid-Abtrennanlage und Verfahren zum Betrieb einer solchen Anlage
US8617292B2 (en) * 2009-12-15 2013-12-31 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method of obtaining carbon dioxide from carbon dioxide-containing gas mixture
US20120174621A1 (en) * 2011-01-06 2012-07-12 General Electric Company Carbon dioxide liquefaction system
DE112011104855T5 (de) * 2011-02-08 2013-11-07 Ihi Corporation Abgasbehandlungssystem für Oxyfuel-Verbrennungsvorrichtung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1780250A (en) * 1930-03-27 1930-11-04 Frank G Campbell Method of and apparatus for liquefying gases
RU2175949C2 (ru) * 1999-07-27 2001-11-20 ЗАО "Центр ВМ-Технологий" Способ очистки диоксида углерода от низкокипящих примесей
US6293106B1 (en) * 2000-05-18 2001-09-25 Praxair Technology, Inc. Magnetic refrigeration system with multicomponent refrigerant fluid forecooling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2806126C2 (ru) * 2018-10-05 2023-10-26 Граф Индастриз С.П.А. Заправочная станция для транспортных средств

Also Published As

Publication number Publication date
BR112014005676B1 (pt) 2021-07-20
AU2012315807B2 (en) 2017-06-22
MX2014003880A (es) 2014-05-07
US20130081409A1 (en) 2013-04-04
EP2815194A2 (en) 2014-12-24
WO2013049532A3 (en) 2015-01-29
JP2015507731A (ja) 2015-03-12
AU2012315807A1 (en) 2014-04-10
WO2013049532A2 (en) 2013-04-04
CA2848991C (en) 2020-07-21
CN104471335B (zh) 2017-11-07
JP6154813B2 (ja) 2017-06-28
RU2014110121A (ru) 2015-11-10
KR20140089527A (ko) 2014-07-15
CA2848991A1 (en) 2013-04-04
CN104471335A (zh) 2015-03-25
KR101983343B1 (ko) 2019-05-28
AU2012315807C1 (en) 2017-11-16
BR112014005676A2 (pt) 2017-04-04

Similar Documents

Publication Publication Date Title
RU2606725C2 (ru) Способы и системы для конденсации CO2
Alabdulkarem et al. Development of CO2 liquefaction cycles for CO2 sequestration
JP6923629B2 (ja) 発電システム及び方法からの低圧液体二酸化炭素の生成
US20130025294A1 (en) System and method for carbon dioxide removal
MX2012014459A (es) Combustion estequiometrica con recirculacion de gas de escape y enfriador de contacto directo.
JP2017533371A5 (ru)
TWI516723B (zh) 用於液化來自燃燒裝置之煙道氣的方法及裝置
JP5754052B2 (ja) 液体から凝縮性成分を除くための製法
Alabdulkarem et al. Multi-functional heat pumps integration in power plants for CO2 capture and sequestration
US20200032704A1 (en) Production of low pressure liquid carbon dioxide from a power production system and method
Duan et al. Study on a novel process for CO2 compression and liquefaction integrated with the refrigeration process
US8631660B2 (en) Integrated gasification combined cycle system with vapor absorption chilling
CN104812454A (zh) 用于优化从流体除去可凝结组分的方法
Lin et al. Design and analysis of cryogenic CO2 separation from a CO2‐rich mixture
US20130125580A1 (en) Expander and method for co2 separation
RU96416U1 (ru) Комплекс для автономного производства жидкого низкотемпературного диоксида углерода и газообразного азота, а также жидких кислорода или азота
US20130000352A1 (en) Air separation unit and systems incorporating the same
Kotowicz et al. Analysis of thermodynamics of two-fuel power unit integrated with a carbon dioxide separation plant
Utilizing et al. Postcombustion CO2 Capture for
BOLLAND et al. NATURAL GAS FIRED POWER CYCLES WITH INTEGRATED CO: CAPTURE', HENRIETTE UNDRUM2 AND MICHEL V1YHRE h