RU2606352C1 - Способ химико-термической обработки детали из сплава на основе титана - Google Patents
Способ химико-термической обработки детали из сплава на основе титана Download PDFInfo
- Publication number
- RU2606352C1 RU2606352C1 RU2015125754A RU2015125754A RU2606352C1 RU 2606352 C1 RU2606352 C1 RU 2606352C1 RU 2015125754 A RU2015125754 A RU 2015125754A RU 2015125754 A RU2015125754 A RU 2015125754A RU 2606352 C1 RU2606352 C1 RU 2606352C1
- Authority
- RU
- Russia
- Prior art keywords
- ion
- heat treatment
- chemical
- parts
- plasma
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/48—Ion implantation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/36—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из сплава на основе титана, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения. Способ химико-термической обработки детали из сплава на основе титана включает размещение детали в рабочей камере установки, активирование поверхности детали перед химико-термической обработкой, подачу в камеру рабочей насыщающей среды, нагрев детали до температур химико-термической обработки и выдержку при этих температурах до формирования необходимой толщины диффузионного слоя. Активирование поверхности детали перед химико-термической обработкой проводят с помощью ионно-имплантационной обработки поверхности детали при энергии ионов от 30 до 40 кэВ, дозой от 1,4⋅1017 см-2 до 1,8⋅1017 см-2, со скоростью набора дозы от 0,7⋅1015 с-1 до 1⋅1015 с-1, при этом в качестве имплантируемых ионов используют ионы следующих элементов: С, N, или их комбинации. В частных случаях осуществления изобретения химико-термическую обработку детали проводят ионно-плазменным азотированием или ионно-плазменной цементацией или ионно-плазменной нитроцементацией. Обеспечивается повышение производительности и качества процесса химико-термической обработки, а также повышение износостойкости деталей после химико-термической обработки. 2 з.п. ф-лы, 1 пр.
Description
Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из сплава на основе титана, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения.
Широко известны процессы упрочнения поверхности деталей методами ХТО. Известен, например способ химико-термической обработки деталей, включающий диффузионное насыщение элементами внедрения и замещения и последующий нагрев поверхности детали (АС СССР №1515772, МПК С23С 8/00. СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛЬНЫХ ИЗДЕЛИЙ. Бюл. №36. 2013 г.).
Известен способ ХТО деталей, заключающий в высокотемпературном азотировании, закалке с последующим отпуском [Лахтин Ю.М., Коган Я.Д. Азотирование стали. М.: Машиностроение, 1976, с. 99-102]. В результате обработки получают высокоазотистый слой небольшой толщины. Такой слой хорошо противостоит коррозии в атмосфере, но плохо работает при высоких изгибных, контактных напряжениях и в условиях повышенного износа.
Известны также ионно-плазменные методы химико-термической обработки, например методы ионного азотирования в плазме тлеющего разряда постоянного или пульсирующего тока, которые включают в себя две стадии - очистку поверхности катодным распылением и собственно насыщение поверхности металла азотом [Теория и технология азотирования / Лохтин Ю.М, Коган Л.Д. и др. // М., Металлургия, 1990, С. 89], а также ионное азотирование деталей из титана в тлеющем разряде с полым катодом [Ахмадеев Ю.Х., Гончаренко И.М., Иванов Ю.Ф., Коваль Н.Н., Щанин П.М., Колубаева Ю.А., Крысина О.В. Азотирование титана в тлеющем разряде с полым катодом // Поверхность. - 2006. - №.8. - С. 63-69].
Известен также способ химико-термической обработки деталей, при котором на стадии очистки изделий тлеющий разряд периодически переводят в импульсную электрическую дугу. Это позволяет интенсифицировать процесс за счет быстрого разогрева обрабатываемой поверхности в первые минуты до более высоких температур, чем температура процесса азотирования (АС СССР 1534092, МПК С23С 8/36, опубл. 07.01.90; BG 43787. МПК С23С 8/36. METHOD FOR CHEMICO-THERMIC TREATMENT IN GLOWING DISCHARGE OF GEAR TRANSMISSIONS. 1988).
Наиболее близким техническим решением, выбранным в качестве прототипа, является способ химико-термической обработки детали, включающий размещение детали в рабочей камере установки, активирование поверхности детали перед химико-термической обработкой, подачу в камеру рабочей насыщающей среды, нагрев детали до температур химико-термической обработки и выдержку при этих температурах до формирования необходимой толщины диффузионного слоя (АС СССР №1574679, МПК С23С 8/36, опубл. 30.06.90; патент РФ №2144095, МПК С23С 8/38, опубл. 10.01.2000).
Недостатками известных способов и прототипа являются невысокая износостойкость поверхности из-за неоднородности диффузионного слоя и образования в диффузионном слое хрупких фаз, а также низкая производительность насыщения поверхностного слоя материала детали в процессе ХТО. ХТО с использованием известных способов приводит к следующим негативным явлениям: существует высокая вероятность образования неравномерного слоя с уменьшенной концентрацией насыщаемого вещества, неоднородной и пониженной твердостью материала поверхностного слоя, возникновением дефектных участков. Для удаления дефектных участков поверхностного слоя после ХТО проводится шлифование, однако при удалении обедненного дефектного слоя часто образуются прижоги и ряд других характерных дефектов поверхностного слоя и в результате к снижению износостойкости деталей.
Задачей предлагаемого изобретения является интенсификация процесса и повышение качества химико-термической обработки деталей из сплава на основе титана за счет активации и обеспечения однородного состояния материала поверхностного слоя детали в процессе ХТО и, как следствие, повышение износостойкости деталей.
Техническим результатом заявляемого изобретения является повышение производительности и качества процесса ХТО, а также повышение износостойкости деталей из сплава на основе титана после ХТО.
Технический результат достигается тем, что способ химико-термической обработки детали из сплава на основе титана, включающем размещение детали в рабочей камере, активирование поверхности детали перед химико-термической обработкой, подачу в камеру рабочей насыщающей среды, нагрев детали до температуры химико-термической обработки и выдержку при этой температуре до формирования необходимой толщины диффузионного слоя, в отличие от прототипа, активирование поверхности детали перед химико-термической обработкой проводят с помощью ионно-имплантационной обработки поверхности детали при энергии ионов от 30 до 40 кэВ, дозой от 1,4⋅1017 см-2 до 1,8⋅1017 см-2, со скоростью набора дозы от 0,7⋅1015 с-1 до 1⋅1015 с-1, и при использовании в качестве имплантируемых ионов ионов следующих элементов: С, N, или их комбинации. Кроме того, возможно использование в способе следующих дополнительных приемов: химико-термическую обработку детали проводят ионно-плазменным методом; в качестве ионно-плазменного метода используют ионно-плазменное азотирование или ионно-плазменную цементацию или ионно-плазменную нитроцементацию.
Повышение требований к качеству обработки деталей машин послужили поводом для совершенствования методов насыщения поверхности легирующими элементами и привели к созданию ряда новых способов обработки, таких как ионное азотирование [Теория и технология азотирования / Лохтин Ю.М., Коган Л.Д. и др. // М., Металлургия, 1990, С. 89] и ионная имплантация [например, патент РФ №2479667. МПК С23С 14/48. СПОСОБ ИОННО-ИМПЛАНТАЦИОННОЙ ОБРАБОТКИ ДЕТАЛЕЙ ИЗ ТИТАНОВЫХ СПЛАВОВ. Бюл №11, 2013]. Ионная имплантация позволяет производить насыщение поверхностного слоя деталей практически любыми легирующими элементами, а детали, упрочненные методом ионной имплантацией, имеют гораздо более высокие эксплуатационные свойства, чем детали, подвергнутые обычной или ионной химико-термической обработки [Модифицирование и легирование поверхности лазерными, ионными и электронными пучками / Под ред. Д.М. Поута, Г. Фоти, Д.К. Джекобсона / М.: «Мир», 1987, 424 с.; Модифицирование и легирование поверхности лазерными, ионными и электронными пучками / под ред. Дж. М. Поута. М.: Машиностроение, 1987. - 424 с.]. При этом основными недостатками ионно-имплантационной обработки являются дороговизна метода и незначительная глубина проникновения легированных элементов в поверхностный слой материала.
Для оценки эксплуатационных свойств деталей, обработанных по предлагаемому способу были проведены следующие испытания. Образцы из сплава на основе титана были подвергнуты обработке как по способам-прототипам ((А.С. СССР №1574679, патент РФ №2144095), согласно приведенным в способе-прототипе условиям и режимам обработки, так и по вариантам предлагаемого способа.
Режимы обработки образцов по предлагаемому способу.
Ионная имплантация при обработке деталей из сплава на основе титана перед ХТО проводилось по следующим режимам: имплантируемые ионы С, N или их комбинация; доза - 1,1⋅1017 см-2 (Н.Р. - неудовлетворительный результат); 1,4⋅1017 см-2 (У.Р. - удовлетворительный результат); 1,8⋅1017 см-2 (У.Р.); 2,2⋅1017 см-2 (Н.Р.); скорость набора дозы - 0,4⋅1015 с-1 (Н.Р.); 0,7⋅1015 с-1 (У.Р.); 1⋅1015 с-1 (У.Р.); 3⋅1015 с-1 (Н.Р.), энергия: 25 кэВ (Н.Р.); 30 кэВ (У.Р.); 40 кэВ (У.Р.); 45 кэВ (Н.Р.).
Химико-термическую обработку деталей проводили газовым и ионно-плазменным методами (отличие предлагаемого способа от существующих состояла в предварительной активации поверхности ионно-имплантационной обработкой). В качестве одного из методов ХТО применяли ионно-плазменное азотирование, ионно-плазменную цементацию и ионно-плазменную нитроцементацию.
Испытания показали на повышение износостойкости образцов из сплава на основе титана по сравнению с прототипом в 1,4…1.8 раза (т.е. в результате использования активирования поверхности перед ХТО). Скорость обработки, за счет увеличения скорости диффузии при ХТО возросла приблизительно в 1,2…1,7 раз. Исследования образцов показало на повышение однородности структуры диффузионной зоны материалов.
Таким образом, проведенные сравнительные испытания показали, что применение в способе химико-термической обработки детали из сплава на основе титана следующих приемов: размещение детали в рабочей камере установки; активирование поверхности детали перед химико-термической обработкой; подача в камеру рабочей насыщающей среды; нагрев детали до температур химико-термической обработки; выдержка при этих температурах до формирования необходимой толщины диффузионного слоя; активирование поверхности детали перед химико-термической с помощью ионно-имплантационной обработки поверхности детали при энергии ионов от 30 до 40 кэВ, дозой от 1,4⋅1017 см-2 до 1,8⋅1017 см-2, со скоростью набора дозы от 0,7⋅1015 с-1 до 1⋅1015 с-1, при использовании в качестве имплантируемых ионов ионов следующих элементов: С, N, или их комбинации, а также использование дополнительных приемов: химико-термическую обработку детали проводят ионно-плазменным методом; в качестве ионно-плазменного метода используют ионно-плазменное азотирование или ионно-плазменную цементацию или ионно-плазменную нитроцементацию, позволяет обеспечить заявленный технический результат предлагаемого изобретения - повысить производительность и качество процесса ХТО, а также повысить износостойкость детали из сплава на основе титана после ХТО.
Claims (3)
1. Способ химико-термической обработки детали из сплава на основе титана, включающий размещение детали в рабочей камере установки, активирование поверхности детали перед химико-термической обработкой, подачу в камеру рабочей насыщающей среды, нагрев детали до температур химико-термической обработки и выдержку при этих температурах до формирования необходимой толщины диффузионного слоя, отличающийся тем, что активирование поверхности детали перед химико-термической обработкой проводят с помощью ионно-имплантационной обработки поверхности детали при энергии ионов от 30 до 40 кэВ, дозой от 1,4⋅1017 см-2 до 1,8⋅1017 см-2, со скоростью набора дозы от 0,7⋅1015 с-1 до 1⋅1015 с-1, при этом в качестве имплантируемых ионов используют ионы следующих элементов: С, N, или их комбинации.
2. Способ по п. 1, отличающийся тем, что химико-термическую обработку детали проводят ионно-плазменным методом.
3. Способ по п. 2, отличающийся тем, что в качестве ионно-плазменного метода используют ионно-плазменное азотирование или ионно-плазменную цементацию или ионно-плазменную нитроцементацию.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015125754A RU2606352C1 (ru) | 2015-06-29 | 2015-06-29 | Способ химико-термической обработки детали из сплава на основе титана |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015125754A RU2606352C1 (ru) | 2015-06-29 | 2015-06-29 | Способ химико-термической обработки детали из сплава на основе титана |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014105593/02A Division RU2559606C1 (ru) | 2014-02-14 | 2014-02-14 | Способ химико-термической обработки детали из легированной стали |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2606352C1 true RU2606352C1 (ru) | 2017-01-10 |
Family
ID=58452838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015125754A RU2606352C1 (ru) | 2015-06-29 | 2015-06-29 | Способ химико-термической обработки детали из сплава на основе титана |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2606352C1 (ru) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2070607C1 (ru) * | 1992-12-25 | 1996-12-20 | Российский научный центр "Курчатовский институт" | Способ упрочнения изделий из металлов и их сплавов |
RU2264480C2 (ru) * | 2000-04-10 | 2005-11-20 | Падеров Анатолий Николаевич | Способ нанесения защитных покрытий на детали из жаропрочных сплавов |
US20120006785A1 (en) * | 2006-05-17 | 2012-01-12 | Vladimir Gorokhovsky | Wear Resistant Vapor Deposited Coating, Method of Coating Deposition and Applications Therefor |
-
2015
- 2015-06-29 RU RU2015125754A patent/RU2606352C1/ru not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2070607C1 (ru) * | 1992-12-25 | 1996-12-20 | Российский научный центр "Курчатовский институт" | Способ упрочнения изделий из металлов и их сплавов |
RU2264480C2 (ru) * | 2000-04-10 | 2005-11-20 | Падеров Анатолий Николаевич | Способ нанесения защитных покрытий на детали из жаропрочных сплавов |
US20120006785A1 (en) * | 2006-05-17 | 2012-01-12 | Vladimir Gorokhovsky | Wear Resistant Vapor Deposited Coating, Method of Coating Deposition and Applications Therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2634400C1 (ru) | Способ ионного азотирования режущего инструмента из легированной стали | |
GB2261227A (en) | Surface treatment of metals at low pressure | |
RU2606352C1 (ru) | Способ химико-термической обработки детали из сплава на основе титана | |
RU2559606C1 (ru) | Способ химико-термической обработки детали из легированной стали | |
RU2605029C1 (ru) | Способ химико-термической обработки детали из титана | |
RU2677908C1 (ru) | Способ химико-термической обработки детали из легированной стали | |
RU2458182C1 (ru) | Способ имплантации конструкционной стали ионами меди и свинца | |
RU2605394C1 (ru) | Способ химико-термической обработки детали из сплава на основе кобальта | |
RU2605395C1 (ru) | Способ химико-термической обработки детали из сплава на основе никеля | |
RU2562185C1 (ru) | Способ модификации поверхности изделий из титановых сплавов в вакууме | |
RU2688009C1 (ru) | Способ поверхностного упрочнения детали из стали | |
JP2001192861A (ja) | 表面処理方法及び表面処理装置 | |
RU2558320C1 (ru) | Способ упрочнения поверхности титановых сплавов в вакууме | |
RU2413793C2 (ru) | Способ ионно-плазменной обработки поверхности металлорежущего инструмента, изготовленного из порошковой быстрорежущей стали | |
RU2611003C1 (ru) | Способ ионного азотирования титановых сплавов | |
RU2599950C1 (ru) | Способ ионно-плазменного азотирования деталей из инструментальных сталей | |
RU2627551C1 (ru) | Способ химико-термической обработки детали из легированной стали | |
RU2117073C1 (ru) | Способ модификации поверхности титановых сплавов | |
RU2671026C1 (ru) | Способ комбинированного плазменного упрочнения поверхности изделий из титановых сплавов | |
RU2795620C1 (ru) | Способ азотирования детали из легированной стали | |
RU2470091C1 (ru) | Способ ионной имплантации поверхностей деталей из титановых сплавов | |
RU2777058C1 (ru) | Способ азотирования детали из легированной стали | |
RU2812924C1 (ru) | Способ ионного азотирования детали из алюминиевого сплава | |
RU2787278C1 (ru) | Способ азотирования детали из легированной стали | |
KR100641064B1 (ko) | 블래이드의 표면처리방법 및 그 블래이드 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20190215 |