RU2606323C9 - Уменьшение образования алюмосиликатной накипи в процессе Байера - Google Patents

Уменьшение образования алюмосиликатной накипи в процессе Байера Download PDF

Info

Publication number
RU2606323C9
RU2606323C9 RU2013141250A RU2013141250A RU2606323C9 RU 2606323 C9 RU2606323 C9 RU 2606323C9 RU 2013141250 A RU2013141250 A RU 2013141250A RU 2013141250 A RU2013141250 A RU 2013141250A RU 2606323 C9 RU2606323 C9 RU 2606323C9
Authority
RU
Russia
Prior art keywords
group
molecule
combination
hydrolyzed
bayer process
Prior art date
Application number
RU2013141250A
Other languages
English (en)
Other versions
RU2013141250A (ru
RU2606323C2 (ru
Inventor
Тимоти ЛА
Джон Д. КИЛДЕА
Кевин Л. О'Брайан
Еверетт С. ФИЛЛИПС
Кайлас Б. СЭВАНТ
Дэвид Х. СЛИНКМАН
Фредерик Дж. СВЕЦИНСКИ
Цзи ЦУЙ
Original Assignee
Налко Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46721393&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2606323(C9) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Налко Компани filed Critical Налко Компани
Publication of RU2013141250A publication Critical patent/RU2013141250A/ru
Publication of RU2606323C2 publication Critical patent/RU2606323C2/ru
Application granted granted Critical
Publication of RU2606323C9 publication Critical patent/RU2606323C9/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/46Purification of aluminium oxide, aluminium hydroxide or aluminates
    • C01F7/47Purification of aluminium oxide, aluminium hydroxide or aluminates of aluminates, e.g. removal of compounds of Si, Fe, Ga or of organic compounds from Bayer process liquors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F14/00Inhibiting incrustation in apparatus for heating liquids for physical or chemical purposes
    • C23F14/02Inhibiting incrustation in apparatus for heating liquids for physical or chemical purposes by chemical means
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/06Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals or waste-like raw materials with alkali hydroxide, e.g. leaching of bauxite according to the Bayer process
    • C01F7/0606Making-up the alkali hydroxide solution from recycled spent liquor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/06Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals or waste-like raw materials with alkali hydroxide, e.g. leaching of bauxite according to the Bayer process
    • C01F7/062Digestion
    • C01F7/0633Digestion characterised by the use of additives
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/06Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals or waste-like raw materials with alkali hydroxide, e.g. leaching of bauxite according to the Bayer process
    • C01F7/0646Separation of the insoluble residue, e.g. of red mud
    • C01F7/0653Separation of the insoluble residue, e.g. of red mud characterised by the flocculant added to the slurry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Detergent Compositions (AREA)

Abstract

В изобретении обеспечивают способ подавления нарастания алюмосиликатной накипи в контуре циркуляции щелока оборудования процесса Байера. Способ включает добавление в поток подавляющей образование алюмосиликатной накипи композиции, содержащей одну или более молекул на основе определенного силана, в жидкостной контур циркуляции щелока. Такие ингибиторы накипи снижают образование накипи и, посредством этого, увеличивают пропускную способность по жидкости, увеличивают промежуток времени, в течение которого может работать оборудование процесса Байера, и снижают потребность в дорогих и опасных промывках кислотой оборудования процесса Байера. В результате этого изобретение обеспечивает значительное снижение общих затрат на эксплуатацию процесса Байера. 11 з.п. ф-лы, 2 пр., 2 табл., 2 ил.

Description

Перекрестная ссылка на родственные заявки
Данная заявка является частичным продолжением находящейся на стадии рассмотрения заявки 12/567116, поданной 25 сентября, 2009 г.
Уровень техники
Данное изобретение относится к композициям веществ и способам их применения для обработки накипи в различных потоках промышленных процессов, в частности, к определенным небольшим молекулам на основе силана, которые оказались особенно эффективными при обработке алюмосиликатной накипи в потоке процесса Байера.
Как описано наряду с другими публикациями в US 6814873, содержание которого включено в данную заявку полностью посредством ссылки, процесс Байера применяют для получения оксида алюминия из бокситовой руды. В процессе используют щелочной раствор для извлечения растворимого ценного оксида алюминия из боксита. После растворения ценного оксида алюминия и удаления нерастворимых отходов из технологического потока, растворимый оксид алюминия осаждают в виде твердого тригидрата алюминия. Оставшийся щелочной раствор, известный как «щелок» и/или «отработанный щелок», затем подают рециклом на более ранние стадии процесса и используют для обработки нового боксита. Это таким образом формирует жидкостной контур циркуляции. Для целей данной заявки, в данном описании используют термин «щелок». Однако подача рециклом щелока в пределах жидкостного контура циркуляции имеет свои сложности.
Боксит часто содержит диоксид кремния в различных формах и количестве. Часть диоксида кремния не является реакционноспособной, поэтому он не растворяется и остается в виде твердого материала в контуре циркуляции Байера. Другие формы диоксида кремния (например, глины) являются реакционноспособными и растворяются в щелочи при добавлении в щелоки процесса Байера, таким образом увеличивая концентрацию диоксида кремния в щелоке. По мере того, как щелок многократно проходит через контур циркуляции процесса Байера, концентрация диоксида кремния в щелоке дополнительно возрастает, в конечном счете до величины, при которой он взаимодействует с алюминием и гидрокарбонатом натрия с образованием нерастворимых частиц алюмосиликата. Твердые частицы алюмосиликата наблюдают по меньшей мере в двух формах, содалита и канкринита. Эти и другие формы алюмосиликата обычно называют «продуктом десиликации» или «ПДС», и для целей данной заявки употребляют этот термин.
ПДС может иметь формулу 3(Na2O⋅Al2O3⋅2SiO2⋅0-2H2O)⋅2NaX, где X представляет собой OH-, Cl-,
Figure 00000001
,
Figure 00000002
. Поскольку ПДС имеет ретроградную растворимость (осаждение возрастает при более высоких температурах) и он может выпадать в осадок в виде тонкого слоя накипи из твердых нерастворимых кристаллических частиц, его нарастание в оборудовании процесса Байера создает проблемы. По мере накопления ПДС в трубах процесса Байера, вентилях, теплообменном оборудовании и другом технологическом оборудовании, он образует узкие места для потока и закупорки, и может отрицательно влиять на пропускную способность по щелоку. Кроме того, из-за его теплопроводных свойств, накипь ПДС на поверхности теплообменника снижает эффективность теплообмена.
Эти отрицательные эффекты обычно сдерживают посредством использования режима удаления накипи, который включает извлечение технологического оборудования из линии и физическую или химическую обработку и удаление накипи. Следствием такого типа режима являются значительные и регулярные периоды простоя ответственного оборудования. Дополнительно, в процессе удаления накипи часто используют опасные концентрированные кислоты, такие как серная кислота, и это создает нежелательную угрозу безопасности.
Другим способом сдерживания операторами технологического процесса Байера нарастания концентрации диоксида кремния в щелоке является преднамеренное осаждение ПДС в виде неприкрепленных кристаллов, вместо накипи. Обычно стадию «десиликации» в процессе Байера используют для снижения концентрации диоксида кремния в растворе посредством осаждения диоксида кремния как ПДС, в виде легко отделяющегося осадка. Несмотря на то, что такая десиликация снижает общую концентрацию диоксида кремния в щелоке, полное устранение диоксида кремния из раствора практически невозможно, и изменение условий процесса в различных частях контура циркуляции (например, в теплообменнике) может привести к изменению растворимости ПДС, что приводит к последующему осаждению в виде накипи.
Предшествующие попытки регулирования и/или снижения накипи ПДС в процессе Байера включали добавление полимерных материалов, содержащих три алкилоксигруппы, соединенные с одним атомом диоксида кремния, как описано в US 6814873 B2, US 2004/0162406 A1, 2004/0011744 A1, 2005/0010008 A2, WO 2008/045677 A1 и Max HT™ Sodalite Scale Inhibitor: Plant Experience and Impact on the Process, Donald Spitzer et. al., pages 57-62, Light Metals 2008 (2008); полное содержание указанных документов включено в данную заявку посредством ссылки.
Однако при получении и применении таких полимеров с привитыми триалкоксисилановыми цепями может возникать нежелательная степень вязкости, создавая трудности при обращении и распределении полимера в щелоке процесса Байера. Другие предшествующие попытки, направленные на борьбу с накоплением загрязняющего вещества, описаны в US 5650072 и US 5314626; оба документа включены в данную заявку во всей полноте посредством ссылки.
Таким образом, несмотря на ряд способов, доступных для операторов технологического процесса Байера, чтобы регулировать и сдерживать образование накипи ПДС, существует очевидная потребность в улучшенном способе предотвращения или уменьшения образования накипи ПДС на оборудовании процесса Байера. Уровень техники, описанный в данном разделе, не подразумевает признания того, что любой патент, публикация или другая информация, на которую ссылаются в данном описании, является «известным уровнем техники» для данного изобретения, если таковое не указано специально. Кроме того, данный раздел не следует понимать в том смысле, что проведен патентный поиск и не существует другой относящейся к данному изобретению информации, как определено в 37 C.F.R §1.56(a).
Краткое описание изобретения
По меньшей мере одно воплощение относится к способу уменьшения кремнийсодержащей накипи в процессе Байера, включающему стадию добавления в щелок Байера подавляющего образование алюмосиликатной накипи количества продукта реакции между содержащей амин молекулой и взаимодействующей с амином молекулой, содержащей по меньшей мере одну реакционноспособную группу в молекуле и по меньшей мере одну Si(OR)n группу в молекуле, где n=1, 2 или 3 и R=Н, C112алкил, арил, Na, K, Li или NH4; или смеси таких продуктов реакции.
Другое воплощение относится к способу уменьшения алюмосиликатной накипи в процессе Байера, включающему стадию добавления в щелок Байера эффективного количества продукта реакции между: 1) содержащей амин небольшой молекулой и 2) взаимодействующей с амином небольшой молекулой, содержащей по меньшей мере одну взаимодействующую с амином группу в молекуле и по меньшей мере одну Si(OR)n группу в молекуле, где n=1, 2 или 3 и R=Н, C1-C12 алкил, арил, Na, K, Li или NH4; или смеси таких продуктов реакции, и 3) неполимерного взаимодействующего с амином гидрофобного углеводорода.
По меньшей мере одно воплощение относится к способу уменьшения образования ПДС в процессе Байера, включающему стадию добавления в поток процесса Байера подавляющей образование алюмосиликатной накипи смеси продуктов, определенных выше.
Краткое описание чертежей
Ниже представлено подробное описание изобретения с конкретными ссылками на чертежи, где:
на Фиг.1 представлен график, демонстрирующий характер протекания периодической реакции по изобретению.
На Фиг.2 представлен график, демонстрирующий характер протекания полунепрерывной реакции по изобретению.
Подробное описание изобретения
В целях данной заявки, употребляемые термины имеют следующее определение.
«Полимер» означает химическое соединение, включающее в основном повторяющиеся структурные звенья, каждое из которых содержит два или более атомов. В то время как многие полимеры имеют большую молекулярную массу, более 500, некоторые полимеры, такие как полиэтилен, могут иметь молекулярную массу менее 500. Термин «полимер» включает сополимеры и гомополимеры.
«Небольшая молекула» означает химическое соединение, включающее в основном неповторяющиеся структурные звенья. Поскольку олигомер (содержащий более 10 повторяющихся звеньев) и полимер в основном включают повторяющиеся структурные звенья, они не являются небольшими молекулами. Небольшие молекулы могут иметь молекулярную массу выше и ниже 500. Термины «небольшая молекула» и «полимер» являются взаимоисключающими.
«Загрязняющее вещество» означает отложения материала, которые накапливаются на оборудовании при производственном и/или химическом процессе; этот осадок может быть нежелательным и может повышать стоимость и/или снижать эффективность процесса. ПДС представляет собой разновидность загрязняющего вещества.
«Амин» означает молекулу, содержащую один или более атомов азота и по меньшей мере одну группу вторичного амина или первичного амина. По этому определению, моноамины, такие как додециламин; диамины, такие как гександиамин, и триамины, такие как диэтилентриамин, все представляют собой амины.
«ГПС» представляет собой 3-глицидоксипропилтриметоксисилан.
«Алкилокси» означает группу, имеющую структуру OX, где X является углеводородом, а O является кислородом. Этот термин также можно использовать на равных основаниях с термином «алкокси». Обычно в данной заявке кислород связан как с X группой, так и с атомом кремния небольшой молекулы. Когда X содержит один атом углерода, алкилоксигруппа состоит из метильной группы, связанной с атомом кислорода. Когда X содержит два атома углерода, алкилоксигруппа состоит из этильной группы, связанной с атомом кислорода. Когда X содержит три атома углерода, алкилоксигруппа состоит из пропильной группы, связанной с атомом кислорода. Когда X содержит четыре атома углерода, алкилоксигруппа состоит из бутильной группы, связанной с атомом кислорода. Когда X содержит пять атомов углерода, алкилоксигруппа состоит из пентильной группы, связанной с атомом кислорода. Когда X содержит шесть атомов углерода, алкилоксигруппа состоит из гексильной группы, связанной с атомом кислорода.
«Моноалкилокси» означает, что к атому кремния присоединена одна алкилоксигруппа.
«Диалкилокси» означает, что к атому кремния присоединены две алкилоксигруппы.
«Триалкилокси» означает, что к атому кремния присоединены три алкилоксигруппы.
«Синтетический щелок» или «синтетический отработанный щелок» представляет собой полученную в лабораторном масштабе жидкость, используемую для экспериментов, состав которой в отношении оксида алюминия, гидрокарбоната натрия и щелочи соответствует щелоку, получаемому при подаче рециклом через процесс Байера.
«Щелок Байера» представляет собой щелок, который действительно прошел через процесс Байера в промышленном оборудовании.
В случае, когда вышеприведенные определения или описание, изложенное где-либо еще в материалах заявки, не соответствуют значению (явно выраженному или подразумеваемому), которое обычно используют в словарях или сформулированному в источнике, включенном посредством ссылки в данную заявку, термины, употребляемые в описании и формуле изобретения, следует конкретно понимать согласно определению или описанию, изложенному в данной заявке, а не согласно общему определению, представленному в словарях, или определению, изложенному в документе, включенном посредством ссылки. В свете вышесказанного, в том случае, когда термин можно истолковать только с помощью словаря, следует руководствоваться определением термина в Kirk-Othmer Encyclopedia of Chemical Technology, 5th Edition, (2005), (Published by Wiley, John&Sons, Inc.) чтобы понять значение термина в формуле изобретения.
В процессе Байера для получения оксида алюминия бокситовая руда проходит стадию измельчения, и оксид алюминия, вместе с рядом примесей, включающих диоксид кремния, растворяют в добавляемом щелоке. Затем смесь обычно пропускают через стадию десиликации, на которой диоксид кремния намерено осаждают в виде ПДС, чтобы снизить количество диоксида кремния в растворе. Суспензию перемещают на стадию выщелачивания, на которой растворяется оставшийся реакционноспособный диоксид кремния, таким образом снова увеличивая концентрацию в растворе диоксида кремния, который может впоследствии образовывать дополнительное количество ПДС по мере увеличения температуры процесса. Затем щелок отделяют от нерастворенных твердых веществ и оксид алюминия извлекают посредством осаждения в виде гиббсита. Отработанный щелок заканчивает прохождение контура его циркуляции по мере пропускания через теплообменник и обратно на стадию измельчения. Накипь ПДС накапливается в ходе процесса Байера, но в особенности на стадии выщелачивания, и в наибольшей степени, на или вблизи теплообменника, через который проходит рециркулируемый щелок.
В данном изобретении было обнаружено, что дозированное добавление различных типов продуктов на основе силана может снизить количество образующейся накипи ПДС.
По меньшей мере в одном воплощении эффективное количество продукта, представляющего собой небольшую молекулу на основе силана, добавляют на каком-либо участке или стадии в контур циркуляции щелока процесса Байера, что минимизирует или предотвращает накопление ПДС в емкостях или оборудовании по контуру циркуляции щелока.
По меньшей мере в одном воплощении небольшая молекула включает продукт реакции между амином и по меньшей мере одним взаимодействующим с амином силаном, причем кремний в силане может быть соединен с одной, двумя или тремя алкилоксигруппами.
По меньшей мере в одном воплощении небольшая молекула представляет собой продукт реакции между содержащей амин небольшой молекулой и взаимодействующей с амином молекулой, содержащей по меньшей мере одну взаимодействующую с амином группу в молекуле и по меньшей мере одну Si(OR)n группу в молекуле, где n=1, 2 или 3 и R=Н, С112 алкил, арил, Na, K, Li или NH4, или смесь таких продуктов реакции.
По меньшей мере в одном воплощении способ уменьшения образования содержащей алюмосиликат накипи в процессе Байера включает следующие стадии:
- добавление в поток процесса Байера подавляющего образование алюмосиликатной накипи количества композиции, включающей по меньшей мере одну молекулу, состоящую по меньшей мере из трех компонентов, компонента R1, компонента R2 и компонента R3, причем компоненты в молекуле расположены в соответствии с основной формулой:
Figure 00000003
где молекула может представлять собой по меньшей мере одно из следующих соединений: карбонаты, бикарбонаты, карбаматы, мочевины, амиды и их соли, и
(i) R1 выбран из группы, состоящей из Н, алкила, амина, структуры (А) и структуры (В)
Figure 00000004
Figure 00000005
(ii) R2 выбран из группы, состоящей из Н, алкила, амина, G и Е,
где G представляет собой соединение, выбранное из группы, состоящей
из 3-глицидоксипропилтриметоксисилана,
3-глицидоксипропилтриалкоксисилана,
3-глицидоксипропилалкилдиалкоксисилана,
3-глицидоксипропилдиалкилмоноалкоксисилана,
3-изоцианатопропилтриалкоксисилана,
3-изоцианатопропилалкилдиалкоксисилана,
3-изоцианатопропилдиалкилмоноалкоксисилана,
3-хлорпропилтриалкоксисилана,
3-хлорпропилалкилдиалкоксисилана и
3-хлорпропилдиалкилмоноалкоксисилана,
причем G возможно подвергнуто гидролизу,
Е представляет собой 2-этилгексил глицидиловый эфир, С322 глицидиловый эфир, С322 изоцианат, С322 хлорид, С322 бромид, С322 йодид, С322 сульфатный эфир, С322 фенолглицидиловый эфир и любое их сочетание,
(iii) R3 выбран из группы, состоящей из Н, алкила, амина, G и Е, и
(iv) n является целым числом от 2 до 6,
причем по меньшей мере один из R2 и R3 представляет собой G.
По меньшей мере в одном воплощении R1 независимо выбран из группы, состоящей из моноизопропаноламина, этилендиамина, диэтилентриамина, тетраэтиленпентамина, изофорондиамина, ксилолдиамина, бис(аминометил)циклогексана, гександиамина, С,С,С-триметилгександиамина, метилен-бис(аминоциклогексана), насыщенных жирных аминов, ненасыщенных жирных аминов, таких как олеиламин и сойамин, N-(жирный алкил)-1,3-пропандиамина, такого как кокоалкилпропандиамин, олеилпропандиамин, додеци л пропан диамин, (гидрированный талловый алкил)пропандиамин и (таловый алкил)пропандиамин, и любого их сочетания.
По меньшей мере в одном воплощении G подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (I), (II), (III), (IV), (V), (VI), (VII), (VIII), (IX) и любого их сочетания:
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012
Figure 00000013
Figure 00000014
По меньшей мере в одном воплощении G подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (X), (XI), (XII), (XIII), (XIV), (XV), (XVI), (XVII), (XVIII), (XIX) и любого их сочетания:
Figure 00000015
Figure 00000016
Figure 00000017
Figure 00000018
Figure 00000019
Figure 00000020
Figure 00000021
Figure 00000022
Figure 00000023
Figure 00000024
По меньшей мере в одном воплощении G подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (XX), (XXI), (XXII) и любого их сочетания:
Figure 00000025
Figure 00000026
Figure 00000027
По меньшей мере в одном воплощении G подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (XXIII), (XXIV), (XXV), (XXVI), (XXVII) и любого их сочетания:
Figure 00000028
Figure 00000029
Figure 00000030
Figure 00000031
Figure 00000032
По меньшей мере в одном воплощении G подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (XXVIII), (XXIX), (XXX), (XXXI), (XXXII) и любого их сочетания:
Figure 00000033
Figure 00000034
Figure 00000035
Figure 00000036
Figure 00000037
По меньшей мере в одном воплощении G не подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (XXXIII), (XXXIV), (XXXV), (XXXVI), (XXXVII), (XXXVIII), (XXXIX), (XL), (XLI) и (XLII) и любого их сочетания:
Figure 00000038
Figure 00000039
Figure 00000040
Figure 00000041
Figure 00000042
Figure 00000043
Figure 00000044
Figure 00000045
Figure 00000046
Figure 00000047
По меньшей мере в одном воплощении G не подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (XLIII), (XLIV), (XLV), (XLVI), (XLVII), (XLVIII), (XLIX), (L), (LI), (LII) и любого их сочетания:
Figure 00000048
Figure 00000049
Figure 00000050
Figure 00000051
Figure 00000052
Figure 00000053
Figure 00000054
Figure 00000055
Figure 00000056
Figure 00000057
По меньшей мере в одном воплощении G не подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (LIII), (LIV), (LV) и любого их сочетания:
Figure 00000058
Figure 00000059
Figure 00000060
По меньшей мере в одном воплощении G не подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (LVI), (LVII), (LVIII), (LIX), (LX) и любого их сочетания:
Figure 00000061
Figure 00000062
Figure 00000063
Figure 00000064
Figure 00000065
По меньшей мере в одном воплощении G не подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (LXI), (LXII), (LXIII), (LXIV) и любого их сочетания:
Figure 00000066
Figure 00000067
Figure 00000068
Figure 00000069
Figure 00000070
По меньшей мере в одном воплощении небольшая молекула присутствует в растворе в количестве от приблизительно 0,01 до приблизительно 100 масс.%. Композиция может дополнительно включать один компонент, выбранный из группы, состоящей из аминов, активирующих веществ, противовспенивающих веществ, сопоглотителей, ингибиторов коррозии, красящих веществ и любых их сочетаний. Композиция может включать растворитель, выбранный из группы, состоящей из воды, спиртов, полиолов, других промышленных растворителей, органических растворителей и любых их сочетаний. Компоненты могут быть выделены из реакции в форме твердого вещества, выпавшей фазы, соли и/или кристаллической фазы при pH от 0 до 14.
Хотя некоторые из небольших молекул упомянуты в различных документах известного уровня техники, их применение для абсолютно неродственных заявок и их эффективность для уменьшения образования накипи в процессе Байера является полностью неожиданным. Некоторые источники, в которых упомянуты такие или подобные небольшие молекулы, включают патент США US 6551515; научные труды: Ethylenediamine attached to silica as an efficient, reusable nanocatalyst for the addition of nitromethane to cyclopentenone, DeOliveira, Edimar; Prado, Alexander G.S., Journal of Molecular Catalysis (2007), 271 (1-2), 6369; Interaction of divalent copper with two diaminealkyl hexagonal mesoporous silicas evaluated by adsorption and thermochemical data, Sales, Jose; Prado, Alexander; and Airoldi, Claudio, Surface Science. Volume 590, Issue 1, pp.51-62 (2005) и Epoxide silyant agent ethylenediamine reaction product anchored on silica gel-thermodynamics of cation-nitrogen interaction at solid/liquid interface, Journal of Noncrvstaline Solids. Volume 330, Issue 1-3, pp.142-149 (2003); международные патентные заявки: WO 2003/002057 A2, WO 2002/085486, WO 2009/056778 A2 и WO 2009/056778 A3; патенты Франции: 2922760 A1 и 2922760 B1; Европейский патент: 2214632 A2 и заявку на патент Китая: CN 101747361.
Эффективность таких небольших молекул является неожиданной, поскольку согласно указаниям известного уровня техники, эффективными являются только высокомолекулярные полимеры. Предполагали, что эффективность полимера зависит от их гидрофобной природы и их размера. Это было подтверждено тем фактом, что поперечно-сшитые полимеры являются еще более эффективными, чем полимеры с одной цепью. В результате было сделано предположение, что небольшие молекулы служат только в качестве строительных блоков для этих полимеров и сами по себе не являются эффективными. (WO 2008/045677 [0030]). Более того, в научной литературе отмечено, что «небольшие молекулы, содержащие … группировку Si-O3, не являются эффективными для предотвращении образовании накипи содалита … поскольку … объемная группа … в существенной степени препятствует внедрению молекулы в растущий содалит». Max HT™ Sodalite Scale Inhibitor: Plant Experience and Impact on the Process, Donald Spitzer et. al., pages 57, Light Metals 2008, (2008). Однако, недавно обнаружено, что в действительности, как дополнительно поясняется в представленных примерах, небольшие молекулы, такие как описанные в данной заявке, все-таки являются эффективными для уменьшения образования накипи ПДС.
Полагают, что существует по меньшей три преимущества использования ингибиторов на основе небольших молекул, в противоположность полимерным ингибиторам с множеством повторяющихся звеньев силана и гидрофобных фрагментов. Первое преимущество состоит в том, что меньшая молекулярная масса продукта означает, что существует большее количество доступных активных ингибирующих группировок вокруг центров кристаллизации ПДС на стадии образования ПДС. Второе преимущество состоит в том, что более низкая молекулярная масса обеспечивает повышенную скорость диффузии ингибитора, что в свою очередь способствует быстрому прикреплению молекул ингибитора к затравочным кристаллам ПДС. Третье преимущество состоит в том, что более низкая молекулярная масса позволяет избежать высокой вязкости продукта, и следовательно, делает обращение с продуктом и введение его в поток процесса Байера более удобным и эффективным.
Примеры
Вышеизложенное лучше понять при обращении к нижеследующим примерам, которые представлены с целью иллюстрации и не предполагают ограничения области защиты изобретения.
Пример синтеза путем взаимодействия A, E и G
При типичной реакции синтеза три составляющие: A (например, гександиамин), G (например, 3-глицидоксипропилтриметоксисилан) и E (например, этилгексил глицидиловый эфир) помещают в подходящую реакционную емкость при температуре 23-40°C и обеспечивают возможность смешивания. Затем реакционную емкость подогревают до 65-70°C, в течение этого времени начинается реакция и выделяется большое количество теплоты. Реакция становится самоподдерживающейся и, в зависимости от масштаба реакции, может достигать температур вплоть до 125-180°C (см. Фиг.1). Обычно реакцию прерывают по прошествии 1-2 часов и затем обеспечивают возможность охлаждения смеси. В качестве аспекта настоящего изобретения, эту не гидролизованную полученную смесь можно подходящим образом отделить в виде жидкости, или геля, или твердого вещества. Альтернативно, полученную реакционную смесь можно подвергать гидролизу, с помощью ряда способов, для приготовления раствора гидролизованной полученной смеси в воде. Гидролиз алкоксисилановых групп в компоненте G приводит к образованию соответствующего спирта (например, метанола, этанола и т.д., в зависимости от алкоксисилана, используемого при синтезе).
Обычно специалист в данной области техники проводит раскрытие эпоксидного кольца с помощью реакционноспособного амина в периодическом режиме (при котором компоненты смешивают), при нагревании до температуры инициирования выше комнатной температуры (например, 50-65°C), позволяя температуре реакции достигать значений вплоть до 125-180°C. Это может вызвать внутреннее поперечное сшивание и протекание побочных реакций, что часто требуется в процессах производства смолы.
Однако по меньшей мере в одном воплощении предусматривают использование непрерывного или полунепрерывного способа синтеза, который обеспечивает ряд преимуществ по сравнению с традиционно используемым периодическим способом. Это включает добавление только части компонентов G и E, либо вместе, либо последовательно, либо отдельно в форме медленной подачи для инициирования первичной реакции раскрытия эпоксидного кольца, с последующей медленной непрерывной подачей двух компонентов G и E (либо вместе, либо отдельно и одновременно, либо последовательно). Этот способ позволяет намного лучше управлять реакцией в целом, температурой реакции, и обеспечивает лучший общий выход активных соединений в продукте, также избегая нежелательных побочных реакций (см. Фиг.2).
По меньшей мере в одном воплощении в реакции синтеза используют 3-глицидоксипропилтриметоксисилан в качестве компонента G. Длительное воздействие при высоких температурах выше 120°C может привести к внутренним реакциям сочетания и множественному замещению реакционноспособными аминными группами, такими как гександиамин или этилендиамин. Получаемые не гидролизованные продукты реакции превращаются в гель за более короткий период времени, что сопровождается увеличением вязкости продукта реакции. Использование полунепрерывного или непрерывного способа, или отдельной, или медленной последовательной, или независимой, или объединенной подачи эпоксидов E и G в реакционную смесь обеспечивает лучшее регулирование температуры реакции, благодаря чему снижают количество метанола, который образуется и выделяется в ходе реакции. Кроме того, реакционная смесь обладает более низкой вязкостью и в ней протекает меньше нежелательных побочных реакций (см. таблицу I).
Таблица I.
Данные синтеза A:G:E путем проведения реакции различными способами
№ партии Способ Температура реакции °C (°F) Вязкость промежуточного продукта реакции, сПз MeOH выделенный, кг (фунт)
1 Периодический 116-129 (240-265) 550 4,5 (9,8)
2 Партия за партией 107-113 (225-235) 240 0,73 (1,6)
3 Полунепрерывный 82-104 (180-220) 65 0,32 (0,7)
Примеры относительного подавления образования накипи ПДС различными небольшими молекулами A:G:E, образованными в результате описанной выше реакции синтеза.
Определение характеристики подавления образования накипи для небольших молекул обычно проводят следующим образом.
1) Небольшое количество силиката натрия (0,25-1,5 г/л по SiO2) добавляют в отработанный щелок процесса Байера при комнатной температуре, чтобы увеличить концентрацию диоксида кремния в щелоке.
2) В части такого образца щелока добавляют различное количество нового подавляющего образование накипи соединения или смеси.
3) Обработанные и необработанные (или контрольные) образцы щелока подвергают воздействию повышенной температуры от 96 до 150°C в течение от 4 до 6 ч.
4) Затем образцы охлаждают и измеряют количество накипи ПДС, образовавшейся в каждом обработанном образце щелока, и сравнивают с количеством, образовавшимся в необработанных или контрольных образцах.
В качестве примера, в таблице II представлены сравнительные данные по подавлению накипи ПДС для нескольких смесей A:G:E, синтезированных с использованием описанной выше реакции синтеза, с различными компонентами на основе аминов в качестве основного компонента.
Таблица II.
Сравнительные данные по подавлению накипи ПДС для различных синтезированных реакционных смесей A:G:E, где A - амин, G - глицидоксипропилтриметоксисилан, E - 2-этилгексил глицидиловый эфир
Количество накипи ПДС, мг, в зависимости от обработки % снижения накипи ПДС относительно контрольного образца
A - используемый амин Необраб. Малая доза Большая доза Малая доза Большая доза
Гександиамин 26,20 0,18 0,06 99,3% 99,8%
Этилендиамин 27,30 20,40 8,12 25,3% 70,3%
Диэтилентриамин 26,70 18,30 10,27 31,5% 61,5%
Тетраэтилен-пентаамин 24,60 22,50 16,80 8,5% 31,7%
1-амино-2-пропанол 26,20 3,50 0,05 86,6% 99,8%
Хотя данное изобретение может быть реализовано во многих различных формах, в данной заявке представлены на чертежах и описаны подробно конкретные воплощения изобретения. Настоящее описание представлено в качестве иллюстрации основных положений изобретения и не предполагает ограничения изобретения представленными конкретными воплощениями. Все патенты, патентные заявки, научные труды и любые другие документы, на которые ссылаются в данном описании, включены во всей полноте посредством ссылки. Кроме того, изобретение охватывает любые возможные сочетания некоторых или всех различных воплощений, описанных в данной заявке и включенных в данную заявку.
Представленное выше описание является иллюстративным и не исчерпывающим. На основе данного описания, специалист в данной области техники может предположить множество изменений и альтернатив. Все такие альтернативы и изменения считаются включенными в область защиты, определенную формулой изобретения, где термин «включающий» означает «включающий, но не ограничивающий». Специалисты в данной области техники могут обнаружить другие эквиваленты конкретным воплощениям, описанным в данной заявке, которые также охватываются формулой изобретения.
Все диапазоны и параметры, раскрытые в данном описании, следует понимать как охватывающие любые и все поддиапазоны, допускаемые и входящие в состав этих диапазонов, и каждое число между предельными значениями. Например, установленный диапазон «от 1 до 10» следует рассматривать как включающий любые и все поддиапазоны между (и включительно) минимальным значением 1 и максимальным значением 10; то есть все поддиапазоны, начинающиеся с минимального значения 1 или более (например, от 1 до 6,1) и заканчивающиеся значением 10 или менее (например, от 2,3 до 9,4, от 3 до 8, от 4 до 7), и наконец, каждое число 1, 2, 3, 2, 5, 6, 7, 8, 9 и 10 в пределах диапазона.
Этим завершается описание предпочтительных и альтернативных воплощений изобретения. Специалист в данной области техники может обнаружить другие эквиваленты конкретному описанному воплощению, которые охватываются формулой изобретения, приложенной к настоящему документу.

Claims (100)

1. Способ уменьшения образования содержащей алюмосиликат накипи в процессе Байера, включающий следующие стадии:
- добавление в поток процесса Байера подавляющего образование алюмосиликатной накипи количества композиции, включающей по меньшей мере одну молекулу, состоящую по меньшей мере из трех компонентов, компонента R1, компонента R2 и компонента R3, причем компоненты в молекуле расположены в соответствии с основной формулой:
Figure 00000071
где молекула может представлять собой по меньшей мере одно из следующих соединений: карбонаты, бикарбонаты, карбаматы, мочевины, амиды и их соли, и
R1 выбран из группы, состоящей из Н, алкила, амина, структуры (А) и структуры (В)
Figure 00000072
Figure 00000073
R2 выбран из группы, состоящей из Н, алкила, амина, G и Е,
где G представляет собой соединение, выбранное из группы, состоящей
из 3-глицидоксипропилтриметоксисилана,
3-глицидоксипропилтриалкоксисилана,
3-глицидоксипропилалкилдиалкоксисилана,
3-глицидоксипропилдиалкилмоноалкоксисилана,
3-изоцианатопропилтриалкоксисилана,
3-изоцианатопропилалкилдиалкоксисилана,
3-изоцианатопропилдиалкилмоноалкоксисилана,
3-хлорпропилтриалкоксисилана,
3-хлорпропилалкилдиалкоксисилана и
3-хлорпропилдиалкилмоноалкоксисилана,
причем G возможно подвергнуто гидролизу,
Е представляет собой 2-этилгексил глицидиловый эфир, С322 глицидиловый эфир, С322 изоцианат, С322 хлорид, С322 бромид, С322 йодид, С322 сульфатный эфир, С322 фенолглицидиловый эфир и любое их сочетание,
R3 выбран из группы, состоящей из Н, алкила, амина, G и Е, и
n является целым числом от 2 до 6,
причем по меньшей мере один из R2 и R3 представляет собой G.
2. Способ по п. 1, в котором R1 независимо выбран из группы, состоящей из моноизопропаноламина, этилендиамина, диэтилентриамина, тетраэтиленпентамина, изофорондиамина, ксилолдиамина, бис(аминометил)циклогексана, гександиамина, С,С,С-триметилгександиамина, метилен-бис(аминоциклогексана), насыщенных жирных аминов, ненасыщенных жирных аминов, таких как олеиламин и сойамин, N-(жирный алкил)-1,3-пропандиамина, такого как кокоалкилпропандиамин, олеилпропандиамин, додецилпропандиамин, (гидрированный талловый алкил)пропандиамин и (талловый алкил)пропандиамин, и любого их сочетания.
3. Способ по п. 1, в котором G подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (I), (II), (III), (IV), (V), (VI), (VII), (VIII), (IX) и любого их сочетания:
Figure 00000074
Figure 00000075
Figure 00000076
Figure 00000077
Figure 00000078
Figure 00000079
Figure 00000080
Figure 00000081
Figure 00000082
4. Способ по п. 1, в котором G подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (X), (XI), (XII), (XIII), (XIV), (XV), (XVI), (XVII), (XVIII), (XIX) и любого их сочетания:
Figure 00000083
Figure 00000084
Figure 00000085
Figure 00000086
Figure 00000087
Figure 00000088
Figure 00000089
Figure 00000090
Figure 00000091
Figure 00000092
5. Способ по п. 1, в котором G подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (XX), (XXI), (XXII) и любого их сочетания:
Figure 00000093
Figure 00000094
Figure 00000095
6. Способ по п. 1, в котором G подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (XXIII), (XXIV), (XXV), (XXVI), (XXVII) и любого их сочетания:
Figure 00000096
Figure 00000097
Figure 00000098
Figure 00000099
Figure 00000100
7. Способ по п. 1, в котором G подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (XXVIII), (XXIX), (XXX), (XXXI) (XXXII) и любого их сочетания:
Figure 00000101
Figure 00000102
Figure 00000103
Figure 00000104
Figure 00000105
8. Способ по п. 1, в котором G не подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (XXXIII), (XXXIV), (XXXV), (XXXVI), (XXXVII), (XXXVIII), (XXXIX), (XL), (XLI), (XLII) и любого их сочетания:
Figure 00000106
Figure 00000107
Figure 00000108
Figure 00000109
Figure 00000110
Figure 00000111
Figure 00000112
Figure 00000113
Figure 00000114
Figure 00000115
9. Способ по п. 1, в котором G не подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (XLIII), (XLIV), (XLV), (XLVI), (XLVII), (XLVIII), (XLIX), (L), (LI), (LII) и любого их сочетания:
Figure 00000116
Figure 00000117
Figure 00000118
Figure 00000119
Figure 00000120
Figure 00000121
Figure 00000122
Figure 00000123
Figure 00000124
Figure 00000125
10. Способ по п. 1, в котором G не подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (LIII), (LIV), (LV) и любого их сочетания:
Figure 00000126
Figure 00000127
Figure 00000128
11. Способ по п. 1, в котором G не подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (LVI), (LVII), (LVIII), (LIX), (LX) и любого их сочетания:
Figure 00000129
Figure 00000130
Figure 00000131
Figure 00000132
Figure 00000133
12. Способ по п. 1, в котором G не подвергнуто гидролизу и указанная молекула выбрана из группы, состоящей из (LXI), (LXII), (LXIII), (LXIV), (LXV) и любого их сочетания:
Figure 00000134
Figure 00000135
Figure 00000136
Figure 00000137
Figure 00000138
RU2013141250A 2011-02-25 2012-02-07 Уменьшение образования алюмосиликатной накипи в процессе Байера RU2606323C9 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/035,124 US8889096B2 (en) 2009-09-25 2011-02-25 Reducing aluminosilicate scale in the bayer process
US13/035,124 2011-02-25
PCT/US2012/024099 WO2012115769A2 (en) 2011-02-25 2012-02-07 Reducing aluminosilicate scale in the bayer process

Publications (3)

Publication Number Publication Date
RU2013141250A RU2013141250A (ru) 2015-04-10
RU2606323C2 RU2606323C2 (ru) 2017-01-10
RU2606323C9 true RU2606323C9 (ru) 2017-04-20

Family

ID=46721393

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013141250A RU2606323C9 (ru) 2011-02-25 2012-02-07 Уменьшение образования алюмосиликатной накипи в процессе Байера

Country Status (8)

Country Link
US (1) US8889096B2 (ru)
EP (1) EP2678343B1 (ru)
CN (1) CN103443109B (ru)
AU (1) AU2012220990C1 (ru)
BR (1) BR112013021610A2 (ru)
ES (1) ES2895726T3 (ru)
RU (1) RU2606323C9 (ru)
WO (1) WO2012115769A2 (ru)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9416020B2 (en) 2009-09-25 2016-08-16 Nalco Company Surfactant based small molecules for reducing aluminosilicate scale in the bayer process
US9487408B2 (en) 2009-09-25 2016-11-08 Nalco Company Reducing aluminosilicate scale in the bayer process
KR101505720B1 (ko) * 2012-03-30 2015-03-25 주식회사 엘지화학 실록산계 화합물, 이를 포함하는 감광성 조성물 및 감광재
WO2014137528A1 (en) * 2013-03-08 2014-09-12 Nalco Company Reducing aluminosilicate scale in the bayer process feed strategy for dsp inhibitor
ES2894227T3 (es) 2013-12-24 2022-02-14 Cytec Ind Inc Método de reducción de sarro en el proceso de Bayer
EP3092198B1 (en) 2014-01-09 2020-09-09 Nalco Company Surfactant based small molecules for reducing aluminosilicate scale in the bayer process
WO2016064432A1 (en) * 2014-10-21 2016-04-28 Cytec Industries Inc. Degradation-resistant scale inhibitors
KR101668567B1 (ko) 2014-11-13 2016-10-24 주식회사 엘지화학 변성 공역디엔계 중합체, 이의 제조방법, 및 이를 포함하는 고무 조성물
WO2016076549A1 (ko) * 2014-11-13 2016-05-19 주식회사 엘지화학 변성 공역디엔계 중합체, 이의 제조방법, 및 이를 포함하는 고무 조성물
EP3187464A1 (en) 2015-12-31 2017-07-05 Cytec Industries Inc. Composite coatings for scale reduction
JP6614014B2 (ja) * 2016-04-26 2019-12-04 信越化学工業株式会社 含窒素オルガノキシシラン化合物およびその製造方法
CN106319226A (zh) * 2016-08-22 2017-01-11 中国铝业股份有限公司 一种赤泥综合回收氧化铝氧化钠氧化铁的方法
CN111116632B (zh) * 2018-11-01 2022-11-29 中国石油化工股份有限公司 一种钻井液用胺基成膜抑制剂及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314626A (en) * 1991-12-23 1994-05-24 Nalco Chemical Company Method for the alteration of siliceous materials from Bayer process liquids
US5415782A (en) * 1993-11-22 1995-05-16 Nalco Chemical Company Method for the alteration of siliceous materials from bayer process liquors
US6086771A (en) * 1997-12-12 2000-07-11 Nalco Chemical Company Water continuous emulsion polymers for improving scale control in the bayer process
US6814873B2 (en) * 2002-07-22 2004-11-09 Cytec Technology Corp. Method of preventing or reducing aluminosilicate scale in a bayer process
WO2008045677A1 (en) * 2006-10-13 2008-04-17 Cytec Technology Corp Hydrophobically modified polyamine scale inhibitors

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650072A (en) 1994-04-22 1997-07-22 Nalco/Exxon Energy Chemicals L.P. Sulfonate and sulfate dispersants for the chemical processing industry
GB0103192D0 (en) 2001-02-09 2001-03-28 Ciba Spec Chem Water Treat Ltd Scale removal or prevention
US6551515B1 (en) 2001-04-19 2003-04-22 Ibc Advanced Technologies, Inc. Particulate soild supports functionalized with EGTA ligands
US6506921B1 (en) 2001-06-29 2003-01-14 Virginia Tech Intellectual Properties, Inc. Amine compounds and curable compositions derived therefrom
US7390415B2 (en) 2002-07-22 2008-06-24 Cytec Technology Corp. Method and compositions for preventing or reducing aluminosilicate scale in alkaline industrial processes
GB0415227D0 (en) 2004-07-07 2004-08-11 Accentus Plc Precipitation of silica in a Bayer process
EP2109590B1 (en) 2007-02-05 2013-05-15 Cytec Technology Corp. Silane substituted polyethylene oxide reagents and method of using for preventing or reducing aluminosilicate scale in industrial processes
FR2922760B1 (fr) 2007-10-31 2009-11-20 Oreal Eclaircissement et/ou coloration de fibres keratiniques humaines au moyen d'une composition comprenant un compose aminosilicie particulier et composition et dispositif
CN101747361B (zh) 2008-12-04 2012-06-13 中国科学院化学研究所 一种桥联聚倍半硅氧烷及其单体与它们的制备方法
US8545776B2 (en) * 2009-09-25 2013-10-01 Nalco Company Reducing aluminosilicate scale in the Bayer process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314626A (en) * 1991-12-23 1994-05-24 Nalco Chemical Company Method for the alteration of siliceous materials from Bayer process liquids
US5415782A (en) * 1993-11-22 1995-05-16 Nalco Chemical Company Method for the alteration of siliceous materials from bayer process liquors
US6086771A (en) * 1997-12-12 2000-07-11 Nalco Chemical Company Water continuous emulsion polymers for improving scale control in the bayer process
US6814873B2 (en) * 2002-07-22 2004-11-09 Cytec Technology Corp. Method of preventing or reducing aluminosilicate scale in a bayer process
RU2311494C2 (ru) * 2002-07-22 2007-11-27 Сайтек Текнолоджи Корп. Способ предупреждения или уменьшения отложения алюмосиликата в способе байера
WO2008045677A1 (en) * 2006-10-13 2008-04-17 Cytec Technology Corp Hydrophobically modified polyamine scale inhibitors

Also Published As

Publication number Publication date
ES2895726T3 (es) 2022-02-22
WO2012115769A3 (en) 2012-10-18
CN103443109A (zh) 2013-12-11
RU2013141250A (ru) 2015-04-10
US8889096B2 (en) 2014-11-18
BR112013021610A2 (pt) 2018-09-11
AU2012220990B2 (en) 2015-05-21
WO2012115769A2 (en) 2012-08-30
AU2012220990A1 (en) 2013-09-12
CN103443109B (zh) 2015-10-21
EP2678343B1 (en) 2021-09-22
EP2678343A4 (en) 2016-07-13
RU2606323C2 (ru) 2017-01-10
EP2678343A2 (en) 2014-01-01
AU2012220990C1 (en) 2019-11-21
US20110212006A1 (en) 2011-09-01

Similar Documents

Publication Publication Date Title
RU2606323C2 (ru) Уменьшение образования алюмосиликатной накипи в процессе Байера
JP4317520B2 (ja) バイヤー法におけるアルミノ珪酸塩スケールの防止または減少方法
US8545776B2 (en) Reducing aluminosilicate scale in the Bayer process
CN1041341A (zh) 水系统的处理
US20130189529A1 (en) Mitigation and control of aluminosilicate scale through a novel feeding strategy of the inhibitor
FR2881747A1 (fr) Procede de prevention ou de reduction de tartre d'aluminosilicate dans des procedes industriels.
US9944534B2 (en) Reducing aluminosilicate scale in the Bayer process
AU2017248578B2 (en) Reducing aluminosilicate scale in the Bayer process
US20170066656A1 (en) Surfactant Based Small Molecules for Reducing Aluminosilicate Scale in the Bayer Process
US8501010B2 (en) Di- and mono-alkoxysilane functionalized polymers and their application in the Bayer process
WO2015100196A1 (en) Method of reducing scale in the bayer process
WO2014137528A1 (en) Reducing aluminosilicate scale in the bayer process feed strategy for dsp inhibitor

Legal Events

Date Code Title Description
TH4A Reissue of patent specification