RU2604635C1 - Криостат сверхпроводящего трансформатора - Google Patents

Криостат сверхпроводящего трансформатора Download PDF

Info

Publication number
RU2604635C1
RU2604635C1 RU2015128436/07A RU2015128436A RU2604635C1 RU 2604635 C1 RU2604635 C1 RU 2604635C1 RU 2015128436/07 A RU2015128436/07 A RU 2015128436/07A RU 2015128436 A RU2015128436 A RU 2015128436A RU 2604635 C1 RU2604635 C1 RU 2604635C1
Authority
RU
Russia
Prior art keywords
toroidal
cryostat
parallelepipeds
superconducting transformer
width
Prior art date
Application number
RU2015128436/07A
Other languages
English (en)
Inventor
Эдуард Петрович Волков
Эльдар Атамович Джафаров
Леонид Самуилович Флейшман
Владимир Нагаметович Проскурин
Владимир Маркович Чепрасов
Заур Эльдарович Джафаров
Александр Сергеевич Ракитин
Original Assignee
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"
Открытое акционерное общество "Энергетический институт им. Г.М. Кржижановского", ОАО "ЭНИН"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом", Открытое акционерное общество "Энергетический институт им. Г.М. Кржижановского", ОАО "ЭНИН" filed Critical Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"
Priority to RU2015128436/07A priority Critical patent/RU2604635C1/ru
Application granted granted Critical
Publication of RU2604635C1 publication Critical patent/RU2604635C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F36/00Transformers with superconductive windings or with windings operating at cryogenic temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

Изобретение относится к электротехнике, к трехфазным силовым трансформаторам с обмотками из высокотемпературных сверхпроводников. Технический результат состоит в повышении к.п.д. за счет сокращения теплопритоков из окружающей среды через внешнюю тепловую изоляцию к криогенной жидкости. Криостат сверхпроводящего трансформатора состоит из отдельных тороидальных емкостей по числу фаз, образованных внутренними и внешними вертикальными соосными диэлектрическими цилиндрами, соединенными плоскими кольцевыми днищами друг с другом. Каждая отдельная тороидальная емкость размещена на отдельном стержне магнитопровода, выполнена с теплоизолированными внешними поверхностями в виде параллелепипедов, размещенных с зазором между параллельными гранями теплоизоляционного покрытия средней и боковых цилиндрических тороидальных емкостей. Длина параллелепипедов в поперечном направлении относительно продольной плоскости симметрии магнитопровода больше ширины параллелепипедов, параллельной продольной плоскости его симметрии. Ширина параллепипедов боковых тороидальных емкостей больше ширины параллелепипеда средней тороидальной емкости, расположенного между боковыми тороидальными емкостями криостата. Зазор между параллельными гранями теплоизоляционного покрытия двух соседних тороидальных емкостей заполнен листовым пенополиуретановым материалом, а его нижние края по всему периметру уплотнены пенополиуретановыми швами. 4 ил.

Description

Изобретение относится к области криогенной электротехники, в частности к конструкции трехфазного силового трансформатора с обмотками из высокотемпературных сверхпроводников, и может быть использовано в электроэнергетике.
Известна конструкция криостата для трехфазного сверхпроводящего трансформатора с переключателем ответвлений обмоток. Наружный, внешний, корпус криостата изготовлен из металла с разрывом замкнутых контуров вокруг стержней магнитопровода трансформатора. Внутренняя поверхность криостата покрыта теплоизолирующим диэлектрическим материалом. Силовые конструкционные элементы изготовлены из диэлектрических материалов. Снижение теплопритоков извне осуществляется посредством размещения электрических соединений внутри криостата и теплоизоляции магнитопровода от сверхпроводящих обмоток. Тороидальные емкости, в которых размещены сверхпроводящие обмотки, насажены на стержни магнитопровода трансформатора и размещаются в общем внешнем корпусе (Ramanan W.R., Bonman D. «Cryostat for use with a superconducting transformer», International Publication Number WO 01/43148 A1).
Недостатком данной конструкции является наличие прорезей в наружном, внешнем, корпусе криостата, вследствие чего снижается механическая прочность внешнего корпуса криостата. В металлическом корпусе криостата имеются дополнительные потери энергии из-за индуцированных вихревых токов (токи Фуко), возникающих вследствие наличия в обмотках трансформатора магнитных полей рассеяния.
Известна конструкция сверхпроводящего трансформатора, одним из основных элементов которого является тороидальный цилиндрический криостат, выполненный разборным и изготовленным из ферромагнитного материала (углеродистая сталь)
Наружный корпус криостата одновременно является магнитопроводом сверхпроводящего трансформатора. Внутри наружного корпуса размещены теплоизолирующие стенки (материал - стеклопластик), образующие внутренний корпус криостата. Сверхпроводящие обмотки трансформатора размещены во внутренней стеклопластиковой емкости с хладагентом, который теплоизолирован от наружного ферромагнитного корпуса (пат. США №5107240, М. кл. H01F 27/08, H01F 27/30 1992).
Данная конструкция криостата сверхпроводящего трансформатора не обеспечивает предотвращение теплопритоков в хладагент, возникающих вследствие тепловыделений в наружном ферромагнитном корпусе криостата из-за наличия магнитных потерь энергии, в переменных магнитных полях.
Техническим результатом, на достижение которого направлено предлагаемое техническое решение, является сокращение теплопритоков из окружающей среды через внешнюю тепловую изоляцию тороидальных цилиндрических емкостей к криогенной жидкости (хладагенту) для повышения КПД сверхпроводящего трансформатора.
Указанный технический результат достигается тем, что криостат сверхпроводящего трансформатора, состоящий из отдельных тороидальных емкостей, образованных внутренними и внешними вертикальными и соосно расположенными цилиндрами, соединенными плоскими кольцевыми днищами друг с другом, изготовленными из диэлектрического материала, причем число тороидальных емкостей равно числу фаз сверхпроводящего трансформатора, при этом каждая отдельная тороидальная емкость размещена на отдельном стержне плоского многофазного магнитопровода сверхпроводящего трансформатора, содержит внешние поверхности цилиндрических тороидальных емкостей криостата, выполненные теплоизолированными, внешняя поверхность теплоизоляционного покрытия каждого из цилиндрических тороидальных емкостей криостата выполнена в виде прямоугольных параллелепипедов, размещенных с зазором между параллельными гранями теплоизоляционного покрытия средней и боковых цилиндрических тороидальных емкостей криостата, при этом длина прямоугольных параллелепипедов в поперечном направлении относительно продольной плоскости симметрии плоского многофазного магнитопровода сверхпроводящего трансформатора больше ширины параллелипипедов параллельной продольной плоскости симметрии плоского многофазного магнитопровода сверхпроводящего трансформатора, а ширина прямоугольных параллелепипедов боковых тороидальных емкостей криостата, размещенных на крайних стержнях плоского многофазного магнитопровода, больше ширины прямоугольного параллелепипеда средней тороидальной емкости криостата, расположенного между боковыми тороидальными емкостями криостата, при этом зазор между параллельными гранями теплоизоляционного покрытия двух соседних тороидальных емкостей криостата заполнен листовым пенополиуретановым материалом, а наружные края зазора по всему периметру уплотнены пенополиуретановыми швами.
Сущность изобретения поясняется чертежами, где на фиг. 1 схематически изображен передний вид предложенного криостата сверхпроводящего трансформатора (число фаз равно трем), на фиг. 2 - его вид сверху, с разрезом по горизонтальному сечению А-А, на фиг. 3 - вертикальный разрез по сечению Б-Б, а на фиг. 4 - горизонтальный разрез по сечению В-В с заделками (уплотнениями) наружного края зазора между параллельными гранями, теплоизоляционного покрытия двух соседних тороидальных емкостей криостата пенополиуретановыми швами.
Криостат 1, размещенный на стержнях плоского многофазного магнитопровода 2 сверхпроводящего трансформатора, состоит из одной средней отдельной емкости 3 и двух боковых отдельных емкостей 4 для хладагента (криогенная жидкость - жидкий азот). Средняя 3 и боковые 4 емкости имеют равные по диаметру и толщине внутренние 5 и наружные 6 тороидальные теплоизоляционные цилиндры, изготовленные из твердого диэлекрического материала, например из стеклотекстолита, соединенные между собой круглым плоским днищем 7 с круглым отверстием в середине для стержней магнитопровода 2 сверхпроводящего трансформатора, также изготовленным из твердого диэлектрического материала. Средняя 3 и боковые 4 емкости криостата 1 закрываются равными по диаметру и толщине плоскими круглыми крышками 8, имеющими, как и днище 7, круглые отверстия в середине для стержней магнитопровода 2. Внешние поверхности тороидальных цилиндров 6 имеют разные по толщине тепловой изоляции теплоизоляционные покрытия в виде прямоугольных параллелепипедов 9 у средней емкости 3 и 10 у боковых емкостей 4 криостата 1 сверхпроводящего трансформатора.
Между соседними плоскими гранями прямоугольного параллелепипеда 9 средней емкости 3 и прямоугольных параллелепипедов 10 боковых емкостей 4 криостата 1 имеются небольшие технологические зазоры 11, заполненные волокнистым или листовым теплоизоляционным материалом, внешние края этих зазоров по всему периметру заполняются пенополиуретановыми швами 12.
Высота h средней 3 и боковых 4 емкостей криостата 1 сверхпроводящего трансформатора 1 определяются необходимым количеством хладагента для охлаждения сверхпроводящих обмоток, помещаемых в эти емкости, что в свою очередь зависит от мощности сверхпроводящего трансформатора.
Теплоизоляционные параллелепипеды 9 и 10 средней и боковых емкостей криостата 1 расположены таким образом, что их боковые грани длиной l перпендикулярны продольной плоскости симметрии магнитопровода 2 сверхпроводящего трансформатора и могут быть выполнены любой величины, необходимой для эффективного снижения теплопритоков в зону хладагента. Наименьшая толщина теплоизоляционной стенки параллелепипедов 9 и 10, в продольной плоскости симметрии многофазного магниторповода 2 сверхпроводящего трансформатора определяется исходя из допустимого расстояния между обмотками двух соседних фаз сверхпроводящего трансформатора.
Длина l теплоизоляционных параллелепипедов 9 и 10 не имеет ограничений по величине, что позволяет значительно увеличить толщину внешнего слоя тепловой изоляции и тем самым значительно уменьшить теплопритоки в зону хладагента, что сокращает его расход на испарение и повышает КПД сверхпроводящего трансформатора.
Минимальные технологические зазоры 11 (например 3 ч ÷ 5 мм) позволяют обеспечить удобную установку средней и боковых емкостей криостата на стержне магнитопровода сверхпроводящего трансформатора и при необходимости демонтировать их.
После установки средних и боковых емкостей криостата на стержни магнитопровода сверхпроводящего трансформатора зазоры 11 заполняются волокнистым или листовым теплоизоляционным материалом, а внешние края этих зазоров закрываются (уплотняются) пенополиуретановыми швами 12.
Предложенный криостат сверхпроводящего трансформатора может быть использован многофазным (число фаз три и более) силовом трансформаторе со сверхпроводящими обмотками.
Применение криостата с улучшенным теплоизоляционным покрытием, с существенно сниженными теплопритоками в зону хладагента обеспечит уменьшение его испарения и тем самым увеличит КПД сверхпроводящего трансформатора энергетического назначения, с таким криостатом, увеличит технико-экономические показатели энергетической сети в которой он будет использован.

Claims (1)

  1. Криостат сверхпроводящего трансформатора, состоящий из отдельных тороидальных емкостей, образованных внутренними и внешними вертикальными и соосно расположенными цилиндрами, соединенными плоскими кольцевыми днищами друг с другом, изготовленными из диэлектрического материала, причем число тороидальных емкостей равно числу фаз сверхпроводящего трансформатора, при этом каждая отдельная тороидальная емкость размещена на отдельном стержне плоского многофазного магнитопровода сверхпроводящего трансформатора, отличающийся тем, что внешние поверхности цилиндрических тороидальных емкостей криостата выполнены теплоизолированными, внешняя поверхность теплоизоляционного покрытия каждой из цилиндрических тороидальных емкостей криостата выполнена в виде прямоугольных параллелепипедов, размещенных с зазором между параллельными гранями теплоизоляционного покрытия средней и боковых цилиндрических тороидальных емкостей криостата, при этом длина прямоугольных параллелепипедов в поперечном направлении относительно продольной плоскости симметрии плоского многофазного магнитопровода сверхпроводящего трансформатора больше ширины параллелипипедов параллельной продольной плоскости симметрии плоского многофазного магнитопровода сверхпроводящего трансформатора, а ширина прямоугольных параллелепипедов боковых тороидальных емкостей криостата, размещенных на крайних стержнях плоского многофазного магнитопровода, больше ширины прямоугольного параллелепипеда средней тороидальной емкости криостата, расположенного между боковыми тороидальными емкостями криостата, при этом зазор между параллельными гранями теплоизоляционного покрытия двух соседних тороидальных емкостей криостата заполнен листовым пенополиуретановым материалом, а наружные края зазора по всему периметру уплотнены пенополиуретановыми швами.
RU2015128436/07A 2015-07-13 2015-07-13 Криостат сверхпроводящего трансформатора RU2604635C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015128436/07A RU2604635C1 (ru) 2015-07-13 2015-07-13 Криостат сверхпроводящего трансформатора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015128436/07A RU2604635C1 (ru) 2015-07-13 2015-07-13 Криостат сверхпроводящего трансформатора

Publications (1)

Publication Number Publication Date
RU2604635C1 true RU2604635C1 (ru) 2016-12-10

Family

ID=57776937

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015128436/07A RU2604635C1 (ru) 2015-07-13 2015-07-13 Криостат сверхпроводящего трансформатора

Country Status (1)

Country Link
RU (1) RU2604635C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU518092A1 (ru) * 1974-08-21 1977-08-05 Объединенный Институт Ядерных Исследований Сврерхпровод ща магнитна система
DE3626149A1 (de) * 1986-08-01 1988-02-11 Heinz Dipl Phys Ritter Fahrrad-dynamo
US5107240A (en) * 1986-11-18 1992-04-21 Kabushiki Kaisha Toshiba Superconducting transformer
US6324851B1 (en) * 1999-12-09 2001-12-04 Abb Power T&D Company Inc. Cryostat for use with a superconducting transformer
UA8941U (en) * 2005-05-16 2005-08-15 Andrii Ivanovych Sereda Power voltage transformer
UA19829U (en) * 2004-05-21 2007-01-15 Ivan Ivanovych Petrushevskyi Health-improving complex for active rest

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU518092A1 (ru) * 1974-08-21 1977-08-05 Объединенный Институт Ядерных Исследований Сврерхпровод ща магнитна система
DE3626149A1 (de) * 1986-08-01 1988-02-11 Heinz Dipl Phys Ritter Fahrrad-dynamo
US5107240A (en) * 1986-11-18 1992-04-21 Kabushiki Kaisha Toshiba Superconducting transformer
US6324851B1 (en) * 1999-12-09 2001-12-04 Abb Power T&D Company Inc. Cryostat for use with a superconducting transformer
UA19829U (en) * 2004-05-21 2007-01-15 Ivan Ivanovych Petrushevskyi Health-improving complex for active rest
UA8941U (en) * 2005-05-16 2005-08-15 Andrii Ivanovych Sereda Power voltage transformer

Similar Documents

Publication Publication Date Title
EP2433289B1 (en) Submersible dry distribution transformer
MX2010007470A (es) Un limitador de corriente de perdida.
US20240087797A1 (en) Inductive device
Del Vecchio et al. Transformer design principles
CN107430925A (zh) 气体绝缘式电气设备,特别是气体绝缘式变压器或电抗器
RU2604635C1 (ru) Криостат сверхпроводящего трансформатора
CN105225801A (zh) 10kv油浸式变压器
CN104025216A (zh) 高压变压器模块
EP2187408B1 (en) Iron core reactor
KR100590200B1 (ko) 초전도케이블용 단말장치
US9437359B2 (en) Reinforcement-free tank for an electromagnetic apparatus
RU2593151C1 (ru) Криостат сверхпроводящего трансформатора
US10529478B2 (en) Air core type reactor unit and electric power supply equipment having an air core type reactor unit
US20140301007A1 (en) Fault current limiter
EP2490994B1 (en) Transformer
RU2482564C2 (ru) Трехфазный трансформатор
RU181145U1 (ru) Трансформатор силовой с витым магнитопроводом
US20180261904A1 (en) Guided surface waveguide probe with insulating material in support platform near coil(s)
KR102145840B1 (ko) 변압기
US3524919A (en) Insulating bushing for high tension conductors
RU2815169C1 (ru) Сверхпроводящий гибридный трансформатор
RU2604056C1 (ru) Сверхпроводящий трансформатор
Burnier Cryogenics and aluminum in electrical manufacturing
CN201936733U (zh) 一种三相共箱式电压互感器
RU2322721C1 (ru) Трансформатор со сверхпроводящими обмотками

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200714