RU2603932C1 - Способ упрочнения поверхностей термообработанных стальных деталей - Google Patents

Способ упрочнения поверхностей термообработанных стальных деталей Download PDF

Info

Publication number
RU2603932C1
RU2603932C1 RU2015142650/02A RU2015142650A RU2603932C1 RU 2603932 C1 RU2603932 C1 RU 2603932C1 RU 2015142650/02 A RU2015142650/02 A RU 2015142650/02A RU 2015142650 A RU2015142650 A RU 2015142650A RU 2603932 C1 RU2603932 C1 RU 2603932C1
Authority
RU
Russia
Prior art keywords
alloying
graphite electrode
hardness
stage
spark
Prior art date
Application number
RU2015142650/02A
Other languages
English (en)
Inventor
Вячеслав Борисович Тарельник
Василий Сигизмундович Марцинковский
Павел Викторович Косенко
Тарас Павлович Волошко
Богдан АНТОШЕВСКИЙ
Original Assignee
Василий Сигизмундович Марцинковский
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Василий Сигизмундович Марцинковский filed Critical Василий Сигизмундович Марцинковский
Priority to RU2015142650/02A priority Critical patent/RU2603932C1/ru
Application granted granted Critical
Publication of RU2603932C1 publication Critical patent/RU2603932C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H5/00Combined machining
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

Изобретение относится к электрофизическим и электрохимическим способам обработки деталей, в частности к электроэрозионному легированию графитовым электродом и ионному азотированию поверхностей стальных деталей. Способ упрочнения поверхности термообработанной стальной детали включает операцию электроэрозионного легирования и операцию ионного азотирования, причем операцию ионного азотирования осуществляют до или после операции электроэрозионного легирования в течение времени, достаточного для насыщения поверхностного слоя детали азотом на глубину зоны термического влияния для предотвращения снижения в ней твердости. Операцию электроэрозионного легирования выполняют графитовым электродом по меньшей мере в два этапа со снижением энергии разряда на каждом последующем этапе. Первый этап легирования графитовым электродом проводят с энергией разряда 0,1-6,4 Дж и производительностью 0,2-4,0 см2/мин, а второй этап легирования графитовым электродом проводят с энергией разряда 0,1-2,83 Дж и производительностью 0,2-2,0 см2/мин. Обеспечивается повышение производительности без увеличения шероховатости. 3 ил., 3 табл.

Description

Техническое решение относится к электрофизическим и электрохимическим способам обработки деталей, в частности к электроэрозионному легированию графитовым электродом и ионному азотированию поверхностей стальных деталей.
Одним из основных показателей качества машин является их надежность. Наиболее распространенной причиной отказов машин признана не поломка, а износ и повреждение рабочих поверхностей их деталей и рабочих органов. Как правило, все разрушения деталей начинаются с разрушения их поверхностей.
Применение упрочняющих и защитных покрытий существенно повышает качество продукции в машиностроении, обеспечивает надежную работу узлов и деталей в тяжелых условиях эксплуатации оборудования, позволяет снизить материальные и энергетические затраты на эксплуатацию машин, уменьшить расход дорогостоящих конструкционных материалов. Поэтому исследования, направленные на создание новых и повышение качества уже существующих защитных покрытий, актуальны и своевременны.
Одним из наиболее простых с технологической точки зрения методов создания защитных покрытий является поверхностное электроэрозионное легирование (ЭЭЛ). Его достоинствами являются: локальность воздействия, малый расход энергии, отсутствие объемного нагрева материала, простота автоматизации и «встраиваемости» в технологический процесс изготовления деталей, а также возможность совмещения операций.
Применяя ЭЭЛ, можно или повысить твердость металлической поверхности нанесением на нее материала более высокой твердости или диффузионным введением в поверхностный слой необходимых химических элементов из окружающей среды или из материала анода, или понизить твердость поверхности, нанося на нее более мягкие материалы [Лазаренко Н.И. Электроискровое легирование металлических поверхностей. - М.: Машиностроение, 1976. - 45 с].
В табл.1 приведены основные режимы работы установки с ручным вибратором модели «ЭИЛ-8А», а также рекомендуемое время легирования 1 см2 поверхности (производительность процесса ЭЭЛ). Для емкостей накопительного конденсатора C=20 мкФ и C=300 мкФ установка имеет по 8 режимов работы.
Figure 00000001
Однако ЭЭЛ термообработанных деталей, подвергаемых в условиях эксплуатации высоким удельным нагрузкам, например деталей штампов, валов прокатных станов и других подобных деталей, не всегда приводит к желаемому результату. Причиной выхода из строя некоторых из них является то, что под слоем повышенной твердости после ЭЭЛ появляется зона отпуска, то есть зона сниженной твердости. Это приводит к так называемому продавливанию упрочненного слоя и, как следствие, к быстрому износу детали. ЭЭЛ в данном случае принесет вред, особенно, если допустимый износ легированной поверхности превышает толщину слоя повышенной твердости [Лазаренко Н.И. Электроискровое легирование металлических поверхностей.- М.: Машиностроение, 1976. - 45 с.].
Согласно источнику из уровня техники [Андреев В.И. Повышение эксплуатационных характеристик рабочих поверхностей деталей // Вестник машиностроения. - 1978. - №7. - С. 71-72] «провал» твердости в зоне термического влияния можно устранить путем применения после ЭЭЛ дополнительной обработки для создания наклепа методом поверхностного пластического деформирования. Однако в данном случае общего повышения твердости в переходной зоне не наблюдается.
В соответствии со способом, известным из уровня техники [Патент
Figure 00000002
на винахiд №103701, 23Н 5/00. Спосiб змiцнення поверхонь сталевих деталей, пiдданих термiчнiй обробцi. / B.C. Марцинковський, В.Б. Тарельник / Опубл. 11.11.2013, Бюл. №213. Прототип], проведение ионного азотирования (ИА) или до, или после ЭЭЛ позволяет устранить зоны пониженной твердости при использовании электродов из чистых твердых износостойких металлов. Кроме того, при этом наблюдается плавное изменение твердости упрочненного слоя и увеличение общей глубины зоны повышенной твердости.
Недостатком такого способа является низкая производительность процесса, поскольку уже при повышении производительности до 0,4 см2/мин нежелательная шероховатость и сплошность поверхности при ЭЭЛ хромом, вольфрамом и твердым сплавом Т15К6 соответственно составляют 4, 6; 7,8 и 5,4 мкм и 90, 55 и 80%, что значительно сужает область применения способа для упрочнения деталей машин.
Известен способ цементации стальных деталей электроэрозионным легированием (ЦЭЭЛ) [Способ цементации стальных деталей электроэрозионным легированием. Пат. 2337796. Российская Федерация. МПК B23H 9/00 / Марцинковский B.C., Тарельник В.Б., Белоус А.В.; Заявл. 05.10.2006; Опубл. 10.04. 2008, Бюл. №31. - 3 с.], который имеет ряд достоинств, основными из которых являются:
- достижение 100% сплошности упрочнения поверхностного слоя;
- повышение твердости поверхностного слоя детали за счет диффузионно-закалочных процессов;
- легирование можно осуществлять в строго указанных местах, не защищая при этом остальную поверхность детали;
- отсутствие объемного нагрева детали и связанных с этим поводок и короблений;
- простота применения технологии;
- гибкая привязка к имеющемуся оборудованию;
- процесс упрочнения не требует специальной подготовки и высокой квалификации рабочего. В данном способе используется энергия разряда 0,036-6,8 Дж и производительность 1,0-0,2 см2/мин.
При цементации стальных деталей электроэрозионным легированием толщина упрочненного слоя зависит от энергии разряда и времени легирования (производительности процесса). С увеличением энергии разряда и времени легирования толщина упрочненного слоя увеличивается. При этом возрастает и шероховатость поверхности. Так, при ЭЭЛ углеродом среднеуглеродистой легированной стали 40Х (Ra=0,5 мкм) с производительностью 5 мин/см2 при энергии разряда 6,8 Дж толщина слоя повышенной твердости составляет более 1,15 мм. Шероховатость поверхности при этом соответствует Ra=11,7-14,0 мкм.
В табл. 2 приведены зависимости производительности, шероховатости и сплошности поверхностного слоя стали 40Х от энергии разряда при ЭЭЛ стали 40Х графитом и твердыми износостойкими металлами.
Figure 00000003
Известен также способ ЦЭЭЛ, который используют для снижения шероховатости поверхности деталей машин и, следовательно, для расширения области их применения. Данный способ состоит в том, что ЦЭЭЛ проводят поэтапно, снижая на каждом этапе энергию разряда [Патент
Figure 00000002
на винахiд №101715, 23Н 9/00. Спосiб
Figure 00000004
сталевих деталей електроерозiйним легуванням / B.C. Марцинковський, В.Б. Тарельник, М.П. Братущак / Опубл. 25.01.2013, Бюл. №8. Прототип].
В известном способе используется энергия разряда 0,036-6,8 Дж и производительность 14,0-2,0 см2/мин.
Несмотря на очевидные достоинства, основным из которых является снижение шероховатости поверхности деталей машин с сохранением качества поверхностного слоя (отсутствие микротрещин, наличие слоя повышенной твердости, 100% сплошность и др.), данный способ имеет ряд недостатков. Прежде всего, это - снижение микротвердости поверхностного слоя в результате отпуска при повторной (поэтапной) обработке поверхности графитовым электродом, но с меньшей энергией разряда. Кроме того, наряду со снижением микротвердости поверхности снижается глубина слоя повышенной твердости.
Для устранения указанных выше недостатков создан способ упрочнения поверхностей термообработанных стальных деталей, который, как и способы, известные из уровня техники, включает операцию электроэрозионного легирования и операцию ионного азотирования, причем операцию ионного азотирования осуществляют до или после операции электроэрозионного легирования в течение времени, достаточного для насыщения поверхностного слоя детали азотом на глубину зоны термического влияния для предотвращения снижения в ней твердости, но при котором в соответствии с заявляемым техническим решением операцию электроэрозионного легирования выполняют графитовым электродом с энергией разряда 0,1-6,8 Дж и производительностью 0,2-4,0 см2/мин. При этом операцию электроэрозионного легирования графитовым электродом по меньшей мере в два этапа со снижением энергии разряда на каждом последующем этапе, причем первый этап легирования графитовым электродом выполняют с энергией разряда 0,1-6,4 Дж и производительностью 0,2-4,0 см2/мин, а второй этап легирования графитовым электродом проводят с энергией разряда 0,1-2,83 Дж и производительностью 0,2-2,0 см2/мин.
В данном случае поэтапное электроэрозионное легирование графитовым электродом (ЦЭЭЛ) до ионного азотирования (ИА) приводит к снижению микротвердости в зоне термического влияния (т.е. под слоем повышенной твердости может образоваться зона пониженной твердости), при этом после ИА в течение времени, достаточного для насыщения поверхностного слоя детали азотом на глубину зоны термического влияния, провал твердости устраняется.
Аналогичные результаты можно получить, если ионное азотирование в течение времени, достаточного для насыщения поверхностного слоя детали азотом на глубину зоны термического влияния проводить до ЦЭЭЛ. Причем с целью снижения шероховатости поверхности ЦЭЭЛ следует проводить поэтапно, снижая на каждом этапе энергию разряда. В данном случае твердость в зоне термического влияния снижаться не будет, так как свойства азотированной поверхности практически не изменяются при повторных нагревах вплоть до 500-600°C, в то время как при нагревах цементированной и закаленной поверхности до 225-275°C ее твердость снижается.
Следует отметить, что в отдельных случаях, хотя и крайне редко, когда после первого этапа ЦЭЭЛ величина шероховатости поверхности детали находится в необходимых пределах технического задания, т.е. удовлетворяет требованиям чертежа, можно ограничиться одним этапом ЦЭЭЛ.
По сравнению с процессом цементации с закалкой процесс ЦЭЭЛ с азотированием, протекает при более низкой температуре. Азотированная поверхность имеет более высокую твердость, износостойкость и коррозионную стойкость, а также улучшенную полируемость. Свойства азотированной поверхности практически не изменяются при повторных нагревах вплоть до 500-600°C, в то время как при нагревах цементированной и закаленной поверхности до 225-275°C твердость последней снижается.
Учитывая это свойство, в предварительно азотированной поверхности не следует ожидать снижения твердости в зоне термического влияния после ЦЭЭЛ.
При ЦЭЭЛ стальной азотированной поверхности происходит процесс, аналогичный нитроцементации, только в данном случае насыщение поверхности азотом и углеродом протекает поочередно, а во время традиционной нитроцементации - одновременно.
Таким образом, техническая задача данного решения, заключающаяся в повышении качества поверхности термообработанных стальных деталей, по сути, решается методом нитроцементации.
Учитывая вышесказанное, а также то, что при ЭЭЛ графитовым электродом величина шероховатости ниже, чем при легировании металлическим электродом, но с такой же энергией разряда, проведение металлографических и дюрометрических исследований стальных поверхностей после ЦЭЭЛ и ИА, выполняемых в различных последовательностях, представляет научный и практический интерес. Ниже приведен пример конкретного применения заявляемого технического решения со ссылками на иллюстративный материал, где
- на фиг. 1 представлен образец для ИА и ЦЭЭЛ в соответствии с заявляемым техническим решением;
- на фиг. 2 представлена фотография, иллюстрирующая процесс обработки образцов на токарном станке;
- на фиг. 3 представлены шлифы, изготовленные из образцов, упрочненных в соответствии с заявляемым способом.
Для ИА и ЦЭЭЛ использовали специальные образцы из стали 40Х, термообработанные аналогично способу, описанному в документе из уровня техники [Патент
Figure 00000002
на винахiд №103701, 23Н 5/00. Спосiб змiцнення поверхонь сталевих деталей, пiдданих термiчнiй обробцi. / B.C. Марцинковський, В.Б. Тарельник / Опубл. 11.11.2013, Бюл. №21], на твердость 3900-4000 МПа, а также на твердость 3000-3100 МПа. Образцы изготавливали в виде катушки, состоящей из двух дисков, диаметром 50 мм и шириной 10 мм, соединенных между собой проставкой диаметром 15 мм, имеющей два технологических участка такого же диаметра, фиг. 1. Поверхности дисков шлифовали до Ra=0,5 мкм.
Процесс ЦЭЭЛ осуществляли в автоматическом режиме с помощью установки модели «ЭИЛ-8А». Образцы закрепляли в патроне токарного станка, после чего производили поэтапное ЦЭЭЛ путем последующего легирования графитовым электродом марки ЭГ-4 (ОСТ 229-83) с энергией разряда 0,42 Дж (1-й этап) и 0,1 Дж (2-й этап) и с производительностью соответственно 0,4 и 0,2 см2/мин. Ионное азотирование образцов проводили при температуре 520°C в течение 12 ч на установке НГВ-6,6/6-И1. Упрочнение образцов выполняли в различной последовательности: ИА; ЦЭЭЛ; ЦЭЭЛ+ИА; ИА+ЦЭЭЛ.
Из упрочненных образцов вырезали сегменты, из которых изготовляли шлифы, фиг. 3, которые исследовали на оптическом микроскопе «Неофот-2», где проводили оценку качества слоя, его сплошности, толщины и строения зон подслоя - диффузионной зоны и зоны термического влияния. Одновременно проводили дюрометрический анализ на распределение микротвердости в поверхностном слое и по глубине шлифа от поверхности.
Замер микротвердости выполняли на микротвердомере ПМТ-3 вдавливанием алмазной пирамиды под нагрузкой 0,05 Н.
На всех этапах обработки измеряли шероховатость поверхности на приборе профилографе-профилометре мод. 201 завода «Калибр».
В табл. 3 представлено распределение микротвердости в поверхностном слое образцов стали 40Х, термообработанных на твердость 3900-4000 МПа и упрочненных различными способами, а также приведены результаты влияния этих способов упрочнения на шероховатость формируемого упрочненного поверхностного слоя.
Figure 00000005
Figure 00000006
Анализ таблицы 1 показывает, что как при ЦЭЭЛ, так и при ЭЭЛ хромом, вольфрамом и твердым сплавом Т15К6 образцов стали 40Х, термообработанных на твердость 3900-4000 МПа, под слоем повышенной твердости располагается зона отпуска («провал твердости»). В данном случае эта зона располагается на глубине ≈60 мкм и составляет 3800 МПа. ИА, проводимое на указанных режимах, как до ЦЭЭЛ, так и после устраняет характерный «провал твердости», при этом в обоих случаях отмечается плавное снижение твердости.
Таким образом, при упрочнении термообработанных деталей методом ЭЭЛ необходимо или до, или после легирования подвергать их ИА в течение времени, достаточного для насыщения металла азотом на глубину зоны термического влияния, причем, с целью снижения шероховатости поверхности проводить ЦЭЭЛ поэтапно, снижая на каждом этапе энергию разряда.
При этом в качестве электрода-инструмента целесообразно применять графитовый электрод, что обеспечивает при всех прочих равных условиях наибольшую твердость и наименьшую шероховатость поверхностного слоя.
В результате происходит процесс поочередного насыщения поверхностного слоя азотом и углеродом, то есть процесс нитроцементации.
Следует отметить, что наибольшая твердость (12000 МПа) и глубина зоны повышенной твердости (≈220 мкм) отмечается при ЦЭЭЛ, проводимом после ИА.

Claims (1)

  1. Способ упрочнения поверхности термообработанной стальной детали, включающий операцию электроэрозионного легирования и операцию ионного азотирования, причем операцию ионного азотирования осуществляют до или после операции электроэрозионного легирования в течение времени, достаточного для насыщения поверхностного слоя детали азотом на глубину зоны термического влияния для предотвращения снижения в ней твердости, отличающийся тем, что операцию электроэрозионного легирования выполняют графитовым электродом по меньшей мере в два этапа со снижением энергии разряда на каждом последующем этапе, причем первый этап легирования графитовым электродом проводят с энергией разряда 0,1-6,4 Дж и производительностью 0,2-4,0 см2/мин, а второй этап легирования графитовым электродом проводят с энергией разряда 0,1-2,83 Дж и производительностью 0,2-2,0 см2/мин.
RU2015142650/02A 2015-10-07 2015-10-07 Способ упрочнения поверхностей термообработанных стальных деталей RU2603932C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015142650/02A RU2603932C1 (ru) 2015-10-07 2015-10-07 Способ упрочнения поверхностей термообработанных стальных деталей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015142650/02A RU2603932C1 (ru) 2015-10-07 2015-10-07 Способ упрочнения поверхностей термообработанных стальных деталей

Publications (1)

Publication Number Publication Date
RU2603932C1 true RU2603932C1 (ru) 2016-12-10

Family

ID=57776753

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015142650/02A RU2603932C1 (ru) 2015-10-07 2015-10-07 Способ упрочнения поверхностей термообработанных стальных деталей

Country Status (1)

Country Link
RU (1) RU2603932C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2688787C2 (ru) * 2017-05-05 2019-05-22 Василий Сигизмундович Марцинковский Способ упрочнения поверхностей термообработанных стальных деталей
RU2711074C1 (ru) * 2019-04-11 2020-01-15 Василий Сигизмундович Марцинковский Способ повышения износостойкости стальных деталей

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4367389A (en) * 1978-10-12 1983-01-04 Inoue-Japax Research Incorporated EDM System with abrasive finisher
US4394234A (en) * 1979-02-02 1983-07-19 Hitachi, Ltd. Method of processing electrically conductive material by glow discharge
US6336950B1 (en) * 1997-10-03 2002-01-08 The Ishizuka Research Institute Ltd. Electrode rod for spark deposition, process for the production thereof, and process for covering with superabrasive-containing layer
RU83443U1 (ru) * 2008-12-08 2009-06-10 Государственное образовательное учреждение высшего профессионального образования "Уральский государственный технический университет-УПИ" Металлическая труба с электроэрозионным покрытием
UA103701C2 (ru) * 2012-03-29 2013-11-11 Василий Сигизмундович Марцинковский Способ упрочнения поверхностей стальных деталей, подвергнутых термической обработке (варианты)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4367389A (en) * 1978-10-12 1983-01-04 Inoue-Japax Research Incorporated EDM System with abrasive finisher
US4394234A (en) * 1979-02-02 1983-07-19 Hitachi, Ltd. Method of processing electrically conductive material by glow discharge
US6336950B1 (en) * 1997-10-03 2002-01-08 The Ishizuka Research Institute Ltd. Electrode rod for spark deposition, process for the production thereof, and process for covering with superabrasive-containing layer
RU83443U1 (ru) * 2008-12-08 2009-06-10 Государственное образовательное учреждение высшего профессионального образования "Уральский государственный технический университет-УПИ" Металлическая труба с электроэрозионным покрытием
UA103701C2 (ru) * 2012-03-29 2013-11-11 Василий Сигизмундович Марцинковский Способ упрочнения поверхностей стальных деталей, подвергнутых термической обработке (варианты)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2688787C2 (ru) * 2017-05-05 2019-05-22 Василий Сигизмундович Марцинковский Способ упрочнения поверхностей термообработанных стальных деталей
RU2711074C1 (ru) * 2019-04-11 2020-01-15 Василий Сигизмундович Марцинковский Способ повышения износостойкости стальных деталей

Similar Documents

Publication Publication Date Title
Gill et al. Surface roughness and microhardness evaluation for EDM with Cu–Mn powder metallurgy tool
Kulka et al. Microstructure and properties of laser-borided 41Cr4 steel
Tarel’nik et al. Problems and solutions in renovation of the rotors of screw compressors by combined technologies
Mussada et al. Surface hardenability studies of the die steel machined by WEDM
Mouralova et al. Comparison of morphology and topography of surfaces of WEDM machined structural materials
Tarelnyk et al. New method of friction assemblies reliability and endurance improvement
Sen et al. A study on machinability of B-modified Ti-6Al-4V alloys by EDM
Kumar et al. Fretting wear behavior of laser peened Ti-6Al-4V
Tarelnyk et al. New method for strengthening surfaces of heat treated steel parts
RU2468899C1 (ru) Способ цементации стальных деталей электроэрозионным легированием
Yan et al. Laser quenching of plasma nitrided 30CrMnSiA steel
RU2603932C1 (ru) Способ упрочнения поверхностей термообработанных стальных деталей
Philip et al. Wear characteristic evaluation of electrical discharge machined Ti6Al4V surfaces at dry sliding conditions
Nguyen et al. Characterizing the mechanical properties of the hardened layer induced by grinding-hardening
Cong et al. A comparative research of damaged layers formed in surface grinding and wire-electrodischarge machining
Fadare et al. Corrosion resistance of heat-treated NST 37-2 steel in hydrochloric acid solution
Li et al. Failure analysis of high strength steel bar used in a wind turbine foundation
RU2688787C2 (ru) Способ упрочнения поверхностей термообработанных стальных деталей
RU2528070C2 (ru) Способ улучшения прирабатываемости пары трения "вкладыш подшипника - шейка вала"
Mehmood et al. Influence of electric discharge machining on fatigue limit of high strength aluminum alloy under finish machining
Adigamov et al. Bauschinger effect during alternating deformation
RU2631436C2 (ru) Способ восстановления частично удаленного упрочненного слоя стальных деталей
Min et al. Influence of different surface treatments of H13 hot work die steel on its thermal fatigue behaviors
Skakov et al. Surface Hardening of 18CrNi3MoA-SH Steel with Heating in Electrolytic Plasma
RU2355522C1 (ru) Способ электроискрового упрочнения металлических поверхностей

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181008