RU2602688C1 - Способ моделирования состояния ингибирования функциональной активности гликопротеина-р ингибитором дипептидилпептидазы 4 - Google Patents
Способ моделирования состояния ингибирования функциональной активности гликопротеина-р ингибитором дипептидилпептидазы 4 Download PDFInfo
- Publication number
- RU2602688C1 RU2602688C1 RU2015125946/14A RU2015125946A RU2602688C1 RU 2602688 C1 RU2602688 C1 RU 2602688C1 RU 2015125946/14 A RU2015125946/14 A RU 2015125946/14A RU 2015125946 A RU2015125946 A RU 2015125946A RU 2602688 C1 RU2602688 C1 RU 2602688C1
- Authority
- RU
- Russia
- Prior art keywords
- inhibitor
- vildagliptin
- fexofenadine
- glycoprotein
- drug
- Prior art date
Links
- 230000005714 functional activity Effects 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 title claims abstract description 8
- 230000005764 inhibitory process Effects 0.000 title claims abstract description 6
- 239000003603 dipeptidyl peptidase IV inhibitor Substances 0.000 title abstract description 4
- 229940124213 Dipeptidyl peptidase 4 (DPP IV) inhibitor Drugs 0.000 title abstract 2
- 239000003814 drug Substances 0.000 claims abstract description 42
- 229940079593 drug Drugs 0.000 claims abstract description 38
- 229960001254 vildagliptin Drugs 0.000 claims abstract description 24
- SYOKIDBDQMKNDQ-XWTIBIIYSA-N vildagliptin Chemical compound C1C(O)(C2)CC(C3)CC1CC32NCC(=O)N1CCC[C@H]1C#N SYOKIDBDQMKNDQ-XWTIBIIYSA-N 0.000 claims abstract description 24
- 229960003592 fexofenadine Drugs 0.000 claims abstract description 20
- RWTNPBWLLIMQHL-UHFFFAOYSA-N fexofenadine Chemical compound C1=CC(C(C)(C(O)=O)C)=CC=C1C(O)CCCN1CCC(C(O)(C=2C=CC=CC=2)C=2C=CC=CC=2)CC1 RWTNPBWLLIMQHL-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 239000003112 inhibitor Substances 0.000 claims abstract description 13
- 108010078791 Carrier Proteins Proteins 0.000 claims abstract description 11
- 241001465754 Metazoa Species 0.000 claims abstract description 7
- 239000003550 marker Substances 0.000 claims abstract description 7
- 241000283973 Oryctolagus cuniculus Species 0.000 claims abstract description 5
- 230000037396 body weight Effects 0.000 claims abstract description 5
- 102000016622 Dipeptidyl Peptidase 4 Human genes 0.000 claims description 6
- 108010067722 Dipeptidyl Peptidase 4 Proteins 0.000 claims description 6
- 238000002474 experimental method Methods 0.000 claims description 3
- 101710177166 Phosphoprotein Proteins 0.000 claims 1
- 102100033350 ATP-dependent translocase ABCB1 Human genes 0.000 abstract description 35
- 101001017818 Homo sapiens ATP-dependent translocase ABCB1 Proteins 0.000 abstract description 34
- 230000000694 effects Effects 0.000 abstract description 15
- 102000004328 Cytochrome P-450 CYP3A Human genes 0.000 abstract description 7
- 108010081668 Cytochrome P-450 CYP3A Proteins 0.000 abstract description 7
- 108010047230 Member 1 Subfamily B ATP Binding Cassette Transporter Proteins 0.000 abstract description 6
- 210000002381 plasma Anatomy 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract description 5
- 230000002401 inhibitory effect Effects 0.000 abstract description 4
- 102000014914 Carrier Proteins Human genes 0.000 abstract description 2
- 230000009471 action Effects 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 abstract description 2
- 238000002360 preparation method Methods 0.000 abstract description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 12
- 239000008103 glucose Substances 0.000 description 12
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 12
- 206010013710 Drug interaction Diseases 0.000 description 8
- 208000022120 Jeavons syndrome Diseases 0.000 description 8
- 238000009826 distribution Methods 0.000 description 7
- 230000003993 interaction Effects 0.000 description 7
- 102000004877 Insulin Human genes 0.000 description 6
- 108090001061 Insulin Proteins 0.000 description 6
- 229940125396 insulin Drugs 0.000 description 6
- LTMHDMANZUZIPE-AMTYYWEZSA-N Digoxin Natural products O([C@H]1[C@H](C)O[C@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@](C)([C@H](O)C4)[C@H](C4=CC(=O)OC4)CC5)CC3)CC2)C[C@@H]1O)[C@H]1O[C@H](C)[C@@H](O[C@H]2O[C@@H](C)[C@H](O)[C@@H](O)C2)[C@@H](O)C1 LTMHDMANZUZIPE-AMTYYWEZSA-N 0.000 description 5
- LTMHDMANZUZIPE-PUGKRICDSA-N digoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)[C@H](O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O LTMHDMANZUZIPE-PUGKRICDSA-N 0.000 description 5
- 229960005156 digoxin Drugs 0.000 description 5
- LTMHDMANZUZIPE-UHFFFAOYSA-N digoxine Natural products C1C(O)C(O)C(C)OC1OC1C(C)OC(OC2C(OC(OC3CC4C(C5C(C6(CCC(C6(C)C(O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)CC2O)C)CC1O LTMHDMANZUZIPE-UHFFFAOYSA-N 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 229940088679 drug related substance Drugs 0.000 description 4
- 229940088598 enzyme Drugs 0.000 description 4
- 239000000859 incretin Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 238000007405 data analysis Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000000290 insulinogenic effect Effects 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- 208000009011 Cytochrome P-450 CYP3A Inhibitors Diseases 0.000 description 2
- 102000002004 Cytochrome P-450 Enzyme System Human genes 0.000 description 2
- 108010015742 Cytochrome P-450 Enzyme System Proteins 0.000 description 2
- DTHNMHAUYICORS-KTKZVXAJSA-N Glucagon-like peptide 1 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1N=CNC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 DTHNMHAUYICORS-KTKZVXAJSA-N 0.000 description 2
- 108010044467 Isoenzymes Proteins 0.000 description 2
- 102100040918 Pro-glucagon Human genes 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 210000000941 bile Anatomy 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000029142 excretion Effects 0.000 description 2
- 230000002641 glycemic effect Effects 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000002218 hypoglycaemic effect Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- MGXWVYUBJRZYPE-YUGYIWNOSA-N incretin Chemical class C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)[C@@H](C)O)[C@@H](C)CC)C1=CC=C(O)C=C1 MGXWVYUBJRZYPE-YUGYIWNOSA-N 0.000 description 2
- 239000000411 inducer Substances 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- LOUPRKONTZGTKE-LHHVKLHASA-N quinidine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@H]2[C@@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-LHHVKLHASA-N 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000009097 single-agent therapy Methods 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 239000002676 xenobiotic agent Substances 0.000 description 2
- VHVPQPYKVGDNFY-DFMJLFEVSA-N 2-[(2r)-butan-2-yl]-4-[4-[4-[4-[[(2r,4s)-2-(2,4-dichlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-1,2,4-triazol-3-one Chemical compound O=C1N([C@H](C)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@@H]3O[C@](CN4N=CN=C4)(OC3)C=3C(=CC(Cl)=CC=3)Cl)=CC=2)C=C1 VHVPQPYKVGDNFY-DFMJLFEVSA-N 0.000 description 1
- ITPDYQOUSLNIHG-UHFFFAOYSA-N Amiodarone hydrochloride Chemical compound [Cl-].CCCCC=1OC2=CC=CC=C2C=1C(=O)C1=CC(I)=C(OCC[NH+](CC)CC)C(I)=C1 ITPDYQOUSLNIHG-UHFFFAOYSA-N 0.000 description 1
- 101100337060 Caenorhabditis elegans glp-1 gene Proteins 0.000 description 1
- 241000700112 Chinchilla Species 0.000 description 1
- 108010074922 Cytochrome P-450 CYP1A2 Proteins 0.000 description 1
- 102100026533 Cytochrome P450 1A2 Human genes 0.000 description 1
- 208000030453 Drug-Related Side Effects and Adverse reaction Diseases 0.000 description 1
- RRJFVPUCXDGFJB-UHFFFAOYSA-N Fexofenadine hydrochloride Chemical compound Cl.C1=CC(C(C)(C(O)=O)C)=CC=C1C(O)CCCN1CCC(C(O)(C=2C=CC=CC=2)C=2C=CC=CC=2)CC1 RRJFVPUCXDGFJB-UHFFFAOYSA-N 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- 102000051325 Glucagon Human genes 0.000 description 1
- 108060003199 Glucagon Proteins 0.000 description 1
- 101800000224 Glucagon-like peptide 1 Proteins 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 229940121710 HMGCoA reductase inhibitor Drugs 0.000 description 1
- 208000013016 Hypoglycemia Diseases 0.000 description 1
- UETNIIAIRMUTSM-UHFFFAOYSA-N Jacareubin Natural products CC1(C)OC2=CC3Oc4c(O)c(O)ccc4C(=O)C3C(=C2C=C1)O UETNIIAIRMUTSM-UHFFFAOYSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 101150066553 MDR1 gene Proteins 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- 240000007711 Peperomia pellucida Species 0.000 description 1
- 229940124639 Selective inhibitor Drugs 0.000 description 1
- 238000011869 Shapiro-Wilk test Methods 0.000 description 1
- 229960000583 acetic acid Drugs 0.000 description 1
- IAJILQKETJEXLJ-QTBDOELSSA-N aldehydo-D-glucuronic acid Chemical compound O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-QTBDOELSSA-N 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229960005260 amiodarone Drugs 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 239000003472 antidiabetic agent Substances 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 1
- 230000036983 biotransformation Effects 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- LOUPRKONTZGTKE-UHFFFAOYSA-N cinchonine Natural products C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000010579 first pass effect Methods 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 1
- 229960004666 glucagon Drugs 0.000 description 1
- 230000014101 glucose homeostasis Effects 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 229940097043 glucuronic acid Drugs 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000002748 glycoprotein P inhibitor Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000000004 hemodynamic effect Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 239000002471 hydroxymethylglutaryl coenzyme A reductase inhibitor Substances 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000003914 insulin secretion Effects 0.000 description 1
- 230000002473 insulinotropic effect Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 229960004130 itraconazole Drugs 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 210000002429 large intestine Anatomy 0.000 description 1
- 150000002634 lipophilic molecules Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000037323 metabolic rate Effects 0.000 description 1
- XZWYZXLIPXDOLR-UHFFFAOYSA-N metformin Chemical compound CN(C)C(=N)NC(N)=N XZWYZXLIPXDOLR-UHFFFAOYSA-N 0.000 description 1
- 229960003105 metformin Drugs 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000036457 multidrug resistance Effects 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 150000002892 organic cations Chemical class 0.000 description 1
- 210000002571 pancreatic alpha cell Anatomy 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 150000002960 penicillins Chemical class 0.000 description 1
- 238000001050 pharmacotherapy Methods 0.000 description 1
- 230000008288 physiological mechanism Effects 0.000 description 1
- 229940068196 placebo Drugs 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 229960001404 quinidine Drugs 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 description 1
- 229960001225 rifampicin Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000003270 steroid hormone Substances 0.000 description 1
- NCEXYHBECQHGNR-QZQOTICOSA-N sulfasalazine Chemical compound C1=C(O)C(C(=O)O)=CC(\N=N\C=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-QZQOTICOSA-N 0.000 description 1
- 229960001940 sulfasalazine Drugs 0.000 description 1
- NCEXYHBECQHGNR-UHFFFAOYSA-N sulfasalazine Natural products C1=C(O)C(C(=O)O)=CC(N=NC=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-UHFFFAOYSA-N 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 229960004740 voriconazole Drugs 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B23/00—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
- G09B23/28—Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Algebra (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medical Informatics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Business, Economics & Management (AREA)
- Educational Administration (AREA)
- Educational Technology (AREA)
- Theoretical Computer Science (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Изобретение относится к экспериментальной медицине, фармакологии и предназначено для изучения принадлежности лекарственных препаратов к субстратам эффлюксного белка-транспортера гликопротеина-Р (P-gp, АВСВ1 белок), а также использования в качестве контроля ингибирующей активности P-gp при установлении веществ аналогичного типа действия. Для этого моделируют в эксперименте состояние ингибирования функциональной активности P-gp. В качестве препарата-ингибитора используют ингибитор дипептидилпептидазы-4 вилдаглиптин, который вводят кролику внутрижелудочно в дозе 5 мг/кг массы тела в течение 14 дней. При этом в качестве маркерного субстрата P-gp используют фексофенадин, который вводят животному внутрижелудочно в дозе 67,5 мг/кг до и после 14-дневного введения вилдаглиптина с последующей оценкой содержания фексофенадина в плазме крови. Способ обеспечивает создание такой модели, при которой проявляется селективный эффект в отношении P-gp в отсутствии влияния на CYP3A4 без возникновения клинически значимых побочных эффектов. 3 табл.
Description
Изобретение относится к экспериментальной медицине, фармакологии и клинической фармакологии и предназначено для изучения принадлежности лекарственных препаратов к субстратам эффлюксного белка-транспортера гликопротеина-Р (P-gp, АВСВ1 белок), а также использования в качестве контроля ингибирующей активности P-gp при установлении веществ аналогичного типа действия. Для этого моделируют в эксперименте состояние ингибирования функциональной активности АВСВ1 белка. В качестве препарата-ингибитора используют блокатор дипептидилпептидазы 4 (DPP-4), предпочтительно вилдаглиптин или его фармацевтически приемлемые соли, а в качестве маркерного субстрата P-gp - фексофенадин.
В последнее время все большее значение в фармакокинетике лекарственных веществ придается лекарственным транспортерам, так как для многих лекарственных препаратов существует вероятность фармакокинетических, лекарственно-опосредованных взаимодействий. В ряде случаев они клинически значимы и возникает необходимость коррекции доз и даже введение запрета на совместное использование лекарственных препаратов в практике. Лекарственно-опосредованные взаимодействия возникают, когда два (или более) совместно вводимых лекарственных препарата взаимодействуют на этапах фармакокинетики, что приводит к увеличению или снижению системных эффектов одного или более препаратов (объектов взаимодействия). Взаимодействия считаются клинически значимыми, когда концентрация/эффекты препарата превышают безопасный уровень или происходит снижение концентрации/эффектов препарата до субтерапевтического уровня.
Большинство лекарственно-опосредованных взаимодействий связаны с изменениями со стороны ферментных систем, но все больше признается участие в их реализации белков-транспортеров. Установлено, что транспортные белки оказывают влияние на абсорбцию лекарственных препаратов при их пероральном введении (дигоксин, сульфасалазин, фексофенадин), пресистемный метаболизм (статины), распределение в тканях (метотрексат), экскрецию с желчью и мочой (дигоксин, метформин, пенициллины, противовирусные препараты). Многие лекарственные препараты способны модулировать функциональную активность и/или уровень экспрессии транспортеров, что приводит к клинически значимым лекарственным взаимодействиям. Таким образом, есть два различных аспекта рисков лекарственно-опосредованных взаимодействий, которые необходимо учитывать, в том числе и при разработке новых потенциальных лекарственных препаратов. Во-первых будет ли иметь место конкуренция за белок-транспортер между совместно используемыми лекарственными препаратами/потенциальным лекарственным препаратом и совместно используемыми с ним лекарственными препаратами. Во-вторых, не оказывает ли влияние лекарственный препарат/потенциальный лекарственный препарат на фармакокинетику используемых совместно с ним лекарственных средств. Рассмотрение каждого из аспектов необходимо для мотивированной и комплексной оценки рисков нежелательных лекарственных реакций в клинической практике (Ayrton A. et al., 2008). Потенциал лекарственных взаимодействий, как правило, оценивается с помощью исследований in vitro с последующим исследованиями in vivo (European Medicines Agency ((EMEA) Европейское агентство лекарственных средств), Guideline on the Investigation of Drug Interactions, 2012)
Наиболее клинически значимым переносчиком лекарственных веществ является - гликопротеин-Р (P-gp, АВСВ1 белок, MDR1), что определяется его широкой субстратной специфичностью и локализацией в организме. Гликопротеин-Р (P-gp) осуществляет транспортировку липофильных соединений против градиента концентрации за счет гидролиза АТФ (Hennessy M. et al., 2007).
Наиболее известна изоформа, кодируемая генном MDR1, которая связана с фенотипом множественной лекарственной устойчивости (MDR/МЛУ) (Hennessy M. et al., 2007). Однако P-gp имеет большое клиническое значение не только в противоопухолевой терапии. АВСВ1 белок участвует в процессах всасывания, распределения и выделения широкого спектра лекарственных веществ, являющихся его субстратами (Zhou S.F., 2008). P-gp обнаружен в тонком и толстом кишечнике, в печени (Thiebaut F et al., 1987), в почках (Schinkel А.Н. et al., 2003; Tramonti G. et al., 2006), в плаценте (Cordon-Cardo С.et al., 1990), в гематоэнцефалическом барьере (Zhou S.F., 2008). P-gp осуществляет выделение ряда физиологических субстратов (стероидные гормоны) (Ueda K. et al., 1992), а также ксенобиотиков, в желудочно-кишечный тракт, желчь и мочу. P-gp транспортирует разнообразные по структуре соединения от небольших молекул, таких как органические катионы, углеводы и аминокислоты, до макромолекул, таких как белки и полисахариды (Zhou S.F., 2008), 50% существующих препаратов являются его субстратами или ингибиторами (Food and Drug Administration ((FDA) Управление по надзору за качеством пищевых продуктов и медикаментов), Guidance for Industry Drug Interaction Studies - Study Design, Data Analysis, Implications for Dosing, and Labeling Recommendations, 2012; John P. et al., 2006).
Признанием важности данного белка-транспортера является разработка FDA и ЕМЕА рекомендаций по выявлению отношения потенциальных лекарственных субстанций к гликопротеину-Р, для фармацевтических компаний, регистрирующих новые препараты.
Однако высока вероятность совпадений субстратной специфичности и свойств ингибиторов и индукторов P-gp и CYP3A4. Последний является одной из наиболее важных изоформ цитохрома Р450, участвующей в метаболизме ксенобиотиков в организме человека, доля которой среди всех CYP450 составляет около 50% (Кукес В.Г. и соавт. 2013). Более 60% применяемых в настоящее время лекарственных препаратов метаболизируются при участии CYP3A4 (Li А.Р. et al., 1995).
Примером перекрестной чувствительности может быть влияние итраконазола, ингибирующего CYP3A и P-gp, рифампицина, индуцирующего CYP3A и P-gp. Тем не менее, ингибирующий потенциал по отношению к CYP3A и P-gp не обязательно одинаково выражен (табл. №1).
Например, сильный ингибитор CYP3A-вориконазол не вызывает значительных изменений транспорта субстратов P-gp, таких как дигоксин или фексофенадин. Кроме того, некоторые мощные ингибиторы P-gp, такие как амиодарон и хинидин (изменяющие AUC дигоксина или фексофенадина ≥1,5 раза), являются слабыми ингибиторами CYP3A (FDA, Guidance for Industry Drug Interaction Studies - Study Design, Data Analysis, Implications for Dosing, and Labeling Recommendations, 2012).
Согласно рекомендациям FDA и ЕМЕА для установления in vivo принадлежности лекарственного препарата к субстратам P-gp, необходимо использовать мощный селективный ингибитор данного белка-транспортера (FDA, Guidance for Industry Drug Interaction Studies - Study Design, Data Analysis, Implications for Dosing, and Labeling Recommendations, 2012; EMEA Guideline on the Investigation of Drug Interactions, 2012). Однако, до сих пор не удалось найти клинически подходящий, селективный ингибитор гликопротеина-Р, который не являлся бы также ингибитором CYP3A4 (Keogh J.P., 2012). Кроме того, очевидно, что в случае использования ингибитора in vivo для целей клинической фармакологии и персонализированной медицины, в отношении него должны предъявляться такие требования, как безопасность и минимальное влияние на гемодинамику, чтобы исключить изменения фармакокинетических показателей, не опосредованных изменением функциональной активности и/или экспрессией гликопротеина-Р.
В связи с вышеизложенным перспективными препаратами, которые могут быть использованы с данной целью являются глиптины, предпочтительно вилдаглиптин. Глиптины относятся к новому классу оральных гипогликемических препаратов, используемых для фармакотерапии сахарного диабета 2-го типа, и представляют собой селективные и обратимые ингибиторы дипептидилпептидазы 4 (DPP-4), фермента, который инактивирует инкретиновые гормоны: глюкагон-подобный пептид-1 (ГПП-1(GLP-1), а также глюкозоинсулинотропный полипептид (ГИП(GIP)), которые вносят существенный вклад в поддержание гомеостаза глюкозы (ЕМЕА, 2007). Принципиально важной особенностью влияния инкретинов на функцию панкреатических α- и β-клеток является его глюкозозависимый характер. Это означает, что инкретины стимулируют секрецию инсулина и, напротив, подавляет продукцию глюкагона лишь в условиях гипергликемии. Как только уровень глюкозы плазмы снижается до нормального уровня, вышеуказанные эффекты инкретинов нивелируются, что является надежным физиологическим механизмом, предотвращающим развитие гипогликемических состояний (Hoist J. et al., 2008). Согласно имеющимся данным на фоне монотерапии вилдаглиптином (Галвус 50 мг; производитель Novartis Pharma AG, Швейцария) в дозе 50 мг 1 или 2 раза в сутки частота развития гипогликемии без увеличения степени тяжести состояния составляет 0,5% (2 человека из 409) или 0,3% (4 из 1082), что сопоставимо с препаратами сравнения и плацебо (0,2%). При применении вилдаглиптина (Галвуса) в виде монотерапии не отмечалось повышения массы тела пациентов (Novartis Pharma AG). Вилдаглиптин имеет высокую степень безопасности, хорошо переносится, обладает глюкозозависимым действием и лишен серьезных побочных эффектов (Wilhauer Ε., 2010).
Отсутствуют существенные различия в фармакокинетических параметрах вилдаглиптина на этапе абсорбции между животными различных видов (крысой, кроликом, собакой) и человеком (ЕМЕА, 2007). Биотрансформация является основным путем инактивации вилдаглиптина. Около 60% от введенной дозы вилдаглиптина подвергается метаболической трансформации за счет гидролиза. Окислению подвергается лишь 1,6% препарата. На долю конъюгации с глюкуроновой кислотой приходится 4,4%. Изоферментные системы CYP450 участвуют в метаболизме вилдаглиптина лишь в незначительной степени. In vitro определялся низкий потенциал взаимодействия с изоферментами CYP450. И согласно инструкции по применению препарата вилдаглиптин не ингибирует и не индуцирует ферментные системы цитохрома Р450, при одновременном применении не влияет на скорость метаболизма препаратов, являющихся субстратами ферментов: CYP1A2, 2С8, 2С9, 2С19, 2D6, 2Е1, 3А4/5 (ЕМЕА, 2007; Novartis).
Целью изобретения являлось создание такой модели ингибирования функциональной активности P-gp, которая проявляла бы селективный эффект в отношении P-gp, не влияя на CYP3A4, и не сопровождалась возникновением клинически значимых побочных эффектов, а при изучении на животных была бы методически обоснована согласно международным требованиям по изучению субстратов P-gp.
Поставленная задача достигается тем, что в качестве ингибитора P-gp выбран блокатор ДПП-4 вилдаглиптин, безопасный и экономически доступный препарат.
Описание способа
В качестве экспериментальной модели использовали кроликов, которые являются адекватной трансляционной моделью для изучения гликопротеина-Р (Колхир П.В., 2007). Эксперимент выполнен на 21 половозрелом кролике-самце породы Шиншилла, средней массой 3500-4500 г. Вилдаглиптин вводили животным в течение 14 дней внутрижелудочно в дозе 5 мг/кг массы тела. Функциональную активность P-gp определяли по анализу динамики плазменной концентрации фексофенадина, маркерного субстрата белка-транспортера. Фексофенадин был выбран в качестве специфического субстрата P-gp, с низкой биодоступностью при пероральном введении, более чувствительного к снижению функциональной активности и/или экспрессии P-gp в кишечнике, чем пероральный дигоксин (ЕМЕА, Guideline on the Investigation of Drug Interactions. 27 стр). Фексофенадин (Препарат Телфаст 180 мг; производитель: Aventis Pharma, Италия) вводился однократно внутрижелудочно через зонд в дозе 67,5 мг/кг массы тела животного до и после 14-дневного введения вилдаглиптина. Пробы крови отбирали в объеме 3-5 мл из краевой вены уха кролика в гепаринизированные пробирки через 1, 2, 3, 4, 5, 6, 8, 12 и 24 часа после однократного внутрижелудочного введения фексофенадина, центрифугировали 10 минут при 3000 об/мин, плазму хранили при -28°С до анализа (Колхир С.В, 2007).
Содержание фексофенадина в плазме крови определяли методом ВЭЖХ на хроматографе «Стайер» (Россия) с ультрафиолетовым детектором и обращенно-фазовой колонке «Beckman Coulter» 4,6·250 мм, зернением 5 мкм. Экстракцию и хроматографирование маркерного субстрата осуществляли по методу Раменской Г.В. с соавт. в собственной модификации. Анализ выполняли при длине волны 220 нм и скорости подвижной фазы 1 мл/мин.
Элюирование выполняли подвижной фазой следующего состава (на 200 мл): 133,7 мл бидистиллированной воды, содержащей 2,33 мл ледяной уксусной кислоты и 0,936 мл триэтиламипа, доведенной триэтиламином до рН 4,3 и 64 мл ацетонитрила. Время удерживания пика фексофенадина составило 12,31 мин.
В качестве экстрагентов для жидкостной экстракции фексофенадина использовали дихлорметан, этилацетат и диэтиловый эфир. Коэффициент экстракции фексофенадина из плазмы крови составил 64%.
Полученные экспериментальные данные были подвергнуты математико-статистической обработке с использованием офисного пакета «Microsoft Office ХР» и программ Statistica 8.0. и IBM SPSS Satistics 20. Характер распределения данных оценивали по критерию Шапиро-Уилка. Для исследования статистической значимости показателей, имеющих нормальное распределение, использовали тест ANOVA повторных измерений. Для оценки статистической значимости показателей, распределение которых отличалось от нормального, использовали критерий Фридмана. Наличие достоверных различий определяли по параметрическому и не параметриескому критерию Ньюмена-Кейлса, соответственно. Для данных, имеющих нормальное распределение, рассчитывали среднее арифметическое значение (Mean) и стандартное отклонение (SD). Для данных, имеющих распределение, отличное от нормального, рассчитывали медиану (Median), верхний и нижний квартили (lq; uq).
Фармакокинетические параметры фексофенадина рассчитывали при помощи программы «Kinetica 5.0». Полученные данные представлены в табл. №2.
При введении вилдаглиптина в дозе 5 мг/кг массы курсом 14 дней по сравнению с исходными значениями выявлены следующие изменения фармакокинетики маркерного субстрата P-gp - фексофенадина: достоверное увеличение медиан значений Cmax после 14 дней введения на 204,5% (р<0,05) и на 5-й день отмены на 239,58% (р<0,05), медиан значений Т½ после 14 дней введения на 1222,35% (р<0,05) и на 5-й день отмены на 715,57% (р<0,05), медиан значений AUCO-t после 14 дней введения на 252,03% (р<0,05) и на 5-й день отмены на 322,22% (р<0,05), медиан значений AUCO-∞ после 14 дней введения на 736,62% (р<0,05) и на 5-й день отмены на 969,24% (р<0,05), медиан значений MRT после 14 дней введения на 563,16% (р<0,05) и на 5-й день отмены на 215% (р<0,05), снижение средних значений С1 после 14 дней введения на 87,36% (р<0,05) и на 5-й день отмены на 87,17% (р<0,05), медиан значений Vd после 14 дней введения на 42,49% (р<0,05) и на 5-й день отмены на 55,54% (р<0,05), медиан значений Смах/AUCO-∞ после 14 дней введения на 69,23% (р<0,05) и на 5-й день отмены на 53,85% (р<0,05).
Указанные изменения свидетельствуют об увеличении концентрации фексофенадина в крови за счет увеличения абсорбции и замедления выведения маркерного субстрата. В соответствии с рекомендациями FDA ингибитором P-gp признаются вещества, увеличивающие AUC фексофенадина более чем на 25%, что может служить доказательством ингибирующего влияния вилдаглиптина на функциональную активность P-gp.
Поскольку глюкоза и инсулин способны регулировать активность гликопротеина-Р (Yeh S.Y. et al., 2012), у интактных животных после 14 дней введения вилдаглиптина и на 5-й день его отмены изучали уровни инсулина натощак и на 45 минуту после глюкозной нагрузки (3 г/кг), а также уровень глюкозы до и через 90 минут после глюкозной нагрузки. Рассчитывали гликемический и инсулиногенный индексы (табл. №3) (указанные сроки были выбраны в связи с тем, что в данные промежутки времени наблюдаются максимальные отличия от нормы уровня инсулина, глюкозы и инсулиногенного индекса при введении вилдаглиптина) (Burkey B.F. et al., 2005; Руководство по проведению доклинических исследований лекарственных средств, 2012). Уровень инсулина определяли радиоиммунным методом, концентрацию глюкозы - глюкозоксидазным методом в центральной научно-исследовательской лаборатории РязГМУ.
Изученные показатели представлены в табл. №3. Достоверных различий в уровнях глюкозы и инсулина натощак, показателях гликемического и инсулиногенного индекса до и после 14 дней введения вилдаглиптина, а также на 5-й день его отмены не обнаружено. Таким образом изменения функциональной активности P-gp не могут быть связаны с уровнем глюкозы и/или инсулина.
Использование предлагаемого способа моделирования состояния ингибирования функциональной активности P-gp позволяет применять вилдаглиптин в качестве положительного контроля пониженной функциональной активности белка-транспортера при поиске веществ аналогичного действия, а также для прогнозирования потенциальных субстратов P-gp среди лекарственных и/или потенциальных лекарственных веществ на этапе доклинических исследований.
Claims (1)
- Способ моделирования состояния ингибирования функциональной активности эффлюксного белка-транспортера гликопротеина-P в эксперименте, включающий введение препарата-ингибитора, отличающийся тем, что в качестве такого препарата используют ингибитор дипептидилпептидазы-4 вилдаглиптин, который вводят кролику внутрижелудочно в дозе 5 мг/кг массы тела в течение 14 дней и в качестве маркерного субстрата гликопротеина-P используют фексофенадин, который вводят животному внутрижелудочно в дозе 67,5 мг/кг до и после 14-дневного введения вилдаглиптина с последующей оценкой содержания фексофенадина в плазме крови.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015125946/14A RU2602688C1 (ru) | 2015-06-29 | 2015-06-29 | Способ моделирования состояния ингибирования функциональной активности гликопротеина-р ингибитором дипептидилпептидазы 4 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015125946/14A RU2602688C1 (ru) | 2015-06-29 | 2015-06-29 | Способ моделирования состояния ингибирования функциональной активности гликопротеина-р ингибитором дипептидилпептидазы 4 |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2602688C1 true RU2602688C1 (ru) | 2016-11-20 |
Family
ID=57760184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015125946/14A RU2602688C1 (ru) | 2015-06-29 | 2015-06-29 | Способ моделирования состояния ингибирования функциональной активности гликопротеина-р ингибитором дипептидилпептидазы 4 |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2602688C1 (ru) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2423124C2 (ru) * | 2005-06-10 | 2011-07-10 | Новартис Аг | Состав с модифицированным высвобождением, содержащий 1-[(3-гидроксиадамант-1-иламино)ацетил]пирролидин-2(s)-карбонитрил |
RU2504018C1 (ru) * | 2012-05-28 | 2014-01-10 | Государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный медицинский университет имени академика И.П. Павлова" Министерства здравоохранения и социального развития Российской Федерации | Способ моделирования состояния индукции функциональной активности гликопротеина-р финастеридом в эксперименте |
-
2015
- 2015-06-29 RU RU2015125946/14A patent/RU2602688C1/ru not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2423124C2 (ru) * | 2005-06-10 | 2011-07-10 | Новартис Аг | Состав с модифицированным высвобождением, содержащий 1-[(3-гидроксиадамант-1-иламино)ацетил]пирролидин-2(s)-карбонитрил |
RU2504018C1 (ru) * | 2012-05-28 | 2014-01-10 | Государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный медицинский университет имени академика И.П. Павлова" Министерства здравоохранения и социального развития Российской Федерации | Способ моделирования состояния индукции функциональной активности гликопротеина-р финастеридом в эксперименте |
Non-Patent Citations (1)
Title |
---|
ЯКУШЕВА Е. Н. и др. Дозозависимое влияние тироксина на функциональную активность гликопротеина-Р в эксперименте Биомедицина, 2012, Выпуск N 2, том 1 http://cyberleninka.ru/article/n/dozozavisimoe-vliyanie-tiroksina-na-funktsionalnuyu-aktivnost-glikoproteina-r-v-eksperimente. ISHIGURO N et al. Evaluation and prediction of potential drug-drug interactions of linagliptin using in vitro cell culture methods. Drug Metab Dispos. 2013 Jan;41(1):149-58 abstr. SCHEEN AJ Pharmacokinetics of dipeptidylpeptidase-4 inhibitors. Diabetes Obes Metab. 2010 Aug;12(8):648-58 abstr. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mai et al. | Quantification of P-glycoprotein in the gastrointestinal tract of humans and rodents: methodology, gut region, sex, and species matter | |
Tornio et al. | Glucuronidation converts clopidogrel to a strong time‐dependent inhibitor of CYP2C8: a phase II metabolite as a perpetrator of drug–drug interactions | |
Liang et al. | Transporters involved in metformin pharmacokinetics and treatment response | |
Zheng et al. | Elucidating rifampin's inducing and inhibiting effects on glyburide pharmacokinetics and blood glucose in healthy volunteers: unmasking the differential effects of enzyme induction and transporter inhibition for a drug and its primary metabolite | |
Zhang et al. | Drug interactions evaluation: an integrated part of risk assessment of therapeutics | |
Tamai | Oral drug delivery utilizing intestinal OATP transporters | |
Kusuhara et al. | Effects of a MATE protein inhibitor, pyrimethamine, on the renal elimination of metformin at oral microdose and at therapeutic dose in healthy subjects | |
Taneera et al. | γ-Aminobutyric acid (GABA) signalling in human pancreatic islets is altered in type 2 diabetes | |
Kusuhara et al. | Pharmacokinetic interaction study of sulphasalazine in healthy subjects and the impact of curcumin as an in vivo inhibitor of BCRP | |
He et al. | The influence of hepatic impairment on the pharmacokinetics of the dipeptidyl peptidase IV (DPP-4) inhibitor vildagliptin | |
Benet | The drug transporter− metabolism alliance: uncovering and defining the interplay | |
Head et al. | Simultaneous targeting of NPC1 and VDAC1 by itraconazole leads to synergistic inhibition of mTOR signaling and angiogenesis | |
CN106459079B (zh) | 青蒿素化合物及桥蛋白激动剂的医疗用途 | |
Krug et al. | Clinical evaluation of MK‐2640: An insulin analog with glucose‐responsive properties | |
Puttonen et al. | Effect of severe renal failure and haemodialysis on the pharmacokinetics of levosimendan and its metabolites | |
Gendaszewska-Darmach et al. | Targeting GPCRs activated by fatty acid-derived lipids in type 2 diabetes | |
Ke et al. | Synergistic effects of metformin with liraglutide against endothelial dysfunction through GLP-1 receptor and PKA signalling pathway | |
Zhang et al. | Pharmacological signatures of the exenatide nanoparticles complex against myocardial ischemia reperfusion injury | |
Noh et al. | Effects of ketoconazole and rifampicin on the pharmacokinetics of gemigliptin, a dipeptidyl peptidase-IV inhibitor: a crossover drug–drug interaction study in healthy male Korean volunteers | |
Stage et al. | The role of genetic variants in CYP2C8, LPIN1, PPARGC1A and PPARγ on the trough steady-state plasma concentrations of rosiglitazone and on glycosylated haemoglobin A1c in type 2 diabetes | |
Pibiri et al. | Targeting nonsense: optimization of 1, 2, 4-oxadiazole trids to rescue cftr expression and functionality in cystic fibrosis cell model systems | |
Urbano et al. | Altered expression of uncoupling protein 2 in GLP-1-producing cells after chronic high glucose exposure: implications for the pathogenesis of diabetes mellitus | |
Lin et al. | Pharmacokinetics of intravenous voriconazole in patients with liver dysfunction: A prospective study in the intensive care unit | |
Bergman et al. | Effect of hepatic organic anion‐transporting polypeptide 1B inhibition and chronic kidney disease on the pharmacokinetics of a liver‐targeted glucokinase activator: a model‐based evaluation | |
Hassing et al. | Oral 2‐oleyl glyceryl ether improves glucose tolerance in mice through the GPR119 receptor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20170630 |