RU2601873C2 - Высокоэффективная система преобразования и рециркуляции на основе твердооксидного топливного элемента - Google Patents

Высокоэффективная система преобразования и рециркуляции на основе твердооксидного топливного элемента Download PDF

Info

Publication number
RU2601873C2
RU2601873C2 RU2013143397/07A RU2013143397A RU2601873C2 RU 2601873 C2 RU2601873 C2 RU 2601873C2 RU 2013143397/07 A RU2013143397/07 A RU 2013143397/07A RU 2013143397 A RU2013143397 A RU 2013143397A RU 2601873 C2 RU2601873 C2 RU 2601873C2
Authority
RU
Russia
Prior art keywords
fuel
fuel cell
reformed
combined cycle
anode
Prior art date
Application number
RU2013143397/07A
Other languages
English (en)
Other versions
RU2013143397A (ru
Inventor
Мэттью Александер ЛЕХАР
Мэттью Джозеф ЭЛАЙНГЕР
Брюс Филип БИДЕРМАН
Эндрю Филип ШАПИРО
Original Assignee
Дженерал Электрик Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дженерал Электрик Компани filed Critical Дженерал Электрик Компани
Publication of RU2013143397A publication Critical patent/RU2013143397A/ru
Application granted granted Critical
Publication of RU2601873C2 publication Critical patent/RU2601873C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/402Combination of fuel cell with other electric generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/407Combination of fuel cells with mechanical energy generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Изобретение обносится к области электротехники, а именно к системе комбинированного цикла на основе твердооксидных топливных элементов. Топливный элемент комбинированного цикла включает топливный элемент, такой как твердооксидный топливный элемент (ТОТЭ), включающий анод, который вырабатывает отходящий газ, риформинг углеводородного топлива, который обеспечивает смешивание углеводородного топлива с отходящим газом топливного элемента ниже по потоку от топливного элемента и частичное или полное преобразование углеводородного топлива в водород (H2) и монооксид углерода (СО), при этом канал для топлива обеспечивает отведение первой части подвергнутого риформингу топлива на вход анода топливного элемента. Топливный элемент комбинированного цикла включает органический цикл Ренкина (ОЦР), выполненный с возможностью удаления тепла из оставшейся части подвергнутого риформингу топлива и доставки охлажденной оставшейся части подвергнутого риформингу топлива в утилизационный цикл, который может представлять собой двигатель внешнего или внутреннего сгорания, такой как газопоршневой двигатель или газовая турбина, который приводят в действие охлажденной оставшейся частью подвергнутого риформингу топлива. Увеличение КПД топливного элемента комбинированного цикла является техническим результатом изобретения. 4 н. и 20 з.п. ф-лы, 4 ил.

Description

Уровень техники
Данное изобретение в общем относится к системам комбинированного цикла на основе топливных элементов, а более конкретно к высокоэффективной системе преобразования и рециркуляции на основе твердооксидного топливного элемента (ТОТЭ) с достижением более высоких кпд преобразования топливных элементов, чем можно достичь с использованием традиционных систем комбинированного цикла на основе топливных элементов.
Топливные элементы представляют собой устройства электрохимического преобразования энергии, которые продемонстрировали возможность обеспечения относительно высокой эффективности и низкого уровня загрязнений при выработке электроэнергии. Топливный элемент обычно обеспечивает постоянный ток, который может быть преобразован в переменный ток посредством, например, инвертора. Напряжение постоянного или переменного тока может быть использовано для питания двигателей, осветительных приборов и любого количества электрических устройств и систем. Топливные элементы могут работать в стационарных, полустационарных или передвижных применениях. Некоторые топливные элементы, такие как твердооксидные топливные элементы (ТОТЭ), могут работать в крупномасштабных энергетических системах, которые обеспечивают электричество для удовлетворения промышленных и коммунальных нужд. Другие топливные элементы могут быть пригодны для применения в передвижных устройствах меньших размеров, таких как, например, вагоны-электростанции.
Топливный элемент вырабатывает электричество посредством электрохимического объединения топлива и окислителя через ионопроводящий слой. Этот ионопроводящий слой, который также называют электролитом топливного элемента, может быть жидким или твердым. Распространенные типы топливных элементов включают фосфорнокислотный топливный элемент (ФКТЭ), топливный элемент с расплавленным карбонатным электролитом (ТЭРКЭ), топливный элемент с протонообменной мембраной (ТЭПОМ) и твердооксидный топливный элемент (ТОТЭ); в основном все они названы по типам их электролитов. На практике топливные элементы обычно собирают в последовательное электрическое соединение в сборке топливных элементов для выработки энергии с пригодным для использования напряжением или силой тока. Поэтому могут быть использованы соединительные конструкции для соединения или связывания соседних топливных элементов в последовательном или параллельном соединении.
Обычно компоненты топливного элемента включают электролит и два электрода. Реакции, которые вырабатывают электричество, обычно протекают на электродах, где обычно размещен катализатор для ускорения реакций. Электроды могут быть выполнены в виде каналов, пористых слоев и т.п., чтобы увеличить площадь поверхности для протекания химических реакций. Электролит переносит электрически заряженные частицы от одного электрода к другому, а в других отношениях он является по существу непроницаемым как для топлива, так и для окислителя.
Обычно топливный элемент преобразует водород (топливо) и кислород (окислитель) в воду (побочный продукт) для выработки электричества. Образовавшаяся в качестве побочного продукта вода может выходить из топливного элемента в виде пара при высокотемпературных режимах эксплуатации. Этот выпущенный пар (и другие горячие выходящие компоненты) можно использовать в турбинах и других устройствах для выработки дополнительного количества электричества или энергии, обеспечивая повышенную эффективность выработки энергии. Если в качестве окислителя используют воздух, то азот в воздухе является по существу инертным и обычно проходит через топливный элемент. Водородное топливо можно обеспечивать посредством локального риформинга (например, парового риформинга на месте эксплуатации) сырья на основе углерода, например, риформинга более легкодоступного природного газа и других видов углеводородного топлива и сырья. Примеры углеводородного топлива включают природный газ, метан, этан, пропан, метанол, синтез-газ и другие углеводороды. Риформинг углеводородного топлива с получением водорода для питания электрохимической реакции можно объединить с работой топливного элемента. Кроме того, такой риформинг может происходить внутри и/или вне топливного элемента. Для риформинга углеводородов, выполняемого вне топливного элемента, связанная с ним внешняя установка риформинга может быть расположена на удалении от топливного элемента или рядом с топливным элементом.
Системы на основе топливных элементов, которые могут обеспечивать риформинг углеводородов внутри топливного элемента и/или рядом с топливным элементом, могут предоставить преимущества, такие как простота конструкции и эксплуатации. Например, реакция парового риформинга углеводородов обычно является эндотермической, и, следовательно, при внутреннем риформинге внутри топливного элемента или внешнем риформинге в расположенной рядом установке риформинга можно использовать теплоту, вырабатываемую электрохимическими реакциями в топливном элементе, которые обычно являются экзотермическими. Кроме того, катализаторы, являющиеся активными в электрохимической реакции водорода и кислорода внутри топливного элемента с получением электричества, также могут облегчать внутренний риформинг углеводородного топлива. Например, в ТОТЭ, если никелевый катализатор размещен на электроде (например, на аноде) для поддержания электрохимической реакции, то активный никелевый катализатор также может обеспечивать риформинг углеводородного топлива с образованием водорода и монооксида углерода (СО). Кроме того, как водород, так и СО могут быть получены при риформинге углеводородного сырья. Таким образом, топливные элементы, такие как ТОТЭ, в которых можно использовать СО в качестве топлива (помимо водорода), обычно являются более привлекательными кандидатами для использования подвергнутого риформингу углеводорода и для внутреннего и/или осуществляемого рядом риформинга углеводородного топлива.
Способность топливного элемента к преобразованию углеводородного топлива в электрическую энергию ограничена механизмами потерь внутри элемента, в результате которых выделяется тепло, и частичным использованием топлива. В традиционной системе комбинированного цикла на основе топливного элемента риформинг первичного углеводородного топлива происходит выше по потоку от топливного элемента. Отходящие газы топливного элемента, включающие несгоревшее топливо и продукты сгорания, затем направляют в горелки для отходящего газа, тепло от которых можно вовлекать в систему комбинированного цикла, иногда в установку риформинга топлива. Примеры существующих в настоящее время топливных элементов обычно достигают эффективности преобразования приблизительно 50%.
Ввиду вышеизложенного существует потребность в обеспечении способа, который дополнительно увеличит кпд установки с системой комбинированного цикла на основе топливного элемента посредством увеличения кпд топливного элемента.
Краткое описание изобретения
Приведенное в качестве примера воплощение настоящего изобретения включает топливный элемент комбинированного цикла, включающий:
твердооксидный топливный элемент (ТОТЭ), включающий анод, выполненный с возможностью образования отходящего газа, причем анод включает вход и выход;
систему риформинга углеводородного топлива, выполненную с возможностью смешивания углеводородного топлива с отходящим газом ТОТЭ ниже по потоку от ТОТЭ и частичного или полного преобразования углеводородного топлива в водород (Н2) и монооксид углерода (СО), а также выполненную с возможностью разделения подвергнутого риформингу топлива на первую часть и оставшуюся часть;
канал для топлива, выполненный с возможностью отведения первой части подвергнутого риформингу топлива на вход анода топливного элемента;
холодильник, выполненный с возможностью удаления тепла из оставшейся части подвергнутого риформингу топлива, и
утилизационный цикл, включающий двигатель внешнего или внутреннего сгорания, приводимый в действие охлажденной оставшейся частью подвергнутого риформингу топлива.
Согласно другому воплощению, топливный элемент комбинированного цикла включает:
топливный элемент, включающий анод, выполненный с возможностью образования отходящего газа, причем анод включает вход и выход;
систему риформинга углеводородного топлива, выполненную с возможностью смешивания углеводородного топлива с отходящим газом ниже по потоку от топливного элемента и частичного или полного преобразования углеводородного топлива в водород (Н2) и монооксид углерода (СО), а также выполненную с возможностью разделения подвергнутого риформингу топлива на первую часть и оставшуюся часть;
канал для топлива, выполненный с возможностью отведения первой части подвергнутого риформингу топлива на вход анода топливного элемента;
органический цикл Ренкина (ОЦР), выполненный с возможностью удаления тепла из оставшейся части подвергнутого риформингу топлива и выработки электроэнергии из него, и
утилизационный цикл, включающий двигатель внешнего или внутреннего сгорания, приводимый в действие охлажденной оставшейся частью подвергнутого риформингу топлива, выходящей из ОЦР.
Согласно еще одному воплощению, топливный элемент комбинированного цикла включает:
топливный элемент, включающий анод, выполненный с возможностью образования отходящего газа, причем анод включает вход и выход;
систему риформинга углеводородного топлива, выполненную с возможностью смешивания углеводородного топлива с отходящим газом топливного элемента ниже по потоку от топливного элемента и частичного или полного преобразования углеводородного топлива в водород (Н2) и монооксид углерода (СО), а также выполненную с возможностью разделения подвергнутого риформингу топлива на первую часть и оставшуюся часть;
первый органический цикл Ренкина (ОЦР), выполненный с возможностью удаления тепла из первой части подвергнутого риформингу топлива;
устройство для очистки топлива, причем первый ОЦР и устройство для очистки топлива совместно выполнены с возможностью получения очищенного топлива посредством удаления воды и диоксида углерода из первой части подвергнутого риформингу топлива;
рекуператор, выполненный с возможностью извлечения тепла из очищенного топлива и передачи извлеченного тепла топливу и отходящему газу, поступающим в систему риформинга;
канал для топлива, выполненный с возможностью отведения нагретого и очищенного топлива на вход анода топливного элемента;
второй ОЦР, выполненный с возможностью удаления тепла из оставшейся части подвергнутого риформингу топлива и выработки электроэнергии из него, и
утилизационный цикл, включающий двигатель внешнего или внутреннего сгорания, приводимый в действие охлажденной оставшейся частью подвергнутого риформингу топлива, выходящей из второго ОЦР.
Согласно еще одному воплощению, топливный элемент комбинированного цикла включает:
топливный элемент, включающий анод, выполненный с возможностью образования отходящего газа, причем анод включает вход и выход;
систему риформинга углеводородного топлива, выполненную с возможностью смешивания углеводородного топлива с отходящим газом топливного элемента ниже по потоку от топливного элемента и частичного или полного преобразования углеводородного топлива в водород (H2) и монооксид углерода (СО) с образованием подвергнутого риформингу топлива;
систему охлаждения, выполненную с возможностью удаления тепла из подвергнутого риформингу топлива;
канал для топлива, выполненный с возможностью отведения первой части охлажденного подвергнутого риформингу топлива на вход анода, и
утилизационный цикл, включающий двигатель внешнего или внутреннего сгорания, приводимый в действие оставшейся частью охлажденного подвергнутого риформингу топлива.
Список чертежей
Вышеупомянутые и другие признаки, аспекты и преимущества изобретения очевидны из нижеследующего подробного описания в сочетании с сопровождающими чертежами, на которых одинаковыми символами обозначены одинаковые детали на всех чертежах, где:
Фиг.1 представляет собой упрощенную схему, иллюстрирующую энергетическую установку с комбинированным циклом, в которой используют твердооксидный топливный элемент (ТОТЭ), работающий на подвергнутом риформингу топливе, с рециркуляцией, где установка риформинга питает утилизационный цикл с поршневым двигателем, согласно одному воплощению;
Фиг.2 представляет собой упрощенную схему, иллюстрирующую энергетическую установку с комбинированным циклом, в которой используют твердооксидный топливный элемент (ТОТЭ), работающий на подвергнутом риформингу топливе, с рециркуляцией, где установка риформинга питает утилизационный цикл с поршневым двигателем, согласно другому воплощению;
Фиг.3 представляет собой упрощенную схему, иллюстрирующую энергетическую установку с комбинированным циклом, в которой используют твердооксидный топливный элемент (ТОТЭ), работающий на подвергнутом риформингу топливе, с рециркуляцией, где установка риформинга питает утилизационный цикл с поршневым двигателем, согласно еще одному воплощению, и
Фиг.4 представляет собой упрощенную схему, иллюстрирующую энергетическую установку с комбинированным циклом, в которой используют твердооксидный топливный элемент (ТОТЭ), работающий на подвергнутом риформингу топливе, с рециркуляцией, где установка риформинга питает утилизационный цикл с поршневым двигателем, согласно еще одному воплощению.
В то время как на вышеперечисленных чертежах показаны альтернативные воплощения, также предусмотрены другие воплощения настоящего изобретения, как отмечено в обсуждении. Во всех случаях, в данном описании представлены иллюстративные воплощения настоящего изобретения с целью создания представления, а не с целью ограничения. Специалисты в данной области техники могут разработать многочисленные другие модификации и воплощения, которые попадают в область защиты и соответствуют сущности настоящего изобретения.
Подробное описание изобретения
Воплощения, описанные в настоящем документе со ссылками на чертежи, преимущественно обеспечивают повышенные кпд установки, превышающие 65% в конкретных воплощениях, в которых используют элементы рециркуляции. Преимущества, предоставляемые элементами рециркуляции, описанными в настоящем документе, включают, не ограничиваясь перечисленным, автоматическую подачу воды в установку риформинга, устранение необходимости отдельной подачи воды.
Также предусмотрены другие воплощения настоящего изобретения, как отмечено в обсуждении. Описанные в настоящем документе принципы можно также просто применять, например, в технологиях сопоставимых топливных элементов, которые не ограничены строго твердооксидными топливными элементами. Большое разнообразие циклов рекуперации отходящего тепла и способов объединения таких циклов также возможно с использованием принципов, описанных в настоящем документе.
Фиг.1 представляет собой упрощенную схему, иллюстрирующую энергетическую установку 10 с комбинированным циклом, в которой используют твердооксидный топливный элемент 12 (ТОТЭ), работающий на подвергнутом риформингу топливе, с рециркуляцией, где установка 14 риформинга питает утилизационный цикл с поршневым двигателем, согласно одному воплощению. Углеводородное топливо 11, такое как CH4, подают в систему 10 ниже по потоку от анода 13 топливного элемента, в точке 15, обозначенной на Фиг.1. Топливо 11 частично или полностью преобразуют в Н2 и СО в установке 14 риформинга, при необходимости, с использованием некоторой части тепла, выделяемого топливным элементом 12, чтобы способствовать реакции риформинга. Некоторую часть потока подвергнутого риформингу топлива отводят на вход анода 13 топливного элемента через возвратную линию 17, а оставшуюся часть потока подвергнутого риформингу топлива, после охлаждения посредством передачи тепла внутри рекуператора поступающему потоку 11 топлива, а затем посредством подходящего холодильника 18, используют для приведения в действие двигателя 16 внешнего или внутреннего сгорания, который может включать, например, не ограничиваясь перечисленным, четырехтактный поршневой двигатель, двухтактный поршневой двигатель, двухтактный двигатель с противоположно движущимися поршнями или газовую турбину.
Фиг.2 представляет собой упрощенную схему, иллюстрирующую энергетическую установку 20 с комбинированным циклом, в которой используют твердооксидный топливный элемент 12 (ТОТЭ), работающий на подвергнутом риформингу топливе, с рециркуляцией, где установка 14 риформинга питает утилизационный цикл с поршневым двигателем, согласно другому воплощению. Углеводородное топливо 11, такое как CH4, подают в систему 20 ниже по потоку от анода 13 топливного элемента, в точке 15, обозначенной на Фиг.2. Топливо 11 частично или полностью преобразуют в Н2 и СО в установке 14 риформинга, при необходимости, с использованием некоторой части тепла, выделяемого топливным элементом 12, чтобы способствовать реакции риформинга. Некоторую часть потока подвергнутого риформингу топлива отводят на вход анода 13 топливного элемента через возвратную линию 17, а оставшуюся часть потока подвергнутого риформингу топлива охлаждают посредством извлечения тепла, вначале в процессе подогрева потока 11 топлива посредством рекуператора, а затем по мере его прохождения через органический цикл 22 Ренкина (ОЦР). Поток охлажденного топлива затем используют для приведения в действие двигателя 16 внешнего или внутреннего сгорания, который может включать, например, не ограничиваясь перечисленным, четырехтактный поршневой двигатель, двухтактный поршневой двигатель, двухтактный двигатель с противоположно движущимися поршнями или газовую турбину.
Согласно одному воплощению ОЦР 22 преимущественно можно использовать для выработки дополнительной электроэнергии. Согласно другому воплощению, тепло отходящего газа из двигателя 16 сгорания можно передавать рабочей текучей среде ОЦР 22 через возвратную линию 24, чтобы дополнительно повысить выработку электроэнергии, обеспечиваемую ОЦР 22.
Фиг.3 представляет собой упрощенную схему, иллюстрирующую энергетическую установку 30 с комбинированным циклом, в которой используют твердооксидный топливный элемент 12 (ТОТЭ), работающий на подвергнутом риформингу топливе, с рециркуляцией, где установка 14 риформинга питает утилизационный цикл с поршневым двигателем, согласно еще одному воплощению. Углеводородное топливо 11, такое как СН4, подают в систему 30 ниже по потоку от анода 13 топливного элемента, в точке 15, обозначенной на Фиг.3. Топливо 11 частично или полностью преобразуют в H2 и СО в установке 14 риформинга, при необходимости, с использованием некоторой части тепла, выделяемого топливным элементом 12, чтобы способствовать реакции риформинга. Некоторую часть потока подвергнутого риформингу топлива отводят на вход анода 13 топливного элемента через возвратную линию 17.
Перед отведением/рециркуляцией части потока подвергнутого риформингу топлива на вход анода 13 топливного элемента, рециркулируемую часть вначале охлаждают посредством ОЦР 32, за которым следует устройство 36 для очистки топлива, которое может включать, не ограничиваясь перечисленным, процессы сжатия, отвода тепла и расширения. Получаемое в результате охлаждение приводит к конденсации продуктов сгорания, включая H2O и CO2, из полученного потока топлива. Твердый или жидкий CO2 затем можно хранить или накачивать до высоких давлений в жидкой форме для возможной изоляции. Этот процесс в существенной степени приводят в действие энергией, получаемой в ОЦР 34 из тепла рециркулируемого 17 потока топлива.
Оставшуюся часть потока подвергнутого риформингу топлива можно, при необходимости, охлаждать посредством извлечения тепла по мере его прохождения через органический цикл 34 Ренкина (ОЦР). Этот поток охлажденного топлива затем используют для приведения в действие двигателя 16 внешнего или внутреннего сгорания, который может включать, например, не ограничиваясь перечисленным, четырехтактный поршневой двигатель, двухтактный поршневой двигатель, двухтактный двигатель с противоположно движущимися поршнями или газовую турбину.
Согласно одному воплощению, ОЦР 34 можно преимущественно использовать для выработки дополнительной электроэнергии. Согласно другому воплощению, тепло отходящего газа из двигателя 16 сгорания можно передавать рабочей текучей среде ОЦР 34 через возвратную линию 24, чтобы дополнительно повысить выработку электроэнергии, обеспечиваемую ОЦР 34. Согласно другому воплощению, единственный ОЦР используют для обеспечения как рециркулируемого, так и остаточного потоков топлива.
В энергетической установке 30 с комбинированным циклом дополнительно используют рекуператор 38. Как отмечено в настоящем документе, в традиционных системах комбинированного цикла на основе топливного элемента риформинг первичного углеводородного топлива происходит выше по потоку от топливного элемента. В традиционных системах комбинированного цикла на основе топливного элемента отходящие газы топливного элемента, включающие несгоревшее топливо и продукты сгорания, затем направляют в горелки для отходящего газа, тепло от которых можно вовлекать в систему комбинированного цикла, иногда в установку риформинга топлива. В отличие от этого, первичное топливо 11, используемое в энергетической установке 30 с комбинированным циклом, объединяют с отходящим газом анода и направляют в установку 14 риформинга ниже по потоку от топливного элемента 12. Тепло для эндотермической реакции риформинга подают от отходящего газа анода, непосредственно и/или через теплообменник 38, и/или посредством непосредственного обмена теплом между анодом 13 и установкой 14 риформинга.
Энергетическая установка 30 с комбинированным циклом преимущественно обеспечивает повышение качества топлива в большей степени, чем можно достичь с использованием традиционной системы комбинированного цикла на основе топливного элемента, поскольку качество потока топлива, выходящего из установки 14 риформинга, существенно выше, чем качество отходящего газа, покидающего топливный элемент 13, отчасти из-за того, что топливо полностью подвергнуто риформингу. Таким образом, топливо, направляемое в камеру сгорания двигателя утилизационного цикла, такого как двигатель 24 сгорания, полностью подвергнуто риформингу, так что отходящее тепло топливного элемента 13 можно использовать насколько возможно эффективно. Кроме того, преимуществом является то, что утилизационный цикл энергетической установки с комбинированным циклом требует меньшего расхода воздуха на охлаждение топливного элемента, благодаря полному риформингу топлива.
Фиг.4 представляет собой упрощенную схему, иллюстрирующую энергетическую установку 40 с комбинированным циклом, в которой используют твердооксидный топливный элемент 12 (ТОТЭ), работающий на подвергнутом риформингу топливе, с рециркуляцией, где установка 14 риформинга питает утилизационный цикл с поршневым двигателем, согласно еще одному воплощению. Углеводородное топливо 11, такое как СН4, подают в систему 40 ниже по потоку от анода 13 топливного элемента, в точке 15, обозначенной на Фиг.1. Топливо 11 частично или полностью преобразуют в H2 и СО в установке 14 риформинга, при необходимости, с использованием некоторой части тепла, выделяемого топливным элементом 12, чтобы способствовать реакции риформинга. Некоторую часть потока подвергнутого риформингу топлива отводят на вход анода 13 топливного элемента через возвратную линию 17, а оставшуюся часть потока подвергнутого риформингу топлива, после охлаждения посредством передачи тепла внутри высокотемпературного рекуператора 9 поступающему потоку 11 топлива, а затем посредством подходящего холодильника 18 и низкотемпературного вентилятора 19, используют для приведения в действие двигателя 16 внешнего или внутреннего сгорания, который может включать, например, не ограничиваясь перечисленным, четырехтактный поршневой двигатель, двухтактный поршневой двигатель, двухтактный двигатель с противоположно движущимися поршнями или газовую турбину.
Понятно, что использование низкотемпературного вентилятора 19 является преимуществом, поскольку это не так дорого, как использование высокотемпературного вентилятора, который требует более высоких затрат на эксплуатацию. Низкотемпературный вентилятор 19 служит для обеспечения того, чтобы рециркулируемый поток подвергнутого риформингу топлива проходил в направлении против часовой стрелки, как обозначено на Фиг.4. Высокотемпературный рекуператор 9 обеспечивает извлечение тепла из потока, поступающего в низкотемпературный вентилятор 19. Это тепло затем передают потоку, выходящему из низкотемпературного вентилятора 19. Эти признаки являются преимуществом, поскольку они предоставляют возможность рециркуляции высокотемпературного потока топлива обратно в топливный элемент 12, при этом сообщая движущую силу потоку при низкой температуре. Как можно видеть на Фиг.4, рекуператор 9 также используют для нагревания поступающего потока 11 топлива - природного газа.
В воплощениях, описанных в настоящем документе, преимущественно достигают общего коэффициента использования топлива более 65% посредством рециркуляции потока от выхода анода обратно на вход анода. Кроме того, благодаря включению стадии риформинга в контур рециркуляции, можно удовлетворить потребности установки риформинга в воде, используя только воду, содержащуюся в отходящем потоке анода, без необходимости введения дополнительного количества воды в систему 30.
Преимуществом воплощений, описанных в настоящем документе, является то, что риформинг осуществляют ниже по потоку от анода 13 топливного элемента. Поскольку стадия риформинга происходит в точке между выходом топливного элемента 12 и входом для топлива утилизационного цикла, некоторую часть подвергнутого риформингу топлива можно подавать непосредственно в утилизационный цикл. Установка 14 риформинга отбирает больше тепла от топливного элемента 12, поскольку в ней подвергают риформингу топливо, подаваемое в утилизационный цикл, а также топливо из топливного элемента 12. Согласно одному аспекту, установка 14 риформинга может быть способна использовать больше избыточного тепла топливного элемента 12 для обогащения топлива, чем это было бы возможно в существующих системах комбинированного цикла на основе топливного элемента известного уровня техники, что повышает общий кпд системы.
Преимуществом воплощений, описанных в настоящем документе, является то, что в них используют газопоршневой двигатель в качестве утилизационного цикла. Поскольку газопоршневые двигатели традиционно являются более гибкими в отношении топлива, чем, например, газовые турбины, они обеспечивают возможность большей гибкости при конструировании установки 14 риформинга, чем это было бы возможно при использовании газовой турбины в качестве утилизационного цикла.
В качестве краткого пояснения, в настоящем документе описаны воплощения топливного элемента комбинированного цикла и присущие им преимущества. Каждое из этих воплощений включает твердооксидный топливный элемент (ТОТЭ), содержащий анод, который вырабатывает отходящий газ. Система риформинга углеводородного топлива обеспечивает смешивание углеводородного топлива с отходящим газом ТОТЭ ниже по потоку от ТОТЭ, частичное или полное преобразование углеводородного топлива в водород (H2) и монооксид углерода (СО). Подвергнутое риформингу топливо разделяют на первую часть и оставшуюся часть. Канал для топлива обеспечивает отведение первой части подвергнутого риформингу топлива на вход анода ТОТЭ. При необходимости, обеспечивают систему охлаждения, такую как холодильник или сочетание холодильника и низкотемпературного вентилятора, выполненную с возможностью удаления тепла из оставшейся части подвергнутого риформингу топлива и доставки охлажденной оставшейся части подвергнутого риформингу топлива в утилизационный цикл, включающий газопоршневой двигатель, который приводит в действие охлажденная оставшаяся часть подвергнутого риформингу топлива.
Хотя в настоящем документе проиллюстрированы и описаны только некоторые признаки изобретения, много модификаций и изменений могут быть предложены специалистами в данной области техники. Поэтому следует понимать, что приложенная формула изобретения охватывает все такие модификации и изменения, поскольку они являются частью истинной сущности изобретения.

Claims (24)

1. Топливный элемент комбинированного цикла, включающий:
топливный элемент, включающий анод, выполненный с возможностью образования отходящего газа, причем анод включает вход и выход;
систему риформинга углеводородного топлива, выполненную с возможностью смешивания углеводородного топлива с отходящим газом топливного элемента ниже по потоку от топливного элемента и частичного или полного преобразования углеводородного топлива в водород (Н2) и монооксид углерода (СО), а также выполненную с возможностью разделения подвергнутого риформингу топлива на первую часть и оставшуюся часть;
канал для топлива, выполненный с возможностью отведения первой части подвергнутого риформингу топлива на вход анода;
холодильник, выполненный с возможностью удаления тепла из оставшейся части подвергнутого риформингу топлива, и
утилизационный цикл, включающий двигатель внешнего или внутреннего сгорания, приводимый в действие охлажденной оставшейся частью подвергнутого риформингу топлива;
первый органический цикл Ренкина (ОЦР), выполненный с возможностью удаления тепла из первой части подвергнутого риформингу топлива, и
устройство для очистки топлива, причем первый ОЦР и устройство для очистки топлива совместно выполнены с возможностью получения очищенного топлива посредством удаления воды и диоксида углерода из первой части подвергнутого риформингу топлива перед отведением первой части подвергнутого риформингу топлива на вход анода.
2. Топливный элемент комбинированного цикла по п. 1, где топливный элемент включает твердооксидный топливный элемент.
3. Топливный элемент комбинированного цикла по п. 1, где холодильник включает второй органический цикл Ренкина (ОЦР) и соответствующую
рабочую текучую среду, выполненные с возможностью выработки электроэнергии.
4. Топливный элемент комбинированного цикла по п. 3, где утилизационный цикл выполнен с возможностью передачи тепла рабочей текучей среде второго ОЦР для увеличения производства электроэнергии, вырабатываемой посредством второго ОЦР.
5. Топливный элемент комбинированного цикла по п. 1, где двигатель сгорания включает газопоршневой двигатель.
6. Топливный элемент комбинированного цикла по п. 1, где двигатель сгорания включает газовую турбину.
7. Топливный элемент комбинированного цикла по п. 1, дополнительно включающий рекуператор, выполненный с возможностью извлечения тепла из очищенного топлива и дополнительного нагревания углеводородного топлива и отходящего газа топливного элемента, поступающих из него в установку риформинга.
8. Топливный элемент комбинированного цикла, включающий:
топливный элемент, включающий анод, выполненный с возможностью образования отходящего газа, причем анод включает вход и выход;
систему риформинга углеводородного топлива, выполненную с возможностью смешивания углеводородного топлива с отходящим газом топливного элемента ниже по потоку от топливного элемента и частичного или полного преобразования углеводородного топлива в водород (Н2) и монооксид углерода (СО), а также выполненную с возможностью разделения подвергнутого риформингу топлива на первую часть и оставшуюся часть;
канал для топлива, выполненный с возможностью отведения первой части подвергнутого риформингу топлива на вход анода топливного элемента;
первый органический цикл Ренкина (ОЦР) и соответствующую рабочую текучую среду, совместно выполненные с возможностью удаления тепла из
оставшейся части подвергнутого риформингу топлива и выработки электроэнергии из него;
утилизационный цикл, включающий двигатель внешнего или внутреннего сгорания, приводимый в действие охлажденной оставшейся частью подвергнутого риформингу топлива, выходящей из первого ОЦР;
второй органический цикл Ренкина (ОЦР), выполненный с возможностью удаления тепла из первой части подвергнутого риформингу топлива, и
устройство для очистки топлива, причем второй ОЦР и устройство для очистки топлива совместно выполнены с возможностью получения очищенного топлива посредством удаления воды и диоксида углерода из первой части подвергнутого риформингу топлива перед отведением первой части подвергнутого риформингу топлива на вход анода.
9. Топливный элемент комбинированного цикла по п. 8, где топливный элемент включает твердооксидный топливный элемент (ТОТЭ).
10. Топливный элемент комбинированного цикла по п. 8, где утилизационный цикл выполнен с возможностью передачи тепла рабочей текучей среде первого ОЦР для увеличения производства электроэнергии, вырабатываемой посредством первого ОЦР.
11. Топливный элемент комбинированного цикла по п. 8, где двигатель сгорания включает газопоршневой двигатель.
12. Топливный элемент комбинированного цикла по п. 8, где двигатель сгорания включает газовую турбину.
13. Топливный элемент комбинированного цикла по п. 8, дополнительно включающий рекуператор, выполненный с возможностью извлечения тепла из очищенного топлива и дополнительного нагревания углеводородного топлива и отходящего газа топливного элемента, поступающих из него в установку риформинга.
14. Топливный элемент комбинированного цикла, включающий:
топливный элемент, включающий анод, выполненный с возможностью выработки тепла, причем анод включает вход и выход;
систему риформинга углеводородного топлива, выполненную с возможностью смешивания углеводородного топлива с отходящим газом топливного элемента ниже по потоку от топливного элемента и частичного или полного преобразования углеводородного топлива в водород (Н2) и монооксид углерода (СО), а также выполненную с возможностью разделения подвергнутого риформингу топлива на первую часть и оставшуюся часть;
первый органический цикл Ренкина (ОЦР), выполненный с возможностью удаления тепла из первой части подвергнутого риформингу топлива;
устройство для очистки топлива, причем первый ОЦР и устройство для очистки топлива совместно выполнены с возможностью получения очищенного топлива посредством удаления воды и диоксида углерода из первой части подвергнутого риформингу топлива;
рекуператор, выполненный с возможностью извлечения тепла из очищенного топлива и передачи извлеченного тепла топливу и отходящему газу, поступающим в систему риформинга;
канал для топлива, выполненный с возможностью отведения нагретого и очищенного топлива на вход анода топливного элемента;
второй ОЦР, выполненный с возможностью удаления тепла из оставшейся части подвергнутого риформингу топлива и выработки электроэнергии из него, и
утилизационный цикл, включающий двигатель внешнего или внутреннего сгорания, приводимый в действие охлажденной оставшейся частью подвергнутого риформингу топлива, выходящей из второго ОЦР.
15. Топливный элемент комбинированного цикла по п. 14, где топливный элемент включает твердооксидный топливный элемент.
16. Топливный элемент комбинированного цикла по п. 14, где первый ОЦР и второй ОЦР объединены с образованием единственного ОЦР, выполненного с возможностью как удаления тепла из первой части
подвергнутого риформингу топлива, так и удаления тепла из оставшейся части подвергнутого риформингу топлива и выработки электроэнергии из него.
17. Топливный элемент комбинированного цикла по п. 14, где утилизационный цикл выполнен с возможностью передачи тепла рабочей текучей среде второго ОЦР для увеличения производства электроэнергии, вырабатываемой посредством второго ОЦР.
18. Топливный элемент комбинированного цикла по п. 14, где двигатель сгорания включает газопоршневой двигатель.
19. Топливный элемент комбинированного цикла по п. 14, где двигатель сгорания включает газовую турбину.
20. Топливный элемент комбинированного цикла, включающий:
топливный элемент, включающий анод, выполненный с возможностью образования отходящего газа, причем анод включает вход и выход;
систему риформинга углеводородного топлива, выполненную с возможностью смешивания углеводородного топлива с отходящим газом топливного элемента ниже по потоку от топливного элемента и частичного или полного преобразования углеводородного топлива в водород (Н2) и монооксид углерода (СО) с образованием подвергнутого риформингу топлива;
рекуператор, выполненный с возможностью удаления тепла из подвергнутого риформингу топлива и нагревания углеводородного топлива, поступающего в установку риформинга;
систему охлаждения, выполненную с возможностью удаления тепла из подвергнутого риформингу топлива;
канал для топлива, выполненный с возможностью отведения первой части охлажденного подвергнутого риформингу топлива на вход анода, и
утилизационный цикл, включающий двигатель внешнего или внутреннего сгорания, приводимый в действие оставшейся частью охлажденного подвергнутого риформингу топлива.
21. Топливный элемент комбинированного цикла по п. 20, где система охлаждения включает:
холодильник, выполненный с возможностью охлаждения подвергнутого риформингу топлива;
низкотемпературный вентилятор, выполненный с возможностью сообщения движущей силы потоку подвергнутого риформингу топлива, выходящему из холодильника, и
высокотемпературный рекуператор, выполненный с возможностью удаления тепла из подвергнутого риформингу топлива, поступающего в холодильник, а также выполненный с возможностью передачи тепла, удаленного из подвергнутого риформингу топлива, поступающего в холодильник, подвергнутому риформингу топливу, выходящему из низкотемпературного вентилятора.
22. Топливный элемент комбинированного цикла по п. 20, где топливный элемент включает твердооксидный топливный элемент.
23. Топливный элемент комбинированного цикла по п. 20, где двигатель сгорания включает газопоршневой двигатель.
24. Топливный элемент комбинированного цикла по п. 20, где двигатель сгорания включает газовую турбину.
RU2013143397/07A 2011-03-31 2012-03-28 Высокоэффективная система преобразования и рециркуляции на основе твердооксидного топливного элемента RU2601873C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/077,066 US20120251899A1 (en) 2011-03-31 2011-03-31 Solid-oxide fuel cell high-efficiency reform-and-recirculate system
US13/077,066 2011-03-31
PCT/US2012/030816 WO2013025256A2 (en) 2011-03-31 2012-03-28 Solid-oxide fuel cell high-efficiency reform-and-recirculate system

Publications (2)

Publication Number Publication Date
RU2013143397A RU2013143397A (ru) 2015-05-10
RU2601873C2 true RU2601873C2 (ru) 2016-11-10

Family

ID=46927673

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013143397/07A RU2601873C2 (ru) 2011-03-31 2012-03-28 Высокоэффективная система преобразования и рециркуляции на основе твердооксидного топливного элемента

Country Status (6)

Country Link
US (1) US20120251899A1 (ru)
EP (1) EP2692008B1 (ru)
JP (2) JP6162100B2 (ru)
CN (1) CN103443983B (ru)
RU (1) RU2601873C2 (ru)
WO (1) WO2013025256A2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2702136C1 (ru) * 2018-12-28 2019-10-04 Общество с ограниченной ответственностью "Научно-исследовательский центр "ТОПАЗ" (ООО "НИЦ "ТОПАЗ") Энергоустановка на основе твердооксидных топливных элементов с высоким коэффициентом полезного действия
RU2707351C1 (ru) * 2019-02-14 2019-11-26 Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур Российской академии наук (ОИВТ РАН) Гибридная установка для выработки тепловой и электроэнергии

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7818969B1 (en) 2009-12-18 2010-10-26 Energyield, Llc Enhanced efficiency turbine
US9819038B2 (en) 2011-03-31 2017-11-14 General Electric Company Fuel cell reforming system with carbon dioxide removal
US20120251899A1 (en) * 2011-03-31 2012-10-04 General Electric Company Solid-oxide fuel cell high-efficiency reform-and-recirculate system
DE102012005121A1 (de) * 2012-03-14 2013-09-19 Vaillant Gmbh Kühlsystem für eine Brennstoffzelle
US10622653B2 (en) * 2013-03-14 2020-04-14 Battelle Memorial Institute High power density solid oxide fuel cell steam reforming system and process for electrical generation
US10361444B2 (en) 2013-12-31 2019-07-23 General Electric Company Solid-oxide fuel cell systems
US10256496B2 (en) * 2014-07-01 2019-04-09 General Electric Company Power generation systems and methods utilizing cascaded fuel cells
US9819192B2 (en) 2014-07-29 2017-11-14 General Electric Company Solid oxide fuel cell-based power generation and delivery system and method of operating the same
CN105576268B (zh) * 2014-10-08 2019-02-15 通用电气公司 用于控制流量比的系统和方法
US10581106B2 (en) 2016-09-30 2020-03-03 Cummins Enterprise Llc Interconnect for an internally-manifolded solid oxide fuel cell stack; and related methods and power systems
US10854899B2 (en) 2016-11-04 2020-12-01 Cummins Enterprise Llc Power generation system using cascaded fuel cells and associated methods thereof
KR101898788B1 (ko) * 2016-12-30 2018-09-13 주식회사 두산 연료처리장치
US10724432B2 (en) 2017-11-07 2020-07-28 General Electric Company Integrated fuel cell and engine combustor assembly
CN108649246A (zh) * 2018-05-15 2018-10-12 张凯 燃料水解气化发电装置及发电效率预测方法
US10642716B1 (en) 2019-02-07 2020-05-05 Fujitsu Limited Automated software program repair
CN110863874A (zh) * 2019-11-08 2020-03-06 中国第一汽车股份有限公司 一种燃料电池汽车的驱动助力系统及燃料电池汽车
JP7167902B2 (ja) * 2019-11-11 2022-11-09 トヨタ自動車株式会社 燃料電池システム
CN112901376A (zh) * 2019-11-19 2021-06-04 丰港醇氢动力(盐城)有限公司 一种以甲醇为燃料的氢能增程系统
US11745891B2 (en) * 2020-04-14 2023-09-05 Raytheon Technologies Corporation Aircraft fuel system with electrochemical hydrogen compressor
CN113173068A (zh) * 2021-04-13 2021-07-27 武汉理工大学 一种动力混合装置及其运行启动方法
CN114483386A (zh) * 2022-01-25 2022-05-13 武汉理工大学 基于低温等离子体的燃料重整动力系统
CN114583222A (zh) * 2022-03-11 2022-06-03 吉林大学 一种基于固体氧化物燃料电池和内燃机的联合发电系统
CN114914497B (zh) * 2022-04-29 2024-04-02 哈尔滨工业大学 一种氨重整制氢燃料电池与内燃机混合动力系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2239931C2 (ru) * 2001-01-15 2004-11-10 Касио Компьютер Ко., Лтд. Система энергоснабжения и устройство, приводимое в действие системой энергоснабжения
EP1947723A2 (de) * 2007-01-16 2008-07-23 J. Eberspächer GmbH & Co. KG Energiebereitstellungssystem
US20080187789A1 (en) * 2007-02-05 2008-08-07 Hossein Ghezel-Ayagh Integrated fuel cell and heat engine hybrid system for high efficiency power generation
WO2011028808A2 (en) * 2009-09-02 2011-03-10 Bloom Energy Corporation Multi-stream heat exchanger for a fuel cell system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129410A (ja) * 1984-11-28 1986-06-17 Mitsui Eng & Shipbuild Co Ltd 複合発電プラント
JPH07118329B2 (ja) * 1986-04-07 1995-12-18 三菱電機株式会社 溶融炭酸塩型燃料電池用改質触媒
US5510201A (en) * 1992-04-24 1996-04-23 H Power Corporation Method of operating a fuel cell wherein hydrogen is generated by providing iron in situ
JPH11233129A (ja) * 1998-02-17 1999-08-27 Mitsubishi Heavy Ind Ltd 固体電解質型燃料電池発電システム
JP4342172B2 (ja) * 2002-01-15 2009-10-14 大阪瓦斯株式会社 エネルギー併給システム
US7150143B2 (en) * 2003-07-21 2006-12-19 General Electric Company Hybrid fuel cell-pulse detonation power system
US20050171736A1 (en) * 2004-02-02 2005-08-04 United Technologies Corporation Health monitoring and diagnostic/prognostic system for an ORC plant
US7428816B2 (en) * 2004-07-16 2008-09-30 Honeywell International Inc. Working fluids for thermal energy conversion of waste heat from fuel cells using Rankine cycle systems
JP2006107945A (ja) * 2004-10-06 2006-04-20 Toyota Motor Corp 燃料電池システム
CA2585624C (en) * 2004-10-26 2010-06-22 Ngk Insulators, Ltd. Steam reforming apparatus and method for steam reforming using the same, and industrial furnace
US20090130500A1 (en) * 2005-11-18 2009-05-21 Wozniczka Boguslaw M Method of operating a fuel cell stack at low pressure and low power conditions
JP2007323969A (ja) * 2006-06-01 2007-12-13 Fuji Electric Holdings Co Ltd 燃料電池発電装置
US7575611B2 (en) * 2006-08-09 2009-08-18 Ultracell Corporation Fuel processor for use in a fuel cell system
US20080163625A1 (en) * 2007-01-10 2008-07-10 O'brien Kevin M Apparatus and method for producing sustainable power and heat
KR100872225B1 (ko) * 2007-11-05 2008-12-05 엘지전자 주식회사 냉장고의 제어방법
US20120251899A1 (en) * 2011-03-31 2012-10-04 General Electric Company Solid-oxide fuel cell high-efficiency reform-and-recirculate system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2239931C2 (ru) * 2001-01-15 2004-11-10 Касио Компьютер Ко., Лтд. Система энергоснабжения и устройство, приводимое в действие системой энергоснабжения
EP1947723A2 (de) * 2007-01-16 2008-07-23 J. Eberspächer GmbH & Co. KG Energiebereitstellungssystem
US20080187789A1 (en) * 2007-02-05 2008-08-07 Hossein Ghezel-Ayagh Integrated fuel cell and heat engine hybrid system for high efficiency power generation
WO2011028808A2 (en) * 2009-09-02 2011-03-10 Bloom Energy Corporation Multi-stream heat exchanger for a fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2702136C1 (ru) * 2018-12-28 2019-10-04 Общество с ограниченной ответственностью "Научно-исследовательский центр "ТОПАЗ" (ООО "НИЦ "ТОПАЗ") Энергоустановка на основе твердооксидных топливных элементов с высоким коэффициентом полезного действия
RU2707351C1 (ru) * 2019-02-14 2019-11-26 Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур Российской академии наук (ОИВТ РАН) Гибридная установка для выработки тепловой и электроэнергии

Also Published As

Publication number Publication date
CN103443983B (zh) 2017-04-26
WO2013025256A2 (en) 2013-02-21
JP2014512078A (ja) 2014-05-19
JP2016195120A (ja) 2016-11-17
EP2692008B1 (en) 2018-10-24
WO2013025256A3 (en) 2013-04-18
RU2013143397A (ru) 2015-05-10
US20120251899A1 (en) 2012-10-04
JP6162100B2 (ja) 2017-07-12
EP2692008A2 (en) 2014-02-05
JP6356728B2 (ja) 2018-07-11
CN103443983A (zh) 2013-12-11

Similar Documents

Publication Publication Date Title
RU2601873C2 (ru) Высокоэффективная система преобразования и рециркуляции на основе твердооксидного топливного элемента
US20200014046A1 (en) Solid-oxide fuel cell systems
RU2589884C2 (ru) Система рециркуляции для повышения производительности топливного элемента с улавливанием со2
US9819038B2 (en) Fuel cell reforming system with carbon dioxide removal
US20160260991A1 (en) Power generation system utilizing a fuel cell integrated with a combustion engine
CN207542331U (zh) 一种串联式熔融碳酸盐燃料电池发电系统
EP2719008A1 (en) Fuel cell and reciprocating gas/diesel engine hybrid system
CN107785599B (zh) 一种串联式熔融碳酸盐燃料电池发电系统和方法
CN108417876A (zh) 一种高温燃料电池耦合发电系统及方法
US20140060461A1 (en) Power generation system utilizing a fuel cell integrated with a combustion engine
RU2653055C1 (ru) Энергоустановка на основе твердооксидных топливных элементов
KR101603252B1 (ko) 초임계 이산화탄소 발전 사이클과 연료전지가 연계된 시스템
JP7364831B2 (ja) 縦続接続された燃料電池を用いる発電システムおよびそれに関連する方法
KR20110091304A (ko) 주기용 엔진의 폐열을 이용하는 보기용 연료전지 시스템
M Budzianowski et al. Solid-oxide fuel cells in power generation applications: a review
EP2963722B1 (en) Power generation systems and methods utilizing cascaded fuel cells
CN215418261U (zh) 一种熔融碳酸盐燃料电池发电系统
JP3546234B2 (ja) 固体電解質型燃料電池・内燃式スターリングエンジンコンバインドシステム
CN113594523A (zh) 一种熔融碳酸盐燃料电池发电系统