RU2601204C1 - Способ изготовления высокостабильного тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы - Google Patents

Способ изготовления высокостабильного тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы Download PDF

Info

Publication number
RU2601204C1
RU2601204C1 RU2015119941/28A RU2015119941A RU2601204C1 RU 2601204 C1 RU2601204 C1 RU 2601204C1 RU 2015119941/28 A RU2015119941/28 A RU 2015119941/28A RU 2015119941 A RU2015119941 A RU 2015119941A RU 2601204 C1 RU2601204 C1 RU 2601204C1
Authority
RU
Russia
Prior art keywords
resistance
temperature
strain
nimems
contact pads
Prior art date
Application number
RU2015119941/28A
Other languages
English (en)
Inventor
Евгений Михайлович Белозубов
Нина Евгеньевна Белозубова
Валерий Анатольевич Васильев
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Пензенский государственный университет" (ФГБОУ ВО "Пензенский государственный университет")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Пензенский государственный университет" (ФГБОУ ВО "Пензенский государственный университет") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Пензенский государственный университет" (ФГБОУ ВО "Пензенский государственный университет")
Priority to RU2015119941/28A priority Critical patent/RU2601204C1/ru
Application granted granted Critical
Publication of RU2601204C1 publication Critical patent/RU2601204C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики объектов длительного функционирования. Технический результат: повышение временной и температурной стабильности, ресурса, срока службы, а также уменьшение времени готовности и погрешности в условиях воздействия нестационарных температур и повышенных виброускорений, а также возможность использования диагонали питания в качестве датчика температуры тензорезисторов интеллектуальных датчиков давления на основе НиМЭМС. Способ изготовления высокостабильного тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы (НиМЭМС) заключается в полировании поверхности мембраны, формировании на ней диэлектрической пленки и тензоэлементов с низкоомными перемычками и контактными площадками между ними с использованием шаблона тензочувствительного слоя. При этом производятся измерения сопротивлений тензорезисторов при воздействующих тестовых температурах, определяются температурные коэффициенты сопротивлений тензорезисторов в диапазоне воздействующих температур. Далее производится вычисление по ним критерия стабильности и сравнение его с тестовыми значениями. Определяют соответственно первый и вторые критерии стабильности по соотношениям ψτ01j=|(α2j4j)-(α1j3j)|, ψij02(α)=αij, где α1j, α2j, α3j, α4j, - температурный коэффициент сопротивления 1, 2, 3, 4-ого тензорезистора НиМЭМС в j-ом температурном диапазоне; αij - температурный коэффициент сопротивления i-ого тензорезистора НиМЭМС в j-ом температурном диапазоне. Кроме того, тензоэлементы, перемычки, контактные площадки и выводные проводники соединяют в мостовую измерительную цепь и определяют третьи критерии стабильности по соотношениям ψkj03(α)=αkj, где αkj - температурный коэффициент сопротивления k-ой диагонали мостовой измерительной цепи НиМЭМС в j-ом температурном диапазоне. В случае если значения первого, второго, а также третьего критерия находятся в заданных диапазонах, которые определяются экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции. 1 з.п. ф-лы, 2 ил.

Description

Предлагаемое изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики технически сложных объектов длительного функционирования.
Известен способ изготовления тензорезисторного датчика давления на основе тонкопленочной НиМЭМС, предназначенного для использования в системах управления, контроля и диагностики технически сложных объектов длительного функционирования, заключающийся в полировании поверхности мембраны, формировании на ней диэлектрической пленки и тензоэлементов с низкоомными перемычками и контактными площадками между ними с использованием шаблона тензочувствительного слоя, имеющего конфигурацию тензоэлементов в зонах, совмещаемых с низкоомными перемычками и контактными площадками, в виде полос, включающих изображения тензоэлементов и их продолжения в два противоположных направления, а в зонах, совмещаемых с контактными площадками, - частично совпадающую с конфигурацией контактных площадок и удаленных от полос участков, присоединении выводных проводников к контактным площадкам в областях, удаленных от полос участков [1].
Недостатком известного способа изготовления является сравнительно низкая временная стабильность вследствие отсутствия выявления на ранних стадиях изготовления потенциально нестабильных НиМЭМС. Отсутствие такого выявления при эксплуатации приводит к разному временному и температурному изменению сопротивлений тензорезисторов НиМЭМС, в том числе вследствие различной скорости деградационных и релаксационных процессов в тензорезисторах, включенных в противолежащие плечи мостовой измерительной схемы. Недостаточная временная и температурная стабильность приводит к увеличению временной и температурной погрешности и уменьшению ресурса и срока службы датчика.
Известен способ изготовления тензорезисторного датчика давления на основе тонкопленочной НиМЭМС, предназначенного для использования в системах управления, контроля и диагностики технически сложных объектов длительного функционирования, выбранный в качестве прототипа, заключающийся в полировании поверхности мембраны, формировании на ней диэлектрической пленки и тензоэлементов с низкоомными перемычками и контактными площадками между ними с использованием шаблона тензочувствительного слоя, имеющего конфигурацию тензоэлементов в зонах, совмещаемых с низкоомными перемычками и контактными площадками, в виде полос, включающих изображения тензоэлементов и их продолжения в два противоположных направления, а в зонах, совмещаемых с контактными площадками, - частично совпадающую с конфигурацией контактных площадок и удаленных от полос участков, присоединении выводных проводников к контактным площадкам в областях, удаленных от полос участков, воздействии тестовых пониженных и повышенных температур, измерении сопротивлений тензорезисторов при воздействующих температурах, определении температурных коэффициентов сопротивлений тензорезисторов в диапазоне воздействующих температур, вычислении по ним критерия стабильности и сравнении его с тестовыми значениями [2].
Недостатком известного способа изготовления является сравнительно низкая временная и температурная стабильность тензорезисторов вследствие отсутствия выявления на ранних стадиях изготовления потенциально нестабильных НиМЭМС с несовершенной внутренней структурой. Отсутствие такого выявления приводит к разному временному и температурному изменению сопротивлений тензорезисторов НиМЭМС в процессе эксплуатации, а следовательно, к увеличению временной и температурной погрешности и уменьшению ресурса и срока службы датчика. Кроме того, низкая временная и температурная стабильность тензорезисторов НиМЭМС является причиной сравнительно высоких значений времени готовности и погрешности при воздействии нестационарных температур и повышенных виброускорений.
Целью предлагаемого изобретения является повышение временной и температурной стабильности, ресурса, срока службы, а также уменьшение времени готовности и погрешности в условиях воздействия нестационарных температур и повышенных виброускорений за счет более точного выявления на ранних стадиях изготовления потенциально нестабильных НиМЭМС, обеспечивающего пропуск на дальнейшую сборку тензорезисторов и мостовой измерительной цепи НиМЭМС с необходимой внутренней структурой (в пределах выбранных критериев) при помощи жесткой регламентации величин и знака температурных коэффициентов сопротивления тензорезисторов и мостовой измерительной цепи.
Поставленная цель достигается тем, что в способе изготовления высокостабильного тензорезисторного датчика давления на основе тонкопленочной НиМЭМС, заключающемся в полировании поверхности мембраны, формировании на ней диэлектрической пленки и тензоэлементов с низкоомными перемычками и контактными площадками между ними с использованием шаблона тензочувствительного слоя, имеющего конфигурацию тензоэлементов в зонах, совмещаемых с низкоомными перемычками и контактными площадками, в виде полос, включающих изображения тензоэлементов и их продолжения в два противоположных направления, а в зонах, совмещаемых с контактными площадками, - частично совпадающую с конфигурацией контактных площадок и удаленных от полос участков, присоединении выводных проводников к контактным площадкам в областях, удаленных от полос участков, воздействии тестовых пониженных и повышенных температур, измерении сопротивлений тензорезисторов при воздействующих температурах, определении температурных коэффициентов сопротивлений тензорезисторов в диапазоне воздействующих температур, вычислении по ним критерия стабильности и сравнении его с тестовыми значениями, в соответствии с заявляемым изобретением определение температурных коэффициентов сопротивлений тензорезисторов проводят в поддиапазонах воздействующих температур, охватывающих в совокупности весь диапазон температур при эксплуатации, и определяют соответственно первый и вторые критерии стабильности по соотношениям ψτ01j=|(α2j4j)-(α1j3j)|, ψij02(α)=αij, где α1j, α2j, α3j, α4j, - температурный коэффициент сопротивления 1, 2, 3, 4-ого тензорезистора НиМЭМС в j-ом температурном диапазоне; αij, - температурный коэффициент сопротивления i-ого тензорезистора НиМЭМС в j-ом температурном диапазоне, и, если |ψτ01j|<|ψτ01jmax|, ψij02minij02(α)<ψij02max, где ψτ01jmax, ψij02min, ψij02max - соответственно предельно допустимое максимальное значение первого критерия стабильности, предельно допустимое минимальное и максимальное значение вторых критериев стабильности i-ого тензорезистора НиМЭМС в j-ом температурном диапазоне, которые определяются экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции.
Кроме того, в соответствии с предлагаемым изобретением тензоэлементы, перемычки, контактные площадки и выводные проводники соединяют в мостовую измерительную цепь и подвергают ее воздействию тестовых пониженных и повышенных температур, определяют температурные коэффициенты сопротивлений диагоналей мостовой измерительной цепи в поддиапазонах воздействующих температур, охватывающих в совокупности весь диапазон температур при эксплуатации, и определяют третьи критерии стабильности по соотношениям ψkj03(α)=αkj, где αkj - температурный коэффициент сопротивления k-ой диагонали мостовой измерительной цепи НиМЭМС в j-ом температурном диапазоне, и, если ψkj03minkj03kj03max, где ψkj03min, ψkj03max - соответственно предельно допустимое минимальное и максимальное значение третьих критериев стабильности k-ой диагонали мостовой измерительной цепи НиМЭМС в j-ом температурном диапазоне, которые определяется экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции.
Заявляемый способ реализуется следующим образом. Изготавливают (например, из сплава 36НКВХБТЮ) мембрану с периферийным основанием в виде оболочки вращения методами лезвийной обработки с применением на последних стадиях электроэрозионной обработки. Полируют поверхность мембраны с использованием электрохимикомеханической доводки и полировки или алмазной доводки и полировки. Методами тонкопленочной технологии на планарной поверхности мембраны последовательно наносят сплошными слоями диэлектрическую пленку в виде структуры SiO-SiO2 с подслоем хрома (поз. 1, Фиг. 1), тензочувствительную пленку из сплава Х20Н75Ю (поз. 2, Фиг. 1). При формировании перемычек и контактных площадок методом фотолитографии низкомную пленку V-Au, (золото с подслоем ванадия) (поз. 3, 4, Фиг. 1) наносят сплошным слоем на тензочувствительную пленку (из сплава Х20Н75Ю). Формируют перемычки и контактные площадки методом фотолитографии с использованием шаблона перемычек и контактных площадок. Формирование тензоэлементов проводят методом фотолитографии с использованием ионно-химического травления в среде аргона и шаблона тензочувствительного слоя, имеющего конфигурацию тензоэлементов в зонах, совмещаемых с низкоомными перемычками и контактными площадками, в виде полос, включающих изображения тензоэлементов и их продолжения в два противоположных направления, а в зонах, совмещаемых с контактными площадками - частично совпадающую с конфигурацией контактных площадок и удаленных от полос участков. После присоединения выводных проводников к контактным площадкам до герметизации тензоэлементов с перемычками и контактными площадками помещают упругие элементы со сформированными на них тензорезисторами в специальное технологическое приспособление, обеспечивающее защиту от воздействия окружающей среды и электрическое контактирование с использованием микросварки выводных проводников с измерительной цепью. Воздействуют на НиМЭМС тестовыми пониженными и повышенными температурами. Измеряют сопротивления тензорезисторов при воздействующих температурах. Определение температурных коэффициентов сопротивлений тензорезисторов проводят в поддиапазонах воздействующих температур, охватывающих в совокупности весь диапазон температур при эксплуатации. Например, если весь диапазон температур при эксплуатации датчика находится в пределах от минус 196°С до 100°С, то определение температурных коэффициентов сопротивлений тензорезисторов проводят в поддиапазонах температур минус 196°С… минус 150°С, минус 150°С… минус 100°С, минус 100°С… минус 50°С, минус 50°С…0°С, 0°С…50°С, 50°С…100°С. При этом, вследствие характерной особенности тонкопленочных тензорезисторов их сопротивления зависят не только от их температуры, но и от деформационного состояния. Определяют соответственно первый и вторые критерии стабильности по соотношениям ψτ01j=|(α2j4j)-(α1j3j)|, ψij02(α)=αij, где α1j, α2j, α3j, α4j, - температурный коэффициент сопротивления 1, 2, 3, 4-ого тензорезистора НиМЭМС в j-ом температурном диапазоне; αij, - температурный коэффициент сопротивления i-ого тензорезистора НиМЭМС в j-ом температурном диапазоне. Если |ψτ01j|<|ψτ01jmax|, ψij02minij02(α)<ψij02max, где ψτ01jmax, ψij02min, ψij02max - соответственно предельно допустимое максимальное значение первого критерия стабильности, предельно допустимое минимальное и максимальное значение вторых критериев стабильности, i-ого тензорезистора НиМЭМС в j-ом температурном диапазоне, которые определяются экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции.
Кроме того, в соответствии с предлагаемым изобретением тензоэлементы, перемычки, контактные площадки и выводные проводники соединяют в мостовую измерительную цепь (Фиг. 2) и подвергают ее воздействию тестовых пониженных и повышенных температур. Определяют температурные коэффициенты сопротивлений диагоналей мостовой измерительной цепи в поддиапазонах воздействующих температур, охватывающих в совокупности весь диапазон температур при эксплуатации. Определяют третьи критерии стабильности по соотношениям ψkj03(α)=αkj, где αkj - температурный коэффициент сопротивления k-ой диагонали мостовой измерительной цепи НиМЭМС в j-ом температурном диапазоне, и, если ψkj03minkj03kj03max, где ψkj03min, ψkj03max - соответственно предельно допустимое минимальное и максимальное значение третьих критериев стабильности k-ой диагонали мостовой измерительной цепи НиМЭМС в j-ом температурном диапазоне, которые определяются экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции. Типичные реальные значения ψτ01jmax=1×10-6 °C-1, ψij02min=1×10-5 °C-1, ψij02max=5×10-5 °C-1.
В соответствии с п. 2 формулы изобретения тензоэлементы, перемычки, контактные площадки и выводные проводники соединяют в мостовую измерительную цепь и подвергают ее воздействию тестовых пониженных и повышенных температур. Определяют температурные коэффициенты сопротивлений диагоналей мостовой измерительной цепи в поддиапазонах воздействующих температур, охватывающих в совокупности весь диапазон температур при эксплуатации. Определяют критерии стабильности по соотношениям ψkj(α)=αkj, где αkj - температурный коэффициент сопротивления k-ой диагонали мостовой измерительной цепи НиМЭМС в j-ом температурном диапазоне, и, если ψkjminkj(α)<ψkjmax, где ψkjmin, ψkjmax - соответственно предельно допустимое минимальное и максимальное значение критерия временной стабильности k-ой диагонали мостовой измерительной цепи НиМЭМС в j-ом температурном диапазоне, которое определяется экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции. Типичные реальные значения ψkjmin=1×10-5 °C-1, ψkjmax=5×10-5.
Установление причинно-следственной связи заявляемых признаков и достигаемого технического эффекта проведем исходя из установленных в результате теоретических и экспериментальных исследований зависимости величины и знака ТКС тензорезисторов НиМЭМС из X20H75Ю-V-Au от их внутренней структуры (наличие примесей, дефектов, окислов и т.п.). Характерным примером является спонтанное изменение температурных коэффициентов сопротивлений, наблюдаемых на тензорезисторах НиМЭМС в некоторых температурных диапазонах. При этом часто анализ тонкопленочных структур не позволяет даже при значительном увеличении выявить видимые дефекты, которые могли бы привести к таким изменениям. Одной из причин случайных изменений температурных коэффициентов сопротивлений тензорезисторов является влияние наноструктур оксидов переходных металлов. Переходные металлы хром, ванадий используются в тензорезисторах НиМЭМС как в качестве компонента тензорезистивного сплава (хром в сплаве Х20Н75Ю), так и в качестве пленки, обеспечивающей адгезию контактных площадок и тензорезисторов (ванадий). Исследования показали, что при использовании термического метода напыления тонкопленочных тензорезисторов они структурированы в виде более тонких слоев хрома, никеля и т.д. В результате различных причин - нарушение режимов технологического процесса, отсутствие единого вакуумного цикла при формировании тензорезисторов и контактных площадок происходит образование широкой гаммы окислов хрома и ванадия. Степень окисления хрома зависит от скорости напыления, концентрации остаточного газа и температуры подложки, от количества хрома на поверхности пленки. При этом температурный коэффициент сопротивления становится отрицательным для пленок с высоким содержанием хрома. Что особенно важно для тензорезисторов НиМЭМС, по типу проводимости окислы переходных металлов могут быть диэлектриками, полупроводниками или металлами. Например, ванадий с кислородом образует большое количество оксидных фаз, в кристаллической решетке атомы ванадия могут иметь различную степень окисления: VO, V2O3, фазы гомологического ряда VnO2n-1, VO2, V6O13 и V2O5. Субоксиды VOx(x<l), монооксид VO, а также V7O13 проявляют металлические свойства. Пятиокись ванадия - диэлектрик с широкой запрещенной зоной. Остальные оксиды в основном состоянии являются полупроводниками с относительно невысоким удельным сопротивлением. Благодаря существованию незаполненных электронных d-оболочек, в соединениях с кислородом элементы переходных групп образуют сложные системы с переменной валентностью, обладающие различными свойствами. Таким образом, отличительным свойством оксидов переходных металлов является то, что в них наблюдается переходы "металл-изолятор", "металл-полупроводник" при некоторой критической температуре. Изменение температурного коэффициента сопротивления и величина критической температуры перехода зависят от типа окисла. При этом, например, для оксидов ванадия критическая температура принимает значения в пределах от 70 до 450 К. Указанный диапазон температур для современных тонкопленочных НиМЭМС является рабочим. Поэтому вероятность изменения температурного коэффициента сопротивления окислов переходных металлов высока. Наличие примесей и дефектов, также приводит к образованию двухфазных систем типа «металл-диэлектрик» и «металл-полупроводник». Отклонения состава от необходимых концентраций для двухфазных систем типа «металл-диэлектрик» ведут к высоким температурным коэффициентам сопротивления и плохой стабильности пленки. Наличие двухфазных систем типа «металл-полупроводник» приводит к отрицательному значению температурного коэффициента сопротивления и низкой стабильности. Пористые пленки по соотношению общей толщины к толщине проводящего слоя подобны двухфазным системам. Отрицательной чертой таких пленок является их повышенная окисляемость вследствие того, что они имеют большую поверхность, а, следовательно, низкую временную и температурную стабильность. В частности установлено, что наличие примесей, дефектов, окислов в количестве, превышающем условия термодинамического равновесия, приводит к заниженному значению температурного коэффициента сопротивления. В то же время значительные отклонения от равновесия обязательно приведут к последующему равновесию и изменению температурного коэффициента сопротивления тензорезистора (в течение ресурса работы НиМЭМС). В соответствии с изложенным, определение температурных коэффициентов сопротивлений тензорезисторов в поддиапазонах воздействующих температур, охватывающих в совокупности весь диапазон температур при эксплуатации, и первого дополнительного критерия стабильности, вычисляемого по заявляемому соотношению, и сравнение его с предельно допустимым максимальным значением |ψτ01j|<|ψτ01jmax| обеспечивает выявление на ранней стадии изготовления НиМЭМС с минимальной разностью температурных коэффициентов сопротивления тензорезисторов противолежащих плеч НиМЭМС во всех поддиапазонах воздействующих температур, охватывающих в совокупности весь диапазон температур при эксплуатации. При этом исключаются из производства НиМЭМС, имеющие аномально большие значения разностей температурных коэффициентов сопротивления противолежащих плеч НиМЭМС, а, следовательно, имеющих различные внутренние структуры. Выполнение неравенства ψij02minij02(α)<ψij02max, для вторых критериев стабильности ψij02(α)=αij обеспечивает исключение попадания на последующую сборку НиМЭМС с тензорезисторами, имеющими хотя бы в одном поддиапазоне воздействующих температур отклонение температурного коэффициента сопротивления от заданных границ, а, следовательно, уменьшает вероятность пропуска НиМЭМС с тензорезисторами, имеющими концентрацию примесей, дефектов и окислов переходных металлов выше предельно допустимой. Аналогично выполнение неравенства ψkjminkj(α)<ψkjmax, обеспечивает исключение попадания на последующую сборку НиМЭМС с мостовыми измерительными цепями, имеющими хотя бы в одном поддиапазоне воздействующих температур отклонение температурного коэффициента сопротивления от заданных границ, а, следовательно, уменьшает вероятность пропуска НиМЭМС с мостовыми измерительными цепями, имеющими концентрацию примесей, дефектов и окислов переходных металлов выше предельно допустимой. Кроме того, выполнение неравенства ψkjminkj(α)<ψkjmax, обеспечивает поступление на дальнейшую сборку только НиМЭМС с монотонным изменением сопротивлений диагоналей от температуры, что делает возможным использование диагонали питания мостовой измерительной цепи в качестве датчика температуры тензорезисторов интеллектуальных датчиков давления на основе НиМЭМС.
Внедрение заявляемого способа в производство тензорезисторных датчиков давления на основе тонкопленочных НиМЭМС обеспечивает повышение временной и температурной стабильности при воздействии влияющих факторов при сравнительно небольших затратах, что позволяет соответственно увеличить ресурс и срок службы датчиков. Кроме того, жесткая регламентация величин и знака температурных коэффициентов сопротивления тензорезисторов и мостовой измерительной цепи в целом обеспечивает уменьшение времени готовности, погрешности в условиях воздействия нестационарных температур и повышенных виброускорений, а также использование диагонали питания в качестве датчика температуры тензорезисторов интеллектуальных датчиков давления на основе НиМЭМС.
Таким образом, техническим результатом предлагаемого изобретения является повышение временной и температурной стабильности, ресурса, срока службы, а также уменьшение времени готовности и погрешности в условиях воздействия нестационарных температур и повышенных виброускорений, а также возможность использования диагонали питания в качестве датчика температуры тензорезисторов интеллектуальных датчиков давления на основе НиМЭМС за счет более точного выявления на ранних стадиях изготовления потенциально нестабильных НиМЭМС, обеспечивающего пропуск на дальнейшую сборку тензорезисторов и мостовой измерительной цепи НиМЭМС с необходимой внутренней структурой (в пределах выбранных критериев) при помощи жесткой регламентации величин и знака температурных коэффициентов сопротивления тензорезисторов и мостовой измерительной цепи.
Источники информации
1 RU. Белозубов Е.М., Белозубова Н.Е. Способ изготовления тонкопленочного тензорезисторного датчика давления. Патент РФ №2442115. Бюл. №4 от 10.02.12.
2 RU. Белозубов Е.М., Белозубова Н.Е., Козлова Н.А. Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы. Патент РФ №2498249. Бюл. №31 от 10.11.13.

Claims (2)

1. Способ изготовления высокостабильного тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы (НиМЭМС), заключающийся в полировании поверхности мембраны, формировании на ней диэлектрической пленки и тензоэлементов с низкоомными перемычками и контактными площадками между ними с использованием шаблона тензочувствительного слоя, имеющего конфигурацию тензоэлементов в зонах, совмещаемых с низкоомными перемычками и контактными площадками, в виде полос, включающих изображения тензоэлементов и их продолжения в два противоположных направления, а в зонах, совмещаемых с контактными площадками, - частично совпадающую с конфигурацией контактных площадок и удаленных от полос участков, присоединении выводных проводников к контактным площадкам в областях, удаленных от полос участков, воздействии тестовых пониженных и повышенных температур, измерении сопротивлений тензорезисторов при воздействующих температурах, определении температурных коэффициентов сопротивлений тензорезисторов в диапазоне воздействующих температур, вычислении по ним критерия стабильности и сравнении его с тестовыми значениями, отличающийся тем, что определение температурных коэффициентов сопротивлений тензорезисторов проводят в поддиапазонах воздействующих температур, охватывающих в совокупности весь диапазон температур при эксплуатации, и определяют соответственно первый и вторые критерии стабильности по соотношениям
Figure 00000001
, Ψij02(α)=αij, где α1j, α2j, α3j. α4j - температурный коэффициент сопротивления 1, 2, 3, 4-ого тензорезистора НиМЭМС в j-ом температурном диапазоне; αij - температурный коэффициент сопротивления i-ого тензорезистора НиМЭМС в j-ом температурном диапазоне, и если
Figure 00000002
, Ψij02minij02(α)<Ψij02max, где Ψτ01jmax, Ψij02min, Ψij02max - соответственно предельно допустимое максимальное значение первого критерия стабильности, предельно допустимое минимальное и максимальное значение вторых критериев стабильности i-ого тензорезистора НиМЭМС в j-ом температурном диапазоне, которые определяются экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции.
2. Способ изготовления высокостабильного тензорезисторного датчика давления на основе тонкопленочной НиМЭМС по п. 1, отличающийся тем, что тензоэлементы, перемычки, контактные площадки и выводные проводники соединяют в мостовую измерительную цепь и подвергают ее воздействию тестовых пониженных и повышенных температур, определяют температурные коэффициенты сопротивлений диагоналей мостовой измерительной цепи в поддиапазонах воздействующих температур, охватывающих в совокупности весь диапазон температур при эксплуатации, и определяют третьи критерии стабильности по соотношениям Ψkj03(α)=αkj, где αkj - температурный коэффициент сопротивления k-ой диагонали мостовой измерительной цепи НиМЭМС в j-ом температурном диапазоне, и если Ψkj03minkj03kj03max, где Ψkj03min, Ψkj03max - соответственно предельно допустимое минимальное и максимальное значение третьих критериев стабильности k-ой диагонали мостовой измерительной цепи НиМЭМС в j-ом температурном диапазоне, которые определяются экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции.
RU2015119941/28A 2015-05-26 2015-05-26 Способ изготовления высокостабильного тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы RU2601204C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015119941/28A RU2601204C1 (ru) 2015-05-26 2015-05-26 Способ изготовления высокостабильного тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015119941/28A RU2601204C1 (ru) 2015-05-26 2015-05-26 Способ изготовления высокостабильного тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Publications (1)

Publication Number Publication Date
RU2601204C1 true RU2601204C1 (ru) 2016-10-27

Family

ID=57216527

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015119941/28A RU2601204C1 (ru) 2015-05-26 2015-05-26 Способ изготовления высокостабильного тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Country Status (1)

Country Link
RU (1) RU2601204C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108489652A (zh) * 2018-04-11 2018-09-04 中铁第四勘察设计院集团有限公司 第三轨与受流器之间接触力的确定方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8006564B1 (en) * 2000-11-30 2011-08-30 Orbital Research Inc. Pressure sensor with integrated thermal stabilization and method of using
RU2487328C1 (ru) * 2012-04-09 2013-07-10 Евгений Михайлович Белозубов Способ изготовления высокостабильного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
RU2498249C1 (ru) * 2012-05-23 2013-11-10 Открытое акционерное общество "Научно-исследовательский институт физических измерений" Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
RU2512142C1 (ru) * 2012-09-20 2014-04-10 Открытое акционерное общество "Научно-исследовательский институт физических измерений" Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8006564B1 (en) * 2000-11-30 2011-08-30 Orbital Research Inc. Pressure sensor with integrated thermal stabilization and method of using
RU2487328C1 (ru) * 2012-04-09 2013-07-10 Евгений Михайлович Белозубов Способ изготовления высокостабильного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
RU2498249C1 (ru) * 2012-05-23 2013-11-10 Открытое акционерное общество "Научно-исследовательский институт физических измерений" Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
RU2512142C1 (ru) * 2012-09-20 2014-04-10 Открытое акционерное общество "Научно-исследовательский институт физических измерений" Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108489652A (zh) * 2018-04-11 2018-09-04 中铁第四勘察设计院集团有限公司 第三轨与受流器之间接触力的确定方法及装置

Similar Documents

Publication Publication Date Title
US8723534B2 (en) Methods and apparatus for detection of gaseous corrosive contaminants
RU2498249C1 (ru) Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
US9291543B1 (en) PC board mount corrosion sensitive sensor
EP2902761A1 (en) Temperature sensor
EP0285833A2 (de) Verfahren zur Bestimmung der Gaskonzentrationen in einem Gasgemisch und Sensor zur Messung der Wärmeleitfähigkeit
EP2952863B1 (en) Temperature sensor
US10184777B2 (en) Material damage system and method for determining same
CA2659166A1 (en) Hydrogen gas concentration sensor and apparatus for determining hydrogen gas concentration
US5764073A (en) Method of estimating the reliability of module circuits
US20080244326A1 (en) Prognosis of faults in electronic circuits
CN117421610B (zh) 一种用于电能表运行状态预警的数据异常分析方法
RU2487328C1 (ru) Способ изготовления высокостабильного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
Stoev et al. An approach for assessment of the synchronization between digital temperature sensors
RU2601204C1 (ru) Способ изготовления высокостабильного тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
US20100164506A1 (en) Method for testing an electronics unit
US20150260670A1 (en) Sheet resistance measuring method
CN116713892B (zh) 用于晶圆薄膜磨削的终点检测方法及设备
RU2572527C1 (ru) Способ изготовления датчика давления повышенной стабильности на основе нано- и микроэлектромеханической системы
Fan et al. Abnormal trend detection of sequence-disordered data using EWMA method [wafer fabrication]
RU2512142C1 (ru) Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
RU2594677C1 (ru) Способ изготовления тензорезисторного датчика давления с высокой временной и температурной стабильностью на основе тонкопленочной нано- и микроэлектромеханической системы
RU2505791C1 (ru) Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
CN109029506A (zh) 一种信号采集方法和系统
CN112114009B (zh) 一种具备自我诊断功能的湿度传感器芯片及湿度传感器芯片的自我诊断方法
JP5487579B2 (ja) シリコンウェーハの評価方法および製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170527