RU2505791C1 - Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы - Google Patents

Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы Download PDF

Info

Publication number
RU2505791C1
RU2505791C1 RU2012133888/28A RU2012133888A RU2505791C1 RU 2505791 C1 RU2505791 C1 RU 2505791C1 RU 2012133888/28 A RU2012133888/28 A RU 2012133888/28A RU 2012133888 A RU2012133888 A RU 2012133888A RU 2505791 C1 RU2505791 C1 RU 2505791C1
Authority
RU
Russia
Prior art keywords
output signal
strain
sensor
contact pads
elements
Prior art date
Application number
RU2012133888/28A
Other languages
English (en)
Inventor
Алексей Геннадиевич Дмитриенко
Евгений Михайлович Белозубов
Нина Евгеньевна Белозубова
Original Assignee
Открытое акционерное общество "Научно-исследовательский институт физических измерений"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Научно-исследовательский институт физических измерений" filed Critical Открытое акционерное общество "Научно-исследовательский институт физических измерений"
Priority to RU2012133888/28A priority Critical patent/RU2505791C1/ru
Application granted granted Critical
Publication of RU2505791C1 publication Critical patent/RU2505791C1/ru

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measurement Of Force In General (AREA)

Abstract

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики объектов длительного функционирования. Технический результат: повышение временной стабильности, ресурса, срока службы. Способ изготовления тензорезисторного датчика давления заключается в полировании поверхности мембраны, формировании на ней диэлектрической пленки и тензоэлементов с низкоомными перемычками и контактными площадками между ними с использованием шаблона тензочувствительного слоя, присоединении выводных проводников к контактным площадкам в областях, удаленных от полос участков. После присоединения выводных проводников к контактным площадкам тензоэлементов мембрану НиМЭМС последовательно подвергают циклическому воздействию тестовых значений измеряемого давления Pj, равномерно распределенных от нижнего Р0 до верхнего предела РH и от верхнего РH до нижнего P0 предела измерения датчика при одновременном измерении его выходного сигнала и напряжения питания в каждой точке градуирования, вычисляют по ним критерий временной стабильности по соотношению:
Figure 00000019
2 ил.

Description

Предлагаемое изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем с мостовой измерительной цепью, предназначенным для использования в системах управления, контроля и диагностики технически сложных объектов длительного функционирования.
Известен способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы (НиМЭМС), предназначенного для использования в системах управления, контроля и диагностики технически сложных объектов длительного функционирования, заключающийся в полировании поверхности мембраны, нанесении на нее диэлектрика, формировании на нем тензочувствительной схемы, присоединении контактной колодки к упругому элементу и присоединении контактов колодки к контактным площадкам тензочувствительной схемы, в котором перед нанесением диэлектрика изготавливают диэлектрическую втулку непосредственно в выемке упругого элемента, полируют поверхность мембраны одновременно с полировкой торца втулки, после чего наносят диэлектрик на мембрану упругого элемента и торец втулки и формируют тензосхему на диэлектрике мембраны и втулки [1].
Недостатком известного способа изготовления является сравнительно большая временная нестабильность вследствие различной формы окружных и радиальных тензорезисторов, включенных в противоположные плечи мостовой измерительной цепи. Это связано с тем, что различная форма тензорезисторов приводит к разному временному изменению сопротивления этих тензорезисторов, в том числе вследствие различной скорости деградационных и релаксационных процессов в окружных и радиальных тензорезисторах.
Известен способ изготовления тензорезисторного датчика давления на основе тонкопленочной НиМЭМС, предназначенного для использования в системах управления, контроля и диагностики технически сложных объектов длительного функционирования, заключающийся в полировании поверхности мембраны, формировании на ней диэлектрической пленки и тензоэлементов с низкоомными перемычками и контактными площадками между ними с использованием шаблона тензочувствительного слоя, имеющего конфигурацию тензоэлементов в зонах, совмещаемых с низкоомными перемычками и контактными площадками, в виде полос, включающих изображения тензоэлементов и их продолжения в два противоположных направления, а в зонах, совмещаемых с контактными площадками - частично совпадающую с конфигурацией контактных площадок и удаленных от полос участков, присоединении выводных проводников к контактным площадкам в областях, удаленных от полос участков [2].
Недостатком известного способа изготовления является сравнительно низкая временная стабильность вследствие отсутствия выявления на ранних стадиях изготовления потенциально нестабильных НиМЭМС. Отсутствие такого выявления при эксплуатации приводит к разному временному изменению сопротивления тензорезисторов НиМЭМС, в том числе вследствие различной скорости деградационных и релаксационных процессов в тензорезисторах, включенных в противолежащие плечи мостовой измерительной схемы. Недостаточная временная стабильность приводит к увеличению временной погрешности и уменьшению ресурса и срока службы датчика.
Целью предлагаемого изобретения является повышение временной стабильности, ресурса, срока службы за счет более точного выявления на ранних стадиях изготовления потенциально нестабильных НиМЭМС, обеспечивающего пропуск на дальнейшую сборку тензорезисторов и мостовых измерительных цепей из этих тензорезисторов с одинаковым (в пределах выбранного критерия) временным изменением сопротивления, в том числе вследствие одинаковой скорости деградационных и релаксационных процессов в тензорезисторах, включенных в противолежащие плечи мостовой измерительной цепи, и проводящих элементах, соединяющих тензорезисторы в мостовую измерительную цепь.
Поставленная цель достигается тем, что в способе изготовления тензорезисторного датчика давления на основе тонкопленочной НиМЭМС, заключающемся в полировании поверхности мембраны, формировании на ней диэлектрической пленки и тензоэлементов с низкоомными перемычками и контактными площадками между ними с использованием шаблона тензочувствительного слоя, имеющего конфигурацию тензоэлементов в зонах, совмещаемых с низкоомными перемычками и контактными площадками, в виде полос, включающих изображения тензоэлементов и их продолжения в два противоположных направления, а в зонах, совмещаемых с контактными площадками - частично совпадающую с конфигурацией контактных площадок и удаленных от полос участков, присоединении выводных проводников к контактным площадкам в областях, удаленных от полос участков в соответствии с заявляемым изобретением, после присоединения выводных проводников к контактным площадкам тензоэлементов мембрану НиМЭМС последовательно подвергают циклическому воздействию тестовых значений измеряемого давления Pj, равномерно распределенных от нижнего Р0 до верхнего предела PH и от верхнего PH до нижнего Р0 предела измерения датчика при одновременном измерении его выходного сигнала и напряжения питания в каждой точке градуирования, вычисляют по ним критерий временной стабильности по соотношению
Figure 00000001
где m - количество точек градуирования;
Figure 00000002
- среднее приведенное значение выходного сигнала в j-й точке градуирования;
Figure 00000003
- среднее приведенное значение выходного сигнала в j-й точке, i-го цикла;
Figure 00000004
- приведенное значение выходного сигнала в j-й точке, i-го цикла со стороны меньших (больших) значений;
Figure 00000005
- выходной сигнал со стороны меньших (больших) значений при напряжении питания датчика, равном
Figure 00000006
;
Figure 00000007
- коэффициенты функции преобразования, определенные при аппроксимации функции преобразования датчика полиномом k-й степени, находящейся в интервале от 1 до L;
Figure 00000008
- давление в j-й точке градуирования;
N=yH-y0 - нормирующее значение выходного сигнала датчика;
y0 - среднее приведенное значение выходного сигнала при давлении Р0;
yH - среднее приведенное значение выходного сигнала при давлении PH, и, если |ψτ03|<|ψταΔ3|, где ψταΔ3 - предельно допустимое значение критерия временной стабильности, которое определяется экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции.
Заявляемый способ реализуется следующим образом. Изготавливают мембрану с периферийным основанием в виде оболочки вращения методами лезвийной обработки с применением на последних стадиях электроэрозионной обработки. Полируют поверхность мембраны с использованием алмазной доводки и полировки. Методами тонкопленочной технологии на планарной поверхности мембраны последовательно наносят сплошными слоями диэлектрическую пленку в виде структуры SiO-SiO2 с подслоем хрома, тензочувствительную пленку (к примеру, из сплава Х20Н75Ю). При формировании перемычек и контактных площадок методом фотолитографии низкоомную пленку (например, из золота Зл 999,9 м) с подслоем (ванадия) наносят сплошным слоем на тензочувствительную пленку (из сплава Х20Н75Ю). Формируют перемычки и контактные площадки например, методом фотолитографии с использованием шаблона перемычек и контактных площадок. Формирование тензоэлементов проводят методом фотолитографии с использованием ионно-химического травления в среде аргона и шаблона тензочувствительного слоя, имеющего конфигурацию тензоэлементов в зонах, совмещаемых с низкоомными перемычками и контактными площадками, в виде полос, включающих изображения тензоэлементов и их продолжения в два противоположных направления, а в зонах, совмещаемых с контактными площадками - частично совпадающую с конфигурацией контактных площадок и удаленных от полос участков. После присоединения выводных проводников к контактным площадкам до герметизации тензоэлементов с перемычками и контактными площадками помещают упругие элементы со сформированными на них тензорезисторами в специальное технологическое приспособление, обеспечивающее подачу измеряемого давления и защиту от воздействия окружающей среды, а также электрическое контактирование с использованием микросварки выводных проводников с измерительной цепью. Мембрану последовательно подвергают циклическому воздействию тестовых значений измеряемого давления Pj, равномерно распределенных от нижнего Р0 до верхнего предела PH и от верхнего PH до нижнего Р0 предела измерения датчика при одновременном измерении его выходного сигнала и напряжения питания в каждой точке градуирования. Вычисляют по ним критерий временной стабильности по заявляемому соотношению (1), и, если |ψτ03|<|ψταΔ3|, где ψταΔ3 - предельно допустимое значение критерия временной стабильности, которое определяется экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции. Если |ψτ03|>|ψταΔ3|, то данную сборку списывают в технологический отход или реставрируют. Градуировку датчиков и вычисление критериев временной стабильности осуществляют на автоматизированном рабочем месте с применением программно-аппаратного комплекса.
Для установления причинно-следственной связи заявляемых признаков и достигаемого технического эффекта рассмотрим наиболее общие элементы тонкопленочных тензорезисторов, используемые при создании НиМЭМС. Анализ известных решений показал, что к таким элементам можно отнести следующие тонкопленочные элементы, изображенные на фиг.1: диэлектрический 7, тензорезистивный 2, адгезионный 3, контактный 4, а также соответствующие переходы между этими элементами. Назначение вышеперечисленных элементов ясно из их названия. К элементам тонкопленочных тензорезисторов, влияющих на стабильность, необходимо отнести также и тонкопленочные проводящие элементы. Проводящие элементы тензорезисторов соединены последовательно с контактными элементами и используются для соединения тензорезисторов в мостовую измерительную цепь и с цепью питания и преобразования сигнала. С точки зрения повышения стабильности будем рассматривать только проводящие элементы, находящиеся в областях от контактных элементов до узлов мостовой измерительной цепи. Как правило, эти узлы совпадают с местами присоединения выводных проводников, соединяющих мостовую цепь с цепью питания и преобразования сигнала. При выполнении НиМЭМС с мостовой измерительной цепью из четырех рабочих тензорезисторов, как это изображено на фиг.2, при отсутствии элементов термокомпенсации выходной сигнал НиМЭМС в стационарном температурном режиме будет равен
Figure 00000009
где Е - напряжение питания мостовой измерительной цепи;
R1, R2, R3, R4 - сопротивление тензорезисторов R1, R2, R3, R4.
Определим условие временной стабильности НиМЭМС в виде
Figure 00000010
где U(τ+Δτ) - начальный выходной сигнал в момент времени (τ+Δτ);
U(τ) - начальный выходной сигнал в момент времени τ.
После подстановки в выражение (3) выражения (2) и обеспечения необходимой стабильности источника питания E(τ+Δτ)=E(τ), получим условие стабильности НиМЭМС в развернутом виде
Figure 00000011
Анализ полученного условия показывает, что его можно обеспечить при бесчисленном множестве сочетаний сопротивлений тензорезисторов и их функциональных зависимостей от времени. В то же время, любые сочетания в случае неравенства сопротивлений различных тензорезисторов мостовой измерительной цепи НиМЭМС потребуют для выполнения условий стабильности различных, взаимосвязанных и точных функциональных зависимостей сопротивлений тензорезисторов от времени. В результате анализа взаимосвязи тонкопленочных элементов тензорезистора (фиг.1) можно определить сопротивление j-го тонкопленочного тензорезистора в момент времени τ и (τ+Δτ) соответственно:
Figure 00000012
Figure 00000013
где RPj, RAj, RKj, RПj, - соответственно сопротивление тензорезистивного, адгезионного, контактного, проводящего элемента j-го тензорезистора;
RPApj, RAKj, RKПj _ соответственно сопротивление переходов элементов тензорезистивный - адгезионный, адгезионный - контактный, контактный -проводящий j-го тензорезистора.
Сопротивление каждого элемента тонкопленочного тензорезистора полностью определяется удельным поверхностным сопротивлением, эффективной длиной и эффективной шириной элемента или перехода. Причем экспериментальные исследования долговременного влияния внешних воздействующих факторов на датчики давления на основе тонкопленочных НиМЭМС показали, что в наибольшей степени на параметры, определяющие сопротивление тензорезисторов, влияют деформации, температуры и время. Поэтому можно в соответствии с выражениями (5), (6) представить сопротивления тонкопленочных тензорезисторов в виде следующих выражений:
Figure 00000014
Figure 00000015
где ρPj, ρPAJ, ρAJ, ρAKJ, ρKJ, ρПJ, ρKПJ - эффективное удельное поверхностное сопротивление соответствующих элементов и переходов;
lPJ, lPAJ, lAJ, lAKJ, lKJ, lKПJ, lПJ - эффективная длина соответствующих элементов и переходов;
bPJ, bPAJ, bAJ, bAKJ, bKJ, bKПJ, bПJ - эффективная ширина соответствующих элементов и переходов j-го тензорезистора;
εPJ, εPAJ, εAJ, εAKJ, εKJ, εKПJ, εПJ - относительная деформация, воздействующая на соответствующие элементы и переходы;
TPJ, TPAJ, TAJ, TAKJ, TKJ, TKПJ, TПJ - температура, воздействующая на соответствующие элементы и переходы;
индексы PJ, AJ, KJ, ПJ означают принадлежность соответствующих характеристик или факторов адгезионному, контактному, проводящему элементам j-тензорезистора;
индексы PAJ, AKJ, КПJ, означают принадлежность соответствующих характеристик или факторов переходам резистивный-адгезионный, адгезионный-контактный, контактный-проводящий j-тензорезистора;
j=1, 2, 3, 4 - номер тензорезистора в мостовой схеме;
τ - начало отсчета времени;
Δτ - тестовый интервал времени.
Для обеспечения независимости сопротивлений тензорезисторов от времени необходимо, чтобы разность выражений (7) и (8) была равна нулю, то есть
Figure 00000016
В результате анализа этого выражения можно сформулировать структурно-факторные условия стабильности тонкопленочных НиМЭМС в виде необходимости обеспечения идентичности структур тонкопленочных тензорезисторов, размеров и характеристик их элементов, а также идентичности деформаций и температур, воздействующих на эти элементы при изготовлении и эксплуатации. Непосредственно из структурно-факторных условий стабильности следует, что критерием стабильности тонкопленочных НиМЭМС является минимальная нелинейность ее функции преобразования давления в выходной сигнал. Действительно, как известно, минимальная нелинейность функции преобразования давления в выходной сигнал обеспечивается при идентичности структур тонкопленочных тензорезисторов, размеров и характеристик их элементов, а также идентичности деформаций, воздействующих на эти элементы. Таким образом, условия обеспечения минимальной нелинейности функции преобразования давления в выходной сигнал совпадают со структурно-факторными условиями стабильности тонкопленочных НиМЭМС, то есть нелинейность функции преобразования может быть критерием стабильности НиМЭМС. Причем нелинейность характеризует деформационный аспект структурно-факторных условий стабильности. При этом для оценки воздействия временного фактора мембрану НиМЭМС последовательно подвергают циклическому воздействию тестовых значений измеряемого давления Pj, равномерно распределенных от нижнего Р0 до верхнего предела PH и от верхнего PH до нижнего Р0 предела измерения датчика. Одновременное измерение выходного сигнала и напряжения питания НиМЭМС и определение приведенного значение выходного сигнала в каждой точке градуирования позволяет исключить влияние напряжения питания на оценку временного фактора. Нелинейность функции преобразования НиМЭМС, определенная по соотношению (1), будет минимальна при одинаковых структурах и характеристиках тензорезисторов, включенных в противолежащие плечи мостовой цепи НиМЭМС, и отсутствии влияния временного фактора, т.е. при выполнении условий стабильности. Преимуществом предлагаемого критерия является повышение точности прогнозирования временной стабильности НиМЭМС вследствие учета влияния на временную стабильность всех элементов мостовой измерительной цепи НиМЭМС, используемых для соединения тензорезисторов в мостовую измерительную цепь и с цепью питания и преобразования выходного сигнала, в совокупности с мембраной.
Внедрение заявляемого способа в производство тензорезисторных датчиков давления на основе тонкопленочных НиМЭМС обеспечивает повышение временной стабильности при воздействии влияющих факторов при сравнительно небольших затратах, что позволяет соответственно увеличить ресурс и срок службы датчиков. Таким образом, техническим результатом предлагаемого изобретения является повышение временной стабильности, ресурса, срока службы за счет более точного выявления на ранних стадиях изготовления потенциально нестабильных НиМЭМС, обеспечивающего пропуск на дальнейшую сборку тензорезисторов и мостовых измерительных цепей из этих тензорезисторов с одинаковым (в пределах выбранного критерия) временным изменением сопротивления, в том числе вследствие одинаковой скорости деградационных и релаксационных процессов в тензорезисторах, включенных в противолежащие плечи мостовой измерительной цепи, и проводящих элементах, соединяющих тензорезисторы в мостовую измерительную цепь, в совокупности с мембраной.

Claims (1)

  1. Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы (НиМЭМС), заключающийся в полировании поверхности мембраны, формировании на ней диэлектрической пленки и тензоэлементов с низкоомными перемычками и контактными площадками между ними с использованием шаблона тензочувствительного слоя, имеющего конфигурацию тензоэлементов в зонах, совмещаемых с низкоомными перемычками и контактными площадками, в виде полос, включающих изображения тензоэлементов и их продолжения в два противоположных направления, а в зонах, совмещаемых с контактными площадками - частично совпадающую с конфигурацией контактных площадок и удаленных от полос участков, присоединении выводных проводников к контактным площадкам в областях, удаленных от полос участков, отличающийся тем, что после присоединения выводных проводников к контактным площадкам тензоэлементов мембрану НиМЭМС последовательно подвергают циклическому воздействию тестовых значений измеряемого давления Pj, равномерно распределенных от нижнего Р0 до верхнего предела РH и от верхнего РH до нижнего P0 предела измерения датчика при одновременном измерении его выходного сигнала и напряжения питания в каждой точке градуирования, вычисляют по ним критерий временной стабильности по соотношению
    Figure 00000017

    где m - количество точек градуирования;
    Figure 00000018
    - среднее приведенное значение выходного сигнала в j-й точке градуирования;
    Figure 00000003
    - среднее приведенное значение выходного сигнала в j-й точке, i-го цикла;
    Figure 00000004
    - приведенное значение выходного сигнала в j-й точке, i-го цикла со стороны меньших (больших) значений;
    Figure 00000005
    - выходной сигнал со стороны меньших (больших) значений при напряжении питания датчика, равном
    Figure 00000006
    ;
    Figure 00000007
    - коэффициенты функции преобразования, определенные при аппроксимации функции преобразования датчика полиномом k-ой степени, находящейся в интервале от 1 до L;
    Figure 00000008
    - давление в j-й точке градуирования;
    N=yH-y0 - нормирующее значение выходного сигнала датчика;
    y0 - среднее приведенное значение выходного сигнала при давлении Р0;
    yH - среднее приведенное значение выходного сигнала при давлении PH, и, если |ψτ03|<|ψταΔ3|, где ψταΔ3. - предельно допустимое значение критерия временной стабильности, которое определяется экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции.
RU2012133888/28A 2012-08-07 2012-08-07 Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы RU2505791C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012133888/28A RU2505791C1 (ru) 2012-08-07 2012-08-07 Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012133888/28A RU2505791C1 (ru) 2012-08-07 2012-08-07 Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Publications (1)

Publication Number Publication Date
RU2505791C1 true RU2505791C1 (ru) 2014-01-27

Family

ID=49957773

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012133888/28A RU2505791C1 (ru) 2012-08-07 2012-08-07 Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Country Status (1)

Country Link
RU (1) RU2505791C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2572527C1 (ru) * 2014-11-25 2016-01-20 Государственное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ПГУ) Способ изготовления датчика давления повышенной стабильности на основе нано- и микроэлектромеханической системы
RU2581454C1 (ru) * 2014-11-25 2016-04-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ПГУ) Способ настройки термоустойчивого датчика давления на основе тонкоплёночной нано- и микроэлектромеханической системы
RU2601613C1 (ru) * 2015-09-14 2016-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ФГБОУ ВПО "Пензенский государственный университет") Термоустойчивый датчик давления на основе нано- и микроэлектромеханической системы с мембраной, имеющей жёсткий центр

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2095772C1 (ru) * 1988-09-06 1997-11-10 Научно-исследовательский институт физических измерений Датчик давления и способ его изготовления
US7047814B2 (en) * 2001-07-17 2006-05-23 Redwood Microsystems, Inc. Micro-electromechanical sensor
RU2398195C1 (ru) * 2009-08-26 2010-08-27 Евгений Михайлович Белозубов Способ изготовления нано- и микроэлектромеханической системы датчика давления и датчик давления на его основе
RU2423678C1 (ru) * 2010-02-01 2011-07-10 Открытое акционерное общество "Научно-исследовательский институт физических измерений" Способ изготовления тонкопленочного датчика давления

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2095772C1 (ru) * 1988-09-06 1997-11-10 Научно-исследовательский институт физических измерений Датчик давления и способ его изготовления
US7047814B2 (en) * 2001-07-17 2006-05-23 Redwood Microsystems, Inc. Micro-electromechanical sensor
RU2398195C1 (ru) * 2009-08-26 2010-08-27 Евгений Михайлович Белозубов Способ изготовления нано- и микроэлектромеханической системы датчика давления и датчик давления на его основе
RU2423678C1 (ru) * 2010-02-01 2011-07-10 Открытое акционерное общество "Научно-исследовательский институт физических измерений" Способ изготовления тонкопленочного датчика давления

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2572527C1 (ru) * 2014-11-25 2016-01-20 Государственное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ПГУ) Способ изготовления датчика давления повышенной стабильности на основе нано- и микроэлектромеханической системы
RU2581454C1 (ru) * 2014-11-25 2016-04-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ПГУ) Способ настройки термоустойчивого датчика давления на основе тонкоплёночной нано- и микроэлектромеханической системы
RU2601613C1 (ru) * 2015-09-14 2016-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ФГБОУ ВПО "Пензенский государственный университет") Термоустойчивый датчик давления на основе нано- и микроэлектромеханической системы с мембраной, имеющей жёсткий центр

Similar Documents

Publication Publication Date Title
RU2498249C1 (ru) Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
RU2487328C1 (ru) Способ изготовления высокостабильного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
RU2505791C1 (ru) Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
RU2596631C1 (ru) Температурная диагностика для монокристаллического датчика давления рабочей жидкости
JP2017194467A (ja) 圧力センサを製造する方法
CN103308223A (zh) 基于柔性热敏传感器的壁面剪应力测试装置及其测量方法
RU2512142C1 (ru) Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
CN100478646C (zh) 多晶硅薄膜残余应变的在线检测结构
CN104198095A (zh) 一种混凝土梁预应力值和预应力损失监测方法
CN103162877B (zh) 一种检验螺栓载荷的方法
RU2522770C1 (ru) Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
CN114460360B (zh) 一种基于电表测量电流时间积分的检测方法、系统及装置
RU2488082C1 (ru) Способ изготовления датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
RU2307317C1 (ru) Косвенный способ настройки тензорезисторных датчиков с мостовой измерительной цепью по аддитивной температурной погрешности
CN113804119B (zh) 一种耐高温高压光纤应变传感器
CN114112125B (zh) 冗余压力传感器的数据融合处理方法
CN112034048A (zh) 基于多重频响函数估计的梁类结构裂纹定位方法
RU2545314C1 (ru) Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
RU2528541C1 (ru) Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
CN210604142U (zh) 混凝土块强度检测压头
RU2601204C1 (ru) Способ изготовления высокостабильного тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
RU2231752C1 (ru) Способ настройки тензорезисторных датчиков с мостовой измерительной цепью
RU2335776C1 (ru) Преобразователь сигналов тензорезисторных датчиков
CN111505517B (zh) 一种热电池单体电池片数量和装配方向的检测方法
RU2541714C1 (ru) Высокоточный датчик давления на основе нано- и микроэлектромеханической системы