RU2522770C1 - Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы - Google Patents

Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы Download PDF

Info

Publication number
RU2522770C1
RU2522770C1 RU2013102470/28A RU2013102470A RU2522770C1 RU 2522770 C1 RU2522770 C1 RU 2522770C1 RU 2013102470/28 A RU2013102470/28 A RU 2013102470/28A RU 2013102470 A RU2013102470 A RU 2013102470A RU 2522770 C1 RU2522770 C1 RU 2522770C1
Authority
RU
Russia
Prior art keywords
strain
nimems
contact pads
elements
temperatures
Prior art date
Application number
RU2013102470/28A
Other languages
English (en)
Inventor
Евгений Михайлович Белозубов
Алексей Геннадиевич Дмитриенко
Нина Евгеньевна Белозубова
Original Assignee
Открытое акционерное общество "Научно-исследовательский институт физических измерений"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Научно-исследовательский институт физических измерений" filed Critical Открытое акционерное общество "Научно-исследовательский институт физических измерений"
Priority to RU2013102470/28A priority Critical patent/RU2522770C1/ru
Application granted granted Critical
Publication of RU2522770C1 publication Critical patent/RU2522770C1/ru

Links

Images

Landscapes

  • Measurement Of Force In General (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики объектов длительного функционирования. Техническим результатом изобретения является повышение временной стабильности, ресурса, срока службы. Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы (НиМЭМС) заключается в полировании поверхности мембраны, формировании на ней диэлектрической пленки и тензоэлементов с низкоомными перемычками и контактными площадками между ними с использованием шаблона тензочувствительного слоя, присоединении выводных проводников к контактным площадкам в областях, удаленных от полос участков. После присоединения выводных проводников к контактным площадкам тензоэлементов НиМЭМС последовательно подвергают воздействию тестовых значений нижнего P0 и верхнего предела PH измеряемого давления при полном восприятии нормальной T00, пониженной Т1 и повышенной Т2 температур, значения которых соответственно равны температуре нормальных климатических условий, максимально допустимой пониженной температуре и максимально допустимой повышенной температуре при эксплуатации датчика, измеряют выходные сигналы U00, UH00, U0T1, UHT1, U0T2, UHT2 НиМЭМС при одновременно воздействующих давлениях и температурах P0 и T00, PH и T00, P0 и T1, PH и T1, P0 и T2, PH и T2 и вычисляют по ним критерий временной стабильности по соотношению Ψτ05=[(UHT1-U0T1)-(UHT2-U0T2)](T1-T2)-1(UH00-U00)-1. 2ил.

Description

Предлагаемое изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенным для использования в системах управления, контроля и диагностики технически сложных объектов длительного функционирования.
Известен способ изготовления тензорезисторного датчика давления на основе НиМЭМС, предназначенного для использования в системах управления, контроля и диагностики технически сложных объектов длительного функционирования, заключающийся в полировании поверхности мембраны, нанесении на нее диэлектрика, формировании на нем тензочувствительной схемы, присоединении контактной колодки к упругому элементу и присоединении контактов колодки к контактным площадкам тензочувствительной схемы, в котором перед нанесением диэлектрика изготавливают диэлектрическую втулку непосредственно в выемке упругого элемента, полируют поверхность мембраны одновременно с полировкой торца втулки, после чего наносят диэлектрик на мембрану упругого элемента и торец втулки и формируют тензосхему на диэлектрике мембраны и втулки [1].
Недостатком известного способа изготовления является сравнительно большая временная нестабильность вследствие различной формы окружных и радиальных тензорезисторов, включенных в противоположные плечи мостовой измерительной цепи. Это связано с тем, что различная форма тензорезисторов приводит к разному временному изменению сопротивления этих тензорезисторов, в том числе вследствие различной скорости деградационных и релаксационных процессов в окружных и радиальных тензорезисторах.
Известен способ изготовления тензорезисторного датчика давления на основе тонкопленочной НиМЭМС, предназначенного для использования в системах управления, контроля и диагностики технически сложных объектов длительного функционирования, заключающийся в полировании поверхности мембраны, формировании на ней диэлектрической пленки и тензоэлементов с низкоомными перемычками и контактными площадками между ними с использованием шаблона тензочувствительного слоя, имеющего конфигурацию тензоэлементов в зонах, совмещаемых с низкоомными перемычками и контактными площадками, в виде полос, включающих изображения тензоэлементов и их продолжения в два противоположных направления, а в зонах, совмещаемых с контактными площадками - частично совпадающую с конфигурацией контактных площадок и удаленных от полос участков, присоединении выводных проводников к контактным площадкам в областях, удаленных от полос участков [2].
Недостатком известного способа изготовления является сравнительно низкая временная стабильность вследствие отсутствия выявления на ранних стадиях изготовления потенциально нестабильных НиМЭМС. Отсутствие такого выявления при эксплуатации приводит к разному временному изменению сопротивления тензорезисторов НиМЭМС, в том числе вследствие различной скорости деградационных и релаксационных процессов в тензорезисторах, включенных в противолежащие плечи мостовой измерительной схемы. Недостаточная временная стабильность приводит к увеличению временной погрешности и уменьшению ресурса и срока службы датчика.
Целью предлагаемого изобретения является повышение временной стабильности, ресурса, срока службы за счет более точного выявления на ранних стадиях изготовления потенциально нестабильных НиМЭМС, обеспечивающего пропуск на дальнейшую сборку тензорезисторов и мостовых измерительных цепей из этих тензорезисторов с одинаковым (в пределах выбранных критериев) временным изменением сопротивления, в том числе вследствие одинаковой скорости деградационных и релаксационных процессов в тензорезисторах, включенных в противолежащие плечи мостовой измерительной цепи, и проводящих элементах, соединяющих тензорезисторы в мостовую измерительную цепь.
Поставленная цель достигается тем, что в способе изготовления тензорезисторного датчика давления на основе тонкопленочной НиМЭМС, заключающемся в полировании поверхности мембраны, формировании на ней диэлектрической пленки и тензоэлементов с низкоомными перемычками и контактными площадками между ними с использованием шаблона тензочувствительного слоя, имеющего конфигурацию тензоэлементов в зонах, совмещаемых с низкоомными перемычками и контактными площадками, в виде полос, включающих изображения тензоэлементов и их продолжения в два противоположных направления, а в зонах, совмещаемых с контактными площадками - частично совпадающую с конфигурацией контактных площадок и удаленных от полос участков, присоединении выводных проводников к контактным площадкам в областях, удаленных от полос участков в соответствии с заявляемым изобретением, после присоединения выводных проводников к контактным площадкам тензоэлементов НиМЭМС последовательно подвергают воздействию тестовых значений нижнего Р0 и верхнего предела PH измеряемого давления при полном восприятии нормальной T00, пониженной Т1 и повышенной Т2 температур, значения которых соответственно равны температуре нормальных климатических условий, максимально допустимой пониженной температуре и максимально допустимой повышенной температуре при эксплуатации датчика, измеряют выходные сигналы U00, UH00, U0T1, UHT1, U0T2, UHT2 НиМЭМС при одновременно воздействующих давлениях и температурах P0 и T00, PH и T00, P0 и Т1, PH и Т1, Р0 и Т2, PH и Т2 и вычисляют по ним критерий временной стабильности по соотношению Ψτ05=[(UHT1-U0T1)-(UHT2-U0T2)](T1-T2)-1 (UH00-U00)-1, и, если |Ψτ05|<|ΨταΔ5|, где ΨταΔ5 - предельно допустимое значение критерия временной стабильности, которое определяется экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции.
Заявляемый способ реализуется следующим образом. Изготавливают (например, из сплава 36НКВХБТЮ) мембрану с периферийным основанием в виде оболочки вращения методами лезвийной обработки с применением на последних стадиях электроэрозионной обработки. Полируют поверхность мембраны с использованием электрохимикомеханической доводки и полировки или алмазной доводки и полировки. Методами тонкопленочной технологии на планарной поверхности мембраны последовательно наносят сплошными слоями диэлектрическую пленку в виде структуры SiO-SiO2 с подслоем хрома, тензочувствительную пленку (к примеру, из сплава Х20Н75Ю). При формировании перемычек и контактных площадок методом фотолитографии низкоомную пленку (например, из золота Зл 999,9 м), с подслоем (ванадия) наносят сплошным слоем на тензочувствительную пленку (из сплава Х20Н75Ю). Формируют перемычки и контактные площадки методом фотолитографии с использованием шаблона перемычек и контактных площадок. Формирование перемычек и контактных площадок можно проводить масочным методом. В этом случае, низкоомная пленка сплошным слоем не наносится, а напыляется через маску. Формирование тензоэлементов проводят методом фотолитографии с использованием ионно-химического травления в среде аргона и шаблона тензочувствительного слоя, имеющего конфигурацию тензоэлементов в зонах, совмещаемых с низкоомными перемычками и контактными площадками, в виде полос, включающих изображения тензоэлементов и их продолжения в два противоположных направления, а в зонах, совмещаемых с контактными площадками - частично совпадающую с конфигурацией контактных площадок и удаленных от полос участков. После присоединения выводных проводников к контактным площадкам НиМЭМС помещают в специальное технологическое приспособление, обеспечивающее подачу измеряемого давления на мембрану и защиту внутренней полости от воздействия окружающей среды, а также электрическое контактирование с использованием микросварки выводных проводников с измерительной цепью. НиМЭМС последовательно подвергают воздействию тестовых значений нижнего P0 и верхнего предела PH измеряемого давления при полном восприятии нормальной T00, пониженной Т1 и повышенной Т2 температур, значения которых соответственно равны температуре нормальных климатических условий, максимально допустимой пониженной температуре и максимально допустимой повышенной температуре при эксплуатации датчика. Измеряют выходные сигналы U00, UH00, U0T1, UHT1, U0T2, UHT2 НиМЭМС при одновременно воздействующих давлениях и температурах Р0 и T00, PH и T00, P0 и T1, PH и Т1, P0 и Т2, PH и Т2. Вычисляют критерий временной стабильности по соотношению Ψτ05=[(UHT1-U0T1)-(UHT2-U0T2)](T1-T2)-1 (UH00-U00)-1. Если |Ψτ05|<|ΨταΔ5|, где ΨταΔ5 - предельно допустимое значение критерия временной стабильности, которое определяется экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции. Если ΨταταΔ1, то данную сборку списывают в технологический отход или реставрируют.
Для установления причинно-следственной связи заявляемых признаков и достигаемого технического эффекта рассмотрим наиболее общие элементы тонкопленочных тензорезисторов, используемые при создании НиМЭМС. Анализ известных решений показал, что к таким элементам можно отнести следующие тонкопленочные элементы, изображенные на фиг.1: диэлектрический 7, тензорезистивный 2, адгезионный 3, контактный 4, а также соответствующие переходы между этими элементами.
Назначение вышеперечисленных элементов ясно из их названия. К элементам тонкопленочных тензорезисторов, влияющих на стабильность, необходимо отнести также и тонкопленочные проводящие элементы. На фиг.1 соотношения между толщинами тонкопленочных элементов и клины травления условно не изображены. Проводящие элементы тензорезисторов соединены последовательно с контактными элементами и используются для соединения тензорезисторов в мостовую измерительную цепь и с цепью питания и преобразования сигнала. С точки зрения повышения стабильности будем рассматривать только проводящие элементы, находящиеся в областях от контактных элементов до узлов мостовой измерительной цепи. Как правило, эти узлы совпадают с местами присоединения выводных проводников, соединяющих мостовую цепь с цепью питания и преобразования сигнала. При выполнении НиМЭМС с мостовой измерительной цепью из четырех рабочих тензорезисторов, как это изображено на фиг.2, при отсутствии элементов термокомпенсации выходной сигнал НиМЭМС в стационарном температурном режиме будет равен
U = E ( R 4 R 3 + R 4 R 1 R 1 + R 2 ) , ( 1 )
Figure 00000001
где Е - напряжение питания мостовой измерительной цепи; R1, R2, R3, R4 - сопротивление тензорезисторов R1, R2, R3, R4.
Проведя необходимые преобразования, получим
U = E ( R 2 R 4 R 1 R 3 ) [ ( R 1 + R 2 ) ( R 3 + R 4 ) ] 1 . ( 2 )
Figure 00000002
Определим условие временной стабильности НиМЭМС в виде
U ( τ + Δ τ ) = U ( τ ) , ( 3 )
Figure 00000003
где U(τ+Δτ) - начальный выходной сигнал в момент времени (τ+Δτ); U(τ) - начальный выходной сигнал в момент времени τ.
После подстановки в выражение (3) выражения (2) и обеспечения необходимой стабильности источника питания E(τ+Δτ)=E(τ), получим условие стабильности НиМЭМС в развернутом виде
[ R 2 ( τ + Δ τ ) R 4 ( τ + Δ τ ) R 1 ( τ + Δ τ ) R 3 ( τ + Δ τ ) ] × × { [ R 1 ( τ + Δ τ ) + R 2 ( τ + Δ τ ) ] × [ R 3 ( τ + Δ τ ) + R 4 ( τ + Δ τ ) ] } 1 = [ R 2 ( τ ) R 4 ( τ ) R 1 ( τ ) R 3 ( τ ) ] × { [ R 1 ( τ ) + R 2 ( τ ) ] × [ R 3 ( τ ) + R 4 ( τ ) ] } 1 ( 4 )
Figure 00000004
Анализ полученного условия показывает, что его с точки зрения математики можно обеспечить при бесчисленном множестве сочетаний сопротивлений тензорезисторов и их функциональных зависимостей от времени. В то же время, любые сочетания в случае неравенства сопротивлений различных тензорезисторов мостовой измерительной цепи НиМЭМС потребуют для выполнения условий стабильности различных, взаимосвязанных и точных функциональных зависимостей сопротивлений тензорезисторов от времени.
В результате анализа взаимосвязи тонкопленочных элементов тензорезистора (фиг.1) можно определить сопротивление j-го тонкопленочного тензорезистора в момент времени τ и (τ+Δτ) соответственно
R j ( τ ) = R P j ( τ ) + 2 R P A j ( τ ) + 2 R A j ( τ ) + 2 R A K j ( τ ) + 2 R K j ( τ ) + 2 К П j ( τ ) + 2 R П j ( τ ) , ( 5 )
Figure 00000005
R j ( τ + Δ τ ) = R P j ( τ + Δ τ ) + 2 R P A j ( τ + Δ τ ) + 2 R A j ( τ + Δ τ ) + 2 R A K j ( τ + Δ τ ) + + 2 R K j ( τ + Δ τ ) + 2 R К П j ( τ + Δ τ ) + 2 R П j ( τ + Δ τ ) ,                                                 ( 6 )
Figure 00000006
где RPj, RAj, RKj, RПj - соответственно сопротивление тензорезистивного, адгезионного, контактного, проводящего элемента j-го тензорезистора;
RРАj, RАКj, RКПj - соответственно сопротивление переходов элементов тензорезистивный - адгезионный, адгезионный - контактный, контактный - проводящий j-го тензорезистора.
В самом общем случае сопротивление каждого элемента тонкопленочного тензорезистора полностью определяется удельным поверхностным сопротивлением, эффективной длиной и эффективной шириной элемента или перехода. Причем экспериментальные исследования долговременного влияния внешних воздействующих факторов на датчики давления на основе тонкопленочных НиМЭМС показали, что в наибольшей степени на параметры, определяющие сопротивление тензорезисторов, влияют деформации, температуры и время. Поэтому можно в соответствии с выражениями (5), (6) представить сопротивления тонкопленочных тензорезисторов в виде следующих выражений:
R j ( τ ) = ρ P J ( ε P J , T P J , τ ) l P J ( ε P J , T P J , τ ) [ b P J ( ε P J , T P J , τ ) ] 1 + + 2 ρ P A J ( ε P A J , T P A J , τ ) l P A J ( ε P A J , T P A J , τ ) × × [ b P A J ( ε P A J , T P A J , τ ) ] 1 + 2 ρ A J ( ε A J , T A J , τ ) l A J ( ε A J , T A J , τ ) [ b A J ( ε A J , T A J , τ ) ] 1 + + 2 ρ A K J ( ε A K J , T A K J , τ ) × l A K J ( ε A K J , T A K J , τ ) [ b A K J ( ε A K J , T A K J , τ ) ] 1 + + 2 ρ K J ( ε K J , T K J , τ ) l K J ( ε K J , T K J , τ K J ) [ b K J ( ε K J , T K J , τ ) ] 1 + + 2 ρ К П J ( ε K J , T K J , τ ) l К П J ( ε K J , T K J , τ ) [ b К П J ( ε K J , T K J , τ ) ] 1 + + 2 ρ П J ( ε П J , T П J , τ ) l П J ( ε П J , T П J , τ ) × [ b П J ( ε П J , T П J , τ ) ] 1 ,                                     ( 7 )
Figure 00000007
R ( τ + Δ τ ) = ρ P J ( ε P J , T P J , τ + Δ τ ) l P J ( ε P J , T P J , τ + Δ τ ) [ b P J ( ε P J , T P J , τ + Δ τ ) ] 1 + + 2 ρ P A J ( ε P A J , T P A J , τ + Δ τ ) × l P A J ( ε P A J , T P A J , τ + Δ τ ) × × [ b P A J ( ε P A J , T P A J , τ + Δ τ ) ] 1 + 2 ρ A J ( ε A J , T A J , τ + Δ τ ) l A J ( ε A J , T A J , τ + Δ τ ) × × [ b A J ( ε A J , T A J , τ + Δ τ ) ] 1 + + 2 ρ A K J ( ε A K J , T A K J , τ + Δ τ ) l A K J ( ε A K J , T A K J , τ + Δ τ ) × × [ b A K J ( ε A K J , T A K J , τ + Δ τ ) ] 1 + + 2 ρ K J ( ε K J , T K J , τ + Δ τ ) l K J ( ε K J , T K J , τ + Δ τ ) [ b K J ( ε K J , T K J , τ + Δ τ ) ] 1 + + 2 ρ К П J ( ε K J , T K J , τ + Δ τ ) × l К П J ( ε K J , T K J , τ + Δ τ ) [ b К П J ( ε K J , T K J , τ + Δ τ ) ] 1 + + 2 ρ П J ( ε П J , T П J , τ + Δ τ ) × l П J ( ε П J , T П J , τ ) [ b П J ( ε П J , T П J , τ ) ] 1 ,                            ( 8 )
Figure 00000008
где ρPj, ρPAJ, ρAJ, ρAKJ, ρKJ, ρПJ, ρКПJ - эффективное удельное поверхностное сопротивление соответствующих элементов и переходов;
lPJ, lPAJ lAJ, lAKJ, lKJ, lКПJ, lПJ - эффективная длина соответствующих элементов и переходов;
bPJ, bPAJ, bAJ, bAKJ, bKJ, bКПJ, bПJ - эффективная ширина соответствующих элементов и переходов j-го тензорезистора;
εРJ, εPAJ, εAJ, εAKJ, εKJ, εКПJ, εПJ - относительная деформация, воздействующая на соответствующие элементы и переходы;
TPJ, TPAJ, TAJ, TAKJ, TKJ, TКПJ, TПJ - температура, воздействующая на соответствующие элементы и переходы; индексы PJ, AJ, KJ, ПJ означают принадлежность соответствующих характеристик или факторов адгезионному, контактному, проводящему элементам j-тензорезистора;
индексы PAJ, AKJ, КПJ означают принадлежность соответствующих характеристик или факторов переходам резистивный - адгезионный, адгезионный - контактный, контактный - проводящий j-тензорезистора;
j=1, 2, 3, 4 - номер тензорезистора в мостовой схеме; τ - начало отсчета времени; Δτ - тестовый интервал времени.
Для обеспечения независимости сопротивлений тензорезисторов от времени необходимо, чтобы разность выражений (7) и (8) была равна нулю, то есть
ρ P J ( ε P J , T P J , τ ) l P J ( ε P J , T P J , τ ) [ b P J ( ε P J , T P J , τ ) ] 1 + + 2 ρ P A J ( ε P A J , T P A J , τ ) l P A J ( ε P A J , T P A J , τ ) × [ b P A J ( ε P A J , T P A J , τ ) ] 1 + + 2 ρ A J ( ε A J , T A J , τ ) l A J ( ε A J T A J , τ ) [ b A J ( ε A J , T A J , τ ) ] 1 + + 2 ρ A K J ( ε A K J , T A K J , τ ) × l A K J ( ε A K J , T A K J , τ ) [ b A K J ( ε A K J , T A K J , τ ) ] 1 + 2 ρ K J ( ε K J , T K J , τ ) l K J ( ε K J , T K J , τ K J ) [ b K J ( ε K J , T K J , τ ) ] 1 + + 2 ρ К П J ( ε K J , T K J , τ ) l К П J ( ε K J , T K J , τ ) [ b К П J ( ε K J , T K J , τ ) ] 1 + + 2 ρ П J ( ε П J , T П J , τ ) l П J ( ε П J , T П J , τ ) [ b П J ( ε П J , T П J , τ ) ] 1 ρ P J ( ε P J , T P J , τ + Δ τ ) l P J ( ε P J , T P J , τ + Δ τ ) [ b P J ( ε P J , T P J , τ + Δ τ ) ] 1 2 ρ P A J ( ε P A J , T P A J , τ + Δ τ ) l P A J ( ε P A J , T P A J , τ + Δ τ ) [ b P A J ( ε P A J , T P A J , τ + Δ τ ) ] 1 2 ρ A J ( ε A J , T A J , τ + Δ τ ) l A J ( ε A J , T A J , τ + Δ τ ) × [ b A J ( ε A J , T A J , τ + Δ τ ) ] 1 2 ρ A K J ( ε A K J , T A K J , τ + Δ τ ) l A K J ( ε A K J , T A K J , τ + Δ τ ) × [ b A K J ( ε A K J , T A K J , τ + Δ τ ) ] 1 2 ρ K J ( ε K J , T K J , Δ τ ) l K J ( ε K J , T K J , τ + Δ τ ) [ b K J ( ε K J , T K J , τ + Δ τ ) ] 1 2 ρ К П J ( ε K J , T K J , τ + Δ τ ) l К П J ( ε K J , T K J , τ + Δ τ ) [ b К П J ( ε K J , T K J , τ + Δ τ ) ] 1 2 ρ П J ( ε П J , T П J , τ + Δ τ ) l П J ( ε П J , T П J , τ ) [ b П J ( ε П J , T П J , τ + Δ τ ) ] 1 = 0.                     ( 9 )
Figure 00000009
Полученные расширенные частные условия стабильности могут выполняться при бесчисленном множестве сочетаний сопротивлений элементов тензорезисторов и их функциональных зависимостей от деформаций, температуры и времени. Любые сочетания в случае неравенства сопротивлений элементов тензорезисторов мостовой схемы НиМЭМС и неидентичности их функциональных зависимостей от воздействующих факторов потребуют для выполнения расширенных частных условий стабильности различных, взаимосвязанных и точных функциональных зависимостей сопротивлений тензорезисторов. Учитывая, что такие функциональные зависимости очень трудно реализуемы, можно записать частные условия стабильности НиМЭМС в виде
ρ P j = ρ P ,   ε PJ = ε P ,  T Pj = T P ,  l Pj = l P ,  b Pj = b P   ρ PAJ = ρ P A ,   ε PAj = ε P A ,  T PAj = T P A ,  l PAj = l P A , b P A j = b P A ,   ρ AJ = ρ A ,   ε Aj = ε A ,  T Aj = T A ,  l Aj = l A , b Aj = b A ,   ρ AKJ = ρ K A ,   ε AK = ε A K ,  T AKj = T A K , l A K j = l A K ,  b AKj = b A K ,   ρ KJ = ρ K ,   ε Kj = ε K ,  T Kj = T K ,  l Kj = l K ,  b Kj = b K ,   ρ КПJ = ρ К П ,   ε КПj = ε К П , T К П j = T К П ,  l КПj = l К П ,  b КПj = b К П ,   ρ ПJ = ρ П ,   ε Пj = ε П ,  T Пj = T П ,  l Пj = l П ,  b Пj = b П .            ( 10 )
Figure 00000010
Анализ выражения (10) показывает, что в результате нового подхода, который можно назвать структурно-факторным подходом, можно сформулировать структурно-факторные условия стабильности тонкопленочных НиМЭМС в виде необходимости обеспечения идентичности структур тонкопленочных тензорезисторов, размеров и характеристик их элементов и переходов, а также идентичности деформаций и температур, воздействующих на эти элементы и переходы при изготовлении и эксплуатации.
Сравнение выражения (10) и структурно-факторных условий стабильности с предлагаемым критерием временной стабильности Ψτ05=[(UHT1-U0T1)-(UHT2-U0T2)] (T1-T2)-1 (UH00-U00)-1 показывает, что предлагаемый критерий обеспечивает выполнение соотношений выражения (10) и структурно-факторных условий стабильности. Учитывая равенство изменений температур тензорезисторов при тестовых испытаниях вследствие полного восприятия ими тестовых температур, изменение выходного сигнала мостовой измерительной цепи в зависимости от деформаций и температур будет равно нулю при идентичности структур тонкопленочных тензорезисторов, размеров и характеристик их элементов и переходов, включенных в противолежащие плечи мостовой цепи НиМЭМС, т.е. при выполнении условий стабильности. Кроме того, так как предлагаемый критерий временной стабильности НиМЭМС учитывает влияние температуры и деформаций от измеряемого давления и температуры, то он является интегральным критерием стабильности НиМЭМС, характеризующим температурный и деформационный аспекты структурно-факторных условий стабильности.
Преимуществом предлагаемого решения является повышение точности прогнозирования временной стабильности НиМЭМС вследствие учета влияния на временную стабильность упругого элемента и всех элементов мостовой измерительной цепи НиМЭМС, используемых для соединения тензорезисторов в мостовую измерительную цепь и с цепью питания и преобразования выходного сигнала.
Внедрение заявляемого способа в производство тензорезисторных датчиков давления на основе тонкопленочных НиМЭМС обеспечивает повышение временной стабильности при воздействии влияющих факторов при сравнительно небольших затратах, что позволяет соответственно увеличить ресурс и срок службы датчиков. Таким образом, техническим результатом предлагаемого изобретения является повышение временной стабильности, ресурса, срока службы за счет более точного выявления на ранних стадиях изготовления потенциально нестабильных НиМЭМС, обеспечивающего пропуск на дальнейшую сборку НиМЭМС с одинаковым (в пределах выбранных критериев) временным изменением сопротивления тензорезисторов, в том числе вследствие одинаковой скорости деградационных и релаксационных процессов в тензорезисторах, включенных в противолежащие плечи мостовой измерительной цепи, и проводящих элементах, соединяющих тензорезисторы в мостовую измерительную цепь. Кроме того, предлагаемый способ вследствие обеспечения пропуска на дальнейшую сборку НиМЭМС с близким изменением сопротивлением при воздействии температур позволяет изготавливать датчики давления с меньшей погрешностью в условиях воздействия нестационарных температур, вызванных, в том числе повышенными виброускорениями.
Источники известности
1 RU патент №2095772, C1, G01L 9/04. Опубл.: 10.11.1997 г. БИ №6.
2 RU патент №2423678, C1, G01L 9/00. Опубл.: 10.07.2011 г. БИ №19.

Claims (1)

  1. Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы (НиМЭМС), заключающийся в полировании поверхности мембраны, формировании на ней диэлектрической пленки и тензоэлементов с низкоомными перемычками и контактными площадками между ними с использованием шаблона тензочувствительного слоя, имеющего конфигурацию тензоэлементов в зонах, совмещаемых с низкоомными перемычками и контактными площадками, в виде полос, включающих изображения тензоэлементов и их продолжения в два противоположных направления, а в зонах, совмещаемых с контактными площадками - частично совпадающую с конфигурацией контактных площадок и удаленных от полос участков, присоединении выводных проводников к контактным площадкам в областях, удаленных от полос участков, отличающийся тем, что после присоединения выводных проводников к контактным площадкам тензоэлементов НиМЭМС последовательно подвергают воздействию тестовых значений нижнего P0 и верхнего предела PH измеряемого давления при полном восприятии нормальной T00, пониженной Т1 и повышенной Т2 температур, значения которых соответственно равны температуре нормальных климатических условий, максимально допустимой пониженной температуре и максимально допустимой повышенной температуре при эксплуатации датчика, измеряют выходные сигналы U00, UH00, U0T1, UHT1, U0T2, UHT2 НиМЭМС при одновременно воздействующих давлениях и температурах P0 и T00, PH и T00, P0 и T1, PH и T1, P0 и T2, PH и T2 и вычисляют по ним критерий временной стабильности по соотношению Ψτ05=[(UHT1-U0T1)-(UHT2-U0T2)](T1-T2)-1(UH00-U00)-1 и, если |Ψτ05|<|ΨταΔ5|, где ΨταΔ5 - предельно допустимое значение критерия временной стабильности, которое определяется экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции.
RU2013102470/28A 2013-01-18 2013-01-18 Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы RU2522770C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013102470/28A RU2522770C1 (ru) 2013-01-18 2013-01-18 Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013102470/28A RU2522770C1 (ru) 2013-01-18 2013-01-18 Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Publications (1)

Publication Number Publication Date
RU2522770C1 true RU2522770C1 (ru) 2014-07-20

Family

ID=51217480

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013102470/28A RU2522770C1 (ru) 2013-01-18 2013-01-18 Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Country Status (1)

Country Link
RU (1) RU2522770C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2095772C1 (ru) * 1988-09-06 1997-11-10 Научно-исследовательский институт физических измерений Датчик давления и способ его изготовления
US7047814B2 (en) * 2001-07-17 2006-05-23 Redwood Microsystems, Inc. Micro-electromechanical sensor
RU2398195C1 (ru) * 2009-08-26 2010-08-27 Евгений Михайлович Белозубов Способ изготовления нано- и микроэлектромеханической системы датчика давления и датчик давления на его основе
RU2423678C1 (ru) * 2010-02-01 2011-07-10 Открытое акционерное общество "Научно-исследовательский институт физических измерений" Способ изготовления тонкопленочного датчика давления

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2095772C1 (ru) * 1988-09-06 1997-11-10 Научно-исследовательский институт физических измерений Датчик давления и способ его изготовления
US7047814B2 (en) * 2001-07-17 2006-05-23 Redwood Microsystems, Inc. Micro-electromechanical sensor
RU2398195C1 (ru) * 2009-08-26 2010-08-27 Евгений Михайлович Белозубов Способ изготовления нано- и микроэлектромеханической системы датчика давления и датчик давления на его основе
RU2423678C1 (ru) * 2010-02-01 2011-07-10 Открытое акционерное общество "Научно-исследовательский институт физических измерений" Способ изготовления тонкопленочного датчика давления

Similar Documents

Publication Publication Date Title
RU2498249C1 (ru) Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
RU2487328C1 (ru) Способ изготовления высокостабильного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
RU2423678C1 (ru) Способ изготовления тонкопленочного датчика давления
CN109115877B (zh) 一种基于dic技术的曲率模态损伤识别方法
CN102368086B (zh) 一种惠斯通电桥补偿电阻的测试方法
CN103983380B (zh) 一种确定均布载荷下预应力圆薄膜最大应力值的方法
CN109766617B (zh) 一种基于应变传感器的位移场重构方法
RU2442115C1 (ru) Способ изготовления тонкопленочного тензорезисторного датчика давления
CN107330218A (zh) 轴销式传感器及其径向力标定与计算方法、装置和系统
RU2505791C1 (ru) Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
RU2512142C1 (ru) Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
CN100478646C (zh) 多晶硅薄膜残余应变的在线检测结构
RU2522770C1 (ru) Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
CN110044682A (zh) 基于fbg传感器的单边缺口铝合金试件疲劳裂纹扩展监测方法
CN103499458B (zh) 工程结构损伤表征的变标距测试方法
RU2345341C1 (ru) Тонкопленочный датчик давления
CN109238892B (zh) 一种转子系统钢环式弹支结构强度设计及在线监测方法
RU2488082C1 (ru) Способ изготовления датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
CN109490334B (zh) 一种运用残余应力预测模型的t字型锻件无损测试方法
RU2528541C1 (ru) Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
RU2545314C1 (ru) Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
CN103162877A (zh) 一种检验螺栓载荷的方法
CN107144388B (zh) 一种柔性绳索振动频率的全域搜峰法
RU2601204C1 (ru) Способ изготовления высокостабильного тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы
CN110084524A (zh) 一种基于电测技术的应变场实时重构方法