RU2600287C1 - Стенд кочетова для определения эффективности предохранительных конструкций - Google Patents
Стенд кочетова для определения эффективности предохранительных конструкций Download PDFInfo
- Publication number
- RU2600287C1 RU2600287C1 RU2015133190/11A RU2015133190A RU2600287C1 RU 2600287 C1 RU2600287 C1 RU 2600287C1 RU 2015133190/11 A RU2015133190/11 A RU 2015133190/11A RU 2015133190 A RU2015133190 A RU 2015133190A RU 2600287 C1 RU2600287 C1 RU 2600287C1
- Authority
- RU
- Russia
- Prior art keywords
- panel
- explosion
- explosive
- lead
- recording
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42D—BLASTING
- F42D5/00—Safety arrangements
- F42D5/04—Rendering explosive charges harmless, e.g. destroying ammunition; Rendering detonation of explosive charges harmless
- F42D5/045—Detonation-wave absorbing or damping means
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Изобретение относится к стендам для определения эффективности предохранительных конструкций. Стенд содержит систему мониторинга и обработки полученной информации об опасной зоне. Стенд дополнительно снабжен противовзрывной панелью, содержащей металлический бронированный каркас с металлической бронированной обшивкой и наполнителем свинцом. Панель имеет в торцах четыре неподвижных патрубка-опоры. В покрытии взрывоопасного объекта жестко заделаны четыре опорных стержня, которые телескопически вставлены в неподвижные патрубки-опоры панели. Наполнитель выполнен в виде дисперсной системы воздух - свинец. Для фиксации предельного положения панели к торцам опорных упругих стержней с листами-упорами прикреплен демпфирующий элемент, предназначенный для демпфирования ударных нагрузок панели о листы-упоры. Демпфирующий элемент прикреплен оппозитно панели и направлен в ее сторону, и выполнен в виде объемного тела с внутренней полостью и поверхностями, эквидистантными поверхностям панели. Внутренняя полость демпфирующего элемента заполнена дисперсной системой воздух - свинец, а свинец выполнен в виде крошки шарообразной формы. Достигается повышение эффективности защиты технологического оборудования от взрывов за счет увеличения быстродействия и надежности срабатывания разрывных элементов. 1 з.п. ф-лы, 2 ил.
Description
Изобретение относится к машиностроению и может быть использовано для взрывозащиты технологического оборудования.
Наиболее близким техническим решением к заявленному объекту является способ определения эффективности взрывозащитного устройства по RU 2488074 C1, F42D 5/045, 20.07.2013 (прототип), в котором испытывают корпус клапана, затвор, теплоизолирующий и разрывной элементы.
Недостатком известного решения является сравнительно невысокая надежность срабатывания разрывной мембраны.
Технический результат - повышение эффективности защиты технологического оборудования от взрывов путем увеличения быстродействия и надежности срабатывания разрывных элементов.
Это достигается тем, что в стенде для определения эффективности предохранительных конструкций содержится размещенный в испытательном боксе макет взрывоопасного объекта с установленным в нем взрывным осколочным элементом с инициатором взрыва, защитный чехол и поддон, при этом чехол с поддоном представляют собой единую замкнутую конструкцию, образованную вокруг макета взрывоопасного объекта, а макет оборудован транспортной и подвесной системами, при этом защитный чехол выполнен многослойным и состоящим из обращенного внутрь к макету алюминиевого слоя, затем резинового и перкалевого слоев, а подвесная система состоит из комплекта скоб и растяжек, размещенных на защитном чехле, а также необходимого количества анкерных крюков в потолке, стенах и полу испытательного бокса, а внутри макета взрывоопасного объекта, по его внутреннему и внешнему периметрам, установлены видеокамеры видеонаблюдения, выполненные во взрывозащитном исполнении, а выходы с видеокамер соединены с блоком записывающей и регистрирующей аппаратуры, выход которого соединен с блоком анализаторов записанных осциллограмм протекающих процессов, причем в потолочной части макета выполнен проем, который закрыт взрывозащитным элементом, установленным по свободной посадке на трех упругих штырях, один конец каждого из которых жестко вмонтирован в потолок макета, а на втором имеется горизонтальная перекладина, а между взрывным осколочным элементом и проемом, выполненным в потолочной части макета, и закрытым взрывозащитным элементом по фронту движения взрывной волны установлен трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединен со входом блока записывающей и регистрирующей аппаратуры, причем по обе стороны от датчика давления расположены датчики температуры и влажности, контролирующие термовлажностный режим в макете, выходы которых также соединены со входом блока записывающей и регистрирующей аппаратуры, а внутренние и внешние поверхности ограждений макета обклеены тензодатчиками, выходы которых также соединены со входом блока записывающей и регистрирующей аппаратуры.
На фиг. 1 показана принципиальная схема стенда для определения эффективности предохранительных конструкций, на фиг. 2 представлен вариант противовзрывной панели.
Стенд для определения эффективности предохранительных конструкций содержит макет 1 взрывоопасного объекта с установленным в нем взрывным осколочным элементом 14 с инициатором взрыва 13, защитный чехол 2 и поддон 3, при этом чехол с поддоном представляют собой единую замкнутую конструкцию, образованную вокруг макета 1 взрывоопасного объекта, размещенного в испытательном боксе 8. Кроме того, макет 1 оборудован транспортной 6 и подвесной 5 системами, а защитный чехол 2 выполнен многослойным и состоящим из обращенного внутрь к макету 1 алюминиевого слоя, затем резинового и перкалевого слоев. Подвесная система состоит из комплекта скоб и растяжек 5, размещенных на защитном чехле, а также необходимого количества анкерных крюков (петель) в потолке, стенах и полу испытательного бокса 8. Транспортная система 6 предназначена для удаления разрушенного макета 1 после проведения испытаний из испытательного бокса 8 вместе с защитным чехлом 2.
Транспортная система представляет собой тележку с дышлом. На раме тележки крепятся проставки, на которые устанавливаются и крепятся поддон и макет 1. Внутри макета 1 взрывоопасного объекта, по его внутреннему и внешнему периметрам, установлены видеокамеры 7 и 4 видеонаблюдения за процессом развития ЧС, смоделированной посредством взрывного осколочного элемента 14 с инициатором взрыва 13, причем видеокамеры 4 и 7 выполнены во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок 10 соединены с блоком 17 записывающей и регистрирующей аппаратуры, выход которого соединен с блоком анализаторов 18 записанных осциллограмм протекающих процессов изменения технологических параметров в макете 1 взрывоопасного объекта. В потолочной части макета 1 выполнен проем 15, который закрыт взрывозащитным элементом 16, установленным по свободной посадке на трех упругих штырях 19, один конец каждого из которых жестко вмонтирован в потолок макета 1, а на втором имеется горизонтальная перекладина. Между взрывным осколочным элементом 14 и проемом 15, выполненным в потолочной части макета 1, и закрытым взрывозащитным элементом 16 по фронту движения взрывной волны установлен трехкоординатный датчик давления 9 во взрывозащитном исполнении, выход которого соединен со входом блока 17 записывающей и регистрирующей аппаратуры. По обе стороны от датчика давления 9 расположены датчики температуры 20 и влажности 21, контролирующие термовлажностный режим в макете 1, выходы которых также соединены со входом блока 17 записывающей и регистрирующей аппаратуры. Внутренние поверхности ограждений макета 1 обклеены тензодатчиками 12 (тензорезисторами), а внешние - тензодатчиками 11, выходы которых также соединены со входом блока 17 записывающей и регистрирующей аппаратуры. После проведения подготовительных к подрыву операций с макетом 1 и взрывным осколочным элементом 14 с инициатором взрыва 13, выведения и герметизации коммуникаций и подсоединения соответствующих электрических цепей чехол монтируется вокруг макетом 1, герметично соединяется с поддоном и растягивается с помощью подвесной системы, образуя замкнутое герметичное пространство (объем) вокруг макета 1.
Инициатором взрыва 13 взрывного осколочного элемента 14 могут быть использованы горючие жидкости. Уравнение окисления стехиометрической смеси:
где - количество молей кислорода; - количество молей азота, углекислоты и воды ; Q - теплота сгорания, ккал/(кг·моль).
Если принять, что вся теплота сгорания реакции окисления идет только на нагрев продуктов сгорания, то температуру взрыва Твзр (адиабатическая температура горения) можно определить из теплового баланса реакции окисления стехиометрической смеси:
Расчет необходимого количества взрывчатого вещества, например горючей жидкости (ацетона C3H6O), для создания стехиометрической концентрации в помещении определяется по формуле
где М - молекулярный вес жидкости; Vк - объем помещения, л; Vв - объем воздуха, необходимый для полного сгорания одной молекулы горючей жидкости, л;
где Рбар - барометрическое давление, мм рт.ст.; V0=22,4 л - объем грамм-молекулы воздуха при 0°C и давлении 760 мм рт.ст.,
объем (см3) горючей жидкости
где ρ - плотность жидкости, г/см3.
Стенд для определения эффективности предохранительных конструкций работает следующим образом.
В испытательном боксе 8 устанавливают макет 1 взрывоопасного объекта, а по его внутреннему и внешнему периметрам устанавливают видеокамеры 7 и 4 видеонаблюдения за процессом развития чрезвычайной ситуации при аварии на взрывоопасном объекте, которую моделируют посредством установки в макете 1 взрывного осколочного элемента 14 с инициатором взрыва 13, при этом видеокамеры 4 и 7 выполняют во взрывозащитном исполнении, а выходы с видеокамер через внутреннюю полость проставок 10 соединяют с блоком 17 и производят запись и регистрацию протекающих процессов изменения технологических параметров в макете 1, после чего регистрируют посредством системы анализаторов 18 записанных осциллограмм протекающих процессов изменения технологических параметров в макете 1 взрывоопасного объекта. В потолочной части макета 1 выполняют проем 15, который закрывают взрывозащитным элементом 16, установленным по свободной посадке на трех упругих штырях 19, один конец каждого из которых жестко фиксируют в потолке макета 1, а на втором крепят горизонтальную перекладину. Между взрывным осколочным элементом 14 и проемом 15 устанавливают трехкоординатный датчик давления 9 во взрывозащитном исполнении, выход которого соединяют со входом блока 17 записывающей и регистрирующей аппаратуры, а по обе стороны от датчика давления 9 располагают датчики температуры 20 и влажности 21, контролирующие термовлажностный режим в макете 1, выходы которых также соединяют со входом блока 17 записывающей и регистрирующей аппаратуры. Внутренние поверхности ограждений макета 1 обклеивают тензодатчиками 12 (тензорезисторами), а внешние - тензодатчиками 11, выходы которых также соединяют со входом блока 17 записывающей и регистрирующей аппаратуры. После обработки полученных экспериментальных данных составляют математическую модель, прогнозирующую аварии на взрывоопасном объекте.
Противовзрывная панель (фиг. 2) состоит из бронированного металлического каркаса 19 с бронированной металлической обшивкой 20 и наполнителем свинцом 21. В покрытии объекта 25 у проема 26 симметрично относительно оси 27 заделаны четыре опорных стержня 22, телескопически вставленные в неподвижные патрубки-опоры 24, заделанные в панели. Для фиксации предельного положения панели к торцам опорных стержней 22 приварены листы-упоры 23. Для того чтобы сдемпфировать (смягчить) ударные нагрузки при возврате панели, наполнитель выполнен в виде дисперсной системы воздух - свинец, причем свинец выполнен по форме в виде крошки, а опорные стержни 22 могут быть выполнены упругими.
Наполнитель может быть выполнен по форме в виде шарообразной крошки одного диаметра; в виде шарообразной крошки разного диаметра. Наполнитель может быть выполнен в виде крошки произвольной формы разного диаметрального (максимального по внешнему, произвольной формы, контуру крошки) размера.
Противовзрывная панель служит для фиксации предельного положения панели при взрывной нагрузке. К торцам опорных упругих стержней 22 с листами-упорами 23 прикреплен демпфирующий элемент 28 (фиг. 2), предназначенный для демпфирования ударных нагрузок панели о листы-упоры 23.
Демпфирующий элемент 28 прикреплен оппозитно панели и направлен в ее сторону, т.е. навстречу ее движению во время взрыва.
Демпфирующий элемент 28 выполнен в виде объемного тела с внутренней полостью и поверхностями, эквидистантными поверхностям панели, при этом его внутренняя полость заполнена дисперсной системы воздух - свинец, а свинец выполнен в виде крошки шарообразной формы.
Противовзрывная панель работает следующим образом.
При взрыве внутри производственного помещения (на чертеже не показано) происходит подъем панели 19 от воздействия ударной волны и через открытый проем 28 сбрасывается избыточное давление.
При взрывном движении вверх панели по упругим стержням 22 она встречает на своем пути демпфирующий элемент 28, при взаимодействии с котором происходит гашение энергии взрыва.
После взрыва и спада избыточного давления, опустившись, панель перекрывает проем 26 и вредные вещества не поступают в атмосферу. Для фиксации предельного положения панели служат листы-упоры 23. Для того чтобы сдемпфировать (смягчить) ударные нагрузки при возврате панели, наполнитель металлического каркаса 19 выполнен в виде дисперсной системы воздух - свинец, причем свинец выполнен по форме в виде крошки, а опорные стержни 22 могут быть выполнены упругими.
Использование предложенного технического решения позволяет осуществить предотвращение взрывоопасных объектов от разрушения и снижение поступления вредных веществ в атмосферу при аварийном взрыве.
Claims (2)
1. Стенд для определения эффективности предохранительных конструкций, содержащий систему мониторинга и обработки полученной информации об опасной зоне, он содержит размещенный в испытательном боксе макет взрывоопасного объекта с установленным в нем взрывным осколочным элементом с инициатором взрыва, защитный чехол и поддон, при этом чехол с поддоном представляют собой единую замкнутую конструкцию, образованную вокруг макета взрывоопасного объекта, а макет оборудован транспортной и подвесной системами, при этом защитный чехол выполнен многослойным и состоящим из обращенного внутрь к макету алюминиевого слоя, затем резинового и перкалевого слоев, а подвесная система состоит из комплекта скоб и растяжек, размещенных на защитном чехле, а также необходимого количества анкерных крюков в потолке, стенах и полу испытательного бокса, а внутри макета взрывоопасного объекта, по его внутреннему и внешнему периметрам, установлены видеокамеры видеонаблюдения, выполненные во взрывозащитном исполнении, а выходы с видеокамер соединены с блоком записывающей и регистрирующей аппаратуры, выход которого соединен с блоком анализаторов записанных осциллограмм протекающих процессов изменения технологических параметров в макете взрывоопасного объекта, причем в потолочной части макета выполнен проем, который закрыт взрывозащитным элементом, установленным по свободной посадке на трех упругих штырях, один конец каждого из которых жестко вмонтирован в потолок макета, а на втором имеется горизонтальная перекладина, а между взрывным осколочным элементом и проемом, выполненным в потолочной части макета, и закрытым взрывозащитным элементом по фронту движения взрывной волны установлен трехкоординатный датчик давления во взрывозащитном исполнении, выход которого соединен со входом блока записывающей и регистрирующей аппаратуры, причем по обе стороны от датчика давления расположены датчики температуры и влажности, контролирующие термовлажностный режим в макете, выходы которых также соединены со входом блока записывающей и регистрирующей аппаратуры, а внутренние и внешние поверхности ограждений макета обклеены тензодатчиками, выходы которых также соединены со входом блока записывающей и регистрирующей аппаратуры, отличающийся тем, что противовзрывная панель содержит металлический бронированный каркас с металлической бронированной обшивкой и наполнителем свинцом, имеет в торцах четыре неподвижных патрубка-опоры, а в покрытии взрывоопасного объекта жестко заделаны четыре опорных стержня, которые телескопически вставлены в неподвижные патрубки-опоры панели, наполнитель выполнен в виде дисперсной системы воздух - свинец, причем свинец выполнен по форме в виде крошки, а для фиксации предельного положения панели к торцам опорных упругих стержней с листами-упорами, прикреплен демпфирующий элемент, предназначенный для демпфирования ударных нагрузок панели о листы-упоры, причем прикреплен оппозитно панели и направлен в ее сторону, и выполнен в виде объемного тела с внутренней полостью и поверхностями, эквидистантными поверхностям панели, при этом его внутренняя полость заполнена дисперсной системой воздух - свинец, а свинец выполнен в виде крошки шарообразной формы.
2. Стенд для определения эффективности предохранительных конструкций по п. 1, отличающийся тем, что в качестве инициатора взрыва взрывного осколочного элемента использована горючая жидкость, например ацетон, расчет необходимого количества которой для создания стехиометрической концентрации в помещении определяется по формуле
где M - молекулярный вес жидкости; Vк - объем помещения, л; Vв - объем воздуха, необходимый для полного сгорания одной молекулы горючей жидкости, л;
где
nO2 - количество молей кислорода; nN2 - количество молей азота; Vt - объем при температуре t;
где Pбар - барометрическое давление, мм рт.ст.; t - температура; V0=22,4 л - объем грамм-молекулы воздуха при 0°C и давлении 760 мм рт.ст., объем (см3) горючей жидкости
где ρ - плотность жидкости, г/см3.
где M - молекулярный вес жидкости; Vк - объем помещения, л; Vв - объем воздуха, необходимый для полного сгорания одной молекулы горючей жидкости, л;
где
где Pбар - барометрическое давление, мм рт.ст.; t - температура; V0=22,4 л - объем грамм-молекулы воздуха при 0°C и давлении 760 мм рт.ст., объем (см3) горючей жидкости
где ρ - плотность жидкости, г/см3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015133190/11A RU2600287C1 (ru) | 2015-08-10 | 2015-08-10 | Стенд кочетова для определения эффективности предохранительных конструкций |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015133190/11A RU2600287C1 (ru) | 2015-08-10 | 2015-08-10 | Стенд кочетова для определения эффективности предохранительных конструкций |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2600287C1 true RU2600287C1 (ru) | 2016-10-20 |
Family
ID=57138783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015133190/11A RU2600287C1 (ru) | 2015-08-10 | 2015-08-10 | Стенд кочетова для определения эффективности предохранительных конструкций |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2600287C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2631169C1 (ru) * | 2016-10-17 | 2017-09-19 | Олег Савельевич Кочетов | Стенд кочетова для определения эффективности предохранительных конструкций |
CN111189370A (zh) * | 2020-02-24 | 2020-05-22 | 安徽工程大学 | 一种边坡爆破减震试验装置及方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0545100A (ja) * | 1991-08-13 | 1993-02-23 | Nobel Kogyo Kk | 爆発物等不審物処理容体 |
WO1998012496A1 (en) * | 1996-09-20 | 1998-03-26 | Alliedsignal Inc. | Blast resistant and blast directing container assemblies |
RU2488074C1 (ru) * | 2012-03-20 | 2013-07-20 | Олег Савельевич Кочетов | Способ определения эффективности взрывозащиты и устройство для его осуществления |
RU131757U1 (ru) * | 2012-08-21 | 2013-08-27 | Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) | Взрывозащитная разрушающаяся конструкция ограждения зданий |
-
2015
- 2015-08-10 RU RU2015133190/11A patent/RU2600287C1/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0545100A (ja) * | 1991-08-13 | 1993-02-23 | Nobel Kogyo Kk | 爆発物等不審物処理容体 |
WO1998012496A1 (en) * | 1996-09-20 | 1998-03-26 | Alliedsignal Inc. | Blast resistant and blast directing container assemblies |
RU2488074C1 (ru) * | 2012-03-20 | 2013-07-20 | Олег Савельевич Кочетов | Способ определения эффективности взрывозащиты и устройство для его осуществления |
RU131757U1 (ru) * | 2012-08-21 | 2013-08-27 | Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) | Взрывозащитная разрушающаяся конструкция ограждения зданий |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2631169C1 (ru) * | 2016-10-17 | 2017-09-19 | Олег Савельевич Кочетов | Стенд кочетова для определения эффективности предохранительных конструкций |
CN111189370A (zh) * | 2020-02-24 | 2020-05-22 | 安徽工程大学 | 一种边坡爆破减震试验装置及方法 |
CN111189370B (zh) * | 2020-02-24 | 2024-06-11 | 安徽工程大学 | 一种边坡爆破减震试验装置及方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2488074C1 (ru) | Способ определения эффективности взрывозащиты и устройство для его осуществления | |
RU2563754C1 (ru) | Система кочетова для моделирования чрезвычайной ситуации | |
RU120569U1 (ru) | Система для моделирования чрезвычайной ситуации | |
RU2548256C1 (ru) | Способ определения эффективности взрывозащиты | |
RU2549711C1 (ru) | Способ прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте | |
RU2549677C1 (ru) | Устройство прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте | |
RU141274U1 (ru) | Стенд для моделирования чрезвычайной ситуации | |
RU2600287C1 (ru) | Стенд кочетова для определения эффективности предохранительных конструкций | |
RU2564209C1 (ru) | Стенд для моделирования чрезвычайной ситуации | |
RU2617741C1 (ru) | Стенд для исследований параметров взрывозащитных устройств | |
RU2593122C1 (ru) | Устройство для моделирования взрывоопасной ситуации | |
RU2631169C1 (ru) | Стенд кочетова для определения эффективности предохранительных конструкций | |
RU2650995C1 (ru) | Стенд для определения эффективности предохранительных конструкций | |
RU2645361C1 (ru) | Стенд для исследований параметров взрывозащитных устройств в испытательном макете взрывоопасного объекта | |
RU2590038C1 (ru) | Стенд кочетова для определения эффективности предохранительных конструкций | |
RU2616090C1 (ru) | Способ кочетова взрывозащиты с системой оповещения о возникновении чрезвычайной ситуации | |
RU2625077C1 (ru) | Система для моделирования чрезвычайной ситуации | |
RU2637641C1 (ru) | Способ комплексной оценки изменения параметров взрывозащитных элементов при чрезвычайной ситуации на взрывоопасном объекте | |
RU2602552C1 (ru) | Способ определения эффективности взрывозащиты и устройство для его осуществления | |
RU2640474C1 (ru) | Стенд для исследования параметров взрывозащитных элементов при чрезвычайной ситуации на взрывоопасном объекте | |
RU2577655C1 (ru) | Устройство для моделирования взрывоопасной ситуации | |
RU2637640C1 (ru) | Способ исследования развития чрезвычайной ситуации на взрывоопасном объекте | |
RU2613986C1 (ru) | Способ определения эффективности взрывозащиты | |
RU2603827C1 (ru) | Способ прогнозирования развития чрезвычайной ситуации на взрывоопасном объекте | |
RU2595549C1 (ru) | Устройство прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте |