RU2600125C2 - Преобразователь и способ его эксплуатации для преобразования напряжений - Google Patents

Преобразователь и способ его эксплуатации для преобразования напряжений Download PDF

Info

Publication number
RU2600125C2
RU2600125C2 RU2015102584/07A RU2015102584A RU2600125C2 RU 2600125 C2 RU2600125 C2 RU 2600125C2 RU 2015102584/07 A RU2015102584/07 A RU 2015102584/07A RU 2015102584 A RU2015102584 A RU 2015102584A RU 2600125 C2 RU2600125 C2 RU 2600125C2
Authority
RU
Russia
Prior art keywords
modules
mms
voltage
phase
transformer
Prior art date
Application number
RU2015102584/07A
Other languages
English (en)
Other versions
RU2015102584A (ru
Inventor
Марк-Маттиас БАКРАН
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2015102584A publication Critical patent/RU2015102584A/ru
Application granted granted Critical
Publication of RU2600125C2 publication Critical patent/RU2600125C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0074Plural converter units whose inputs are connected in series

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Изобретение относится к области электротехники. Для передачи электроэнергии между системой постоянного напряжения и, по меньшей мере, n-фазной системой переменного напряжения создан преобразователь (10), содержащий n-фазный трансформатор (20) и преобразовательную схему (12) из n-го числа ММС-модулей (30), причем число n составляет, по меньшей мере, три. ММС-модули (30) включены последовательно. Преобразователь (10) содержит развязывающие конденсаторы (16) для подвода электроэнергии к трансформатору (20) и/или для отбора электроэнергии от него. Каждая обмотка (21) первой стороны (21s) трансформатора (20) образует с одним из развязывающих конденсаторов (16) последовательную схему (17), причем каждая из последовательных схем (17) включена параллельно одному из ММС-модулей (30). Кроме того, созданы способы (100, 200) эксплуатации для преобразования постоянного напряжения (UDC), по меньшей мере, в трехфазное переменное напряжение (U22, U 22 '
Figure 00000011
, U 22 "
Figure 00000012
) и для преобразования, по меньшей мере, трехфазного переменного напряжения (U22, U 22 '
Figure 00000013
, U 22 "
Figure 00000014
) в постоянное напряжение (UDC). 3 н. и 15 з.п. ф-лы, 7 ил.

Description

Изобретение относится к преобразователю, содержащему n-фазный трансформатор и преобразовательную схему из n-го числа ММС-модулей, причем число n составляет, по меньшей мере, три. Каждый ММС-модуль содержит, по меньшей мере, два последовательно включенных подмодуля. Каждый подмодуль содержит полумост и емкость, включенную параллельно полумосту. Каждая ветвь каждого полумоста содержит полупроводниковый выключатель. ММС-модули включены последовательно, а между непосредственно соединенными между собой электрически ММС-модулями предусмотрен соответствующий электрический отвод. Преобразователь можно назвать также «модульным многоуровневым преобразователем» или ММС (modular multilevel converter).
Кроме того, изобретение относится к способу эксплуатации для преобразования постоянного напряжения, по меньшей мере, в трехфазное переменное напряжение и к способу эксплуатации для преобразования, по меньшей мере, трехфазного переменного напряжения в постоянное напряжение.
Из диссертации Rohner, S., «Untersuchung des Modularen Mehrpunktstromrichters M2C für Mittelspannungsanwendungen», Технический университет Дрездена, 2010 г., стр. 14, рис. 2.2 известна преобразовательная схема. Она является комплексной и сложной в изготовлении, поскольку для этого необходимо реализовать, по меньшей мере, шесть ММС-модулей, причем каждый из них должен иметь достаточное число подмодулей, чтобы обеспечить достаточную электрическую прочность. Кроме того, каждый ММС-модуль требует индуктивность, чтобы подавлять присущие ММС-модулям переменные токи между ними. В случае электрической питающей сети на основе постоянного тока или же в случае постоянноточного соединения «точка-точка» с напряжениями выше ста или нескольких сот киловольт нередко ставится задача, заключающаяся в том, чтобы в промежуточном месте отобрать небольшую мощность (например, к промежуточному потребителю или к рабочему устройству постоянноточного соединения). В качестве альтернативы или дополнительно может быть также поставлена задача, заключающаяся в том, чтобы в промежуточном месте ввести небольшую мощность (например, от источника энергии и/или от места потребления энергии другой питающей сети, лежащего на пути передачи). «Небольшой мощностью» здесь называется мощность, которая заметно меньше всей передаваемой мощности передачи постоянного тока.
Задачей изобретения является создание преобразователя на основе ММС-модулей, который менее сложен в изготовлении (в частности, для небольших мощностей), чем известный преобразователь. Кроме того, задачей изобретения является создание соответствующего способа эксплуатации. Это относится, в частности, к эксплуатации в системе передачи постоянного тока с напряжениями выше ста или нескольких сот киловольт.
Согласно изобретению, эта задача решается за счет того, что создан преобразователь, содержащий n-фазный трансформатор и преобразовательную схему из n-го числа ММС-модулей, причем число n составляет, по меньшей мере, три. Каждый ММС-модуль содержит, по меньшей мере, два последовательно включенных подмодуля. Каждый подмодуль содержит полумост и емкость, включенную параллельно полумосту. Каждая ветвь каждого полумоста содержит полупроводниковый выключатель, причем ММС-модули включены последовательно, а между непосредственно соединенными между собой электрически ММС-модулями предусмотрен соответствующий электрический отвод. Преобразователь содержит развязывающие конденсаторы для подвода электроэнергии к трансформатору и/или для отбора электроэнергии от него. Каждая обмотка первой стороны трансформатора образует с одним из развязывающих конденсаторов последовательную схему, причем каждая из последовательных схем включена параллельно одному из ММС-модулей.
В части способа эксплуатации для преобразования постоянного напряжения, по меньшей мере, в трехфазное переменное напряжение задача решается за счет того, что способ эксплуатации включает в себя следующие этапы:
- приложение постоянного напряжения к последовательной схеме из ММС-модулей, причем каждый из ММС-модулей содержит, по меньшей мере, два последовательно включенных подмодуля, причем каждый подмодуль содержит полумост и емкость, включенную параллельно полумосту, причем каждая ветвь каждого полумоста содержит полупроводниковый выключатель,
- сдвинутое по фазе управление ММС-модулями для вырабатывания нескольких сдвинутых по фазе напряжений на выводах ММС-модулей и
- приложение сдвинутых по фазе напряжений к обмоткам первой стороны многофазного трансформатора посредством развязывающих конденсаторов.
В части способа эксплуатации для преобразования, по меньшей мере, трехфазного переменного напряжения в постоянное напряжение задача решается за счет того, что способ эксплуатации включает в себя следующие этапы:
- приложение, по меньшей мере, трехфазного переменного напряжения ко второй стороне трансформатора,
- отбор, по меньшей мере, трехфазных напряжений на обмотках первой стороны многофазного трансформатора посредством развязывающих конденсаторов,
- сдвинутое по фазе управление последовательно включенными ММС-модулями для вырабатывания нескольких сдвинутых по фазе напряжений на выводах ММС-модулей, причем каждый из ММС-модулей содержит, по меньшей мере, два последовательно включенных подмодуля, причем каждый подмодуль содержит полумост и емкость, включенную параллельно полумосту, причем каждая ветвь каждого полумоста содержит полупроводниковый выключатель.
С одной стороны, предложенная преобразовательная схема (по сравнению с известной) приводит к дополнительным затратам на развязывающие конденсаторы. С другой стороны (по сравнению с известной преобразовательной схемой), требуется лишь вполовину меньше ММС-модулей и (при той же электрической прочности каждого подмодуля) только одна n-ая подмодулей. Предложенные преобразовательная схема и преобразователь могут быть, в частности, менее дорогими в изготовлении и обеспечить менее затратное применение предложенного способа эксплуатации тогда, когда с помощью преобразователя лишь относительно небольшая мощность отбирается из системы постоянного напряжения или вводится в нее, однако по производственно-техническим причинам для ММС-модулей задана более высокая минимальная пропускная способность по мощности. Описанные здесь и далее способы эксплуатации (без ограничения всеобщности) применимы с предложенной преобразовательной схемой и любым предложенным преобразователем.
При симметричной работе ММС-модулей управление каждым из них происходит так, что среднее арифметическое (т.е. доля постоянного напряжения) падения напряжения на ММС-модуле составляет одну n-ую постоянного напряжения между проводами постоянного напряжения. Кроме того, при симметричной работе ММС-модулей сумма долей переменного напряжения выработанных ММС-модулями частичных напряжений в любой момент составляет 0 вольт. Из этого следует, что при симметричной работе предложенной преобразовательной схемы ММС-модули не вызывают в проводах постоянного напряжения никаких переменных токов. Поскольку отсутствует параллельная схема из ММС-ветвей, можно отказаться от обычных в известных преобразовательных схемах индуктивностей для блокировки переменного тока (круговые токи) между ММС-модулями. Целесообразно, если двойная амплитуда выработанных отдельными ММС-модулями долей переменного напряжения не выше одной n-ой постоянного напряжения между проводами постоянного напряжения.
Может быть предпочтительным, если для двух последовательных схем, электрически соединенных с одним и тем же отводом, предусмотрено только одно электрическое соединение с отводом. За счет этого токи схемотехнически соседних последовательных схем могут временно, по меньшей мере, частично компенсироваться на своем общем подающем проводе. Это уменьшает поля рассеяния и омические потери. Для общих подводящих проводов можно выбрать меньшее общее сечение.
Предпочтительно, если преобразователь содержит блок ММС-управления полупроводниковыми выключателями, чтобы посредством преобразовательной схемы вырабатывать для последовательных схем несколько сдвинутых по фазе по отношению друг к другу напряжений. За счет этого на заводе-изготовителе можно протестировать совместимость блока управления с ММС-модулями и их подключение к блоку управления и уменьшить опасность функциональных сбоев.
Также может быть предпочтительным, если частное от деления эффективного значения падения напряжения на одной из последовательных схем на эффективное значение падения напряжения на развязывающем конденсаторе последовательной схемы больше 6 или 10, особенно предпочтительно больше 20. Это минимизирует влияние емкости на характер управления.
В отношении способа эксплуатации предпочтительно, если сумма падений напряжения на ММС-модулях постоянная. Благодаря этому предотвращаются доли переменного напряжения и возникновение переменной доли электрического поля между присоединительными проводами стороны постоянного напряжения.
В отношении способа эксплуатации предпочтительно, если ток через последовательную схему из ММС-модулей постоянный. Благодаря этому предотвращаются или, по меньшей мере, уменьшаются доли переменного напряжения и возникновение переменной доли магнитного поля на присоединительных проводах стороны постоянного напряжения.
В отношении способа эксплуатации может быть также целесообразным, если сумма падений напряжения на ММС-модулях не зависит от нагрузки. Благодаря этому может быть создан источник переменного или постоянного напряжения, которое имеет низкое внутреннее сопротивление с точки зрения соответственно подключенного потребителя.
Изобретение более подробно поясняется со ссылкой на прилагаемые чертежи, на которых схематично изображают:
фиг. 1 - первый вариант выполнения преобразователя, содержащего преобразовательную схему и трансформатор трехфазного тока;
фиг. 2 - возможную простейшую схему ММС-модуля;
фиг. 3 - возможную простейшую схему ММС-подмодуля;
фиг. 4 - (для первого и второго вариантов) характеристики напряжения ММС-модулей и суммарного напряжения во время работы преобразователя;
фиг. 5 - второй вариант выполнения преобразователя, содержащего преобразовательную схему и трансформатор трехфазного тока;
фиг. 6 - блок-схему варианта способа эксплуатации для преобразования постоянного напряжения, по меньшей мере, в трехфазное переменное напряжение;
фиг. 7 - блок-схему варианта способа эксплуатации для преобразования, по меньшей мере, трехфазного переменного напряжения в постоянное напряжение.
Описанные ниже примеры представляют собой предпочтительные варианты осуществления изобретения.
Преобразователи на основе ММС-модулей подходят для преобразования постоянного напряжения UDC в многофазное переменное напряжение U22,
Figure 00000001
,
Figure 00000002
и для преобразования многофазного переменного напряжения U22,
Figure 00000003
,
Figure 00000004
в постоянное напряжение UDC. На фиг. 1 изображен первый вариант преобразователя 10. Он содержит преобразовательную схему 12, блок ММС-управления 14, развязывающие конденсаторы 16 и три отдельных трансформатора 20u, 20v, 20w или один трансформатор 20 трехфазного тока. В случае преобразователя 10 с кратным трем фазам (например, 12-фазная система) может использоваться кратное трансформаторов трехфазного тока. Преобразовательная схема 12 содержит три последовательно включенных ММС-модуля 30.
Преобразователи 10 со стороны постоянного напряжения могут быть конфигурированы и эксплуатироваться «спинкой к спинке» для их использования, например, в качестве преобразователей напряжения и/или для выполнения одной или нескольких следующих функций: преобразователь частоты, устройство изменения числа фаз, компенсатор реактивной мощности, устройство изменения внутреннего сопротивления, силовой выключатель, устройство разделения потенциалов.
Преобразователи 10 со стороны переменного напряжения могут быть конфигурированы и эксплуатироваться «спинкой к спинке» для их использования, например, в качестве преобразователей постоянного напряжения (DC/DC-преобразователи) и/или для выполнения одной или нескольких следующих функций: устройство изменения внутреннего сопротивления, силовой выключатель, устройство разделения потенциалов.
Каждый ММС-модуль 30 (соответственно с выводами a и b) содержит последовательную схему из m-го числа ММС-подмодулей 40 (соответственно с выводами c и d), простейшая схема которых поясняется в описании фиг. 3. Число m ММС-подмодулей 40 составляет, по меньшей мере, 2 и, как правило, в несколько раз больше 2.
Блок ММС-управления 14 формирует управляющие сигналы g1i, g2i для управления (содержащимися в ММС-модулях 30) ММС-подмодулями 40. На чертежах индекс i в управляющих сигналах g1i, g2i должен напоминать о том, что блок управления 14 предназначен для формирования для каждого ММС-подмодуля 40 собственной пары управляющих сигналов g1i, g2i, т.е., в общей сложности, m пар управляющих сигналов g1i, g2i. Посредством управляющих сигналов g1i, g2i блок управления 14 влияет на соотношение частичных напряжений u1, u2, u3 на последовательно включенных ММС-модулях 30.
Параллельно каждому ММС-модулю 30 включена собственная последовательная схема 17, содержащая соответственно один из развязывающих конденсаторов 16 и одну из первичных обмоток 21 трансформаторов 20u, 20v, 20w.
Изображенные на фиг. 1 и 5 варианты можно использовать также в обратном направлении передачи мощности, т.е. для выпрямления и/или подачи электрической мощности в систему постоянного напряжения. Для наглядности в нижеследующем описании фигур термин «первичная обмотка» употребляется также в том случае, когда преобразователь 10 используется для выпрямления (т.е. для вырабатывания постоянного тока из трехфазного тока) вместо инвертирования (т.е. для вырабатывания трехфазного тока из постоянного тока). То же относится к термину «вторичная обмотка».
В примере на фиг. 1 вторичные обмотки 22 трансформаторов 20u, 20v, 20w и трансформатора 20 трехфазного тока соединены в звезду. В качестве альтернативы вторичные обмотки 22 могут быть соединены в треугольник.
ММС-модуль 30 на фиг. 2 содержит последовательную схему из m-го числа ММС-подмодулей 40, устройство и принцип работы которых более подробно поясняются ниже с помощью фиг. 3. Число m составляет, по меньшей мере, 2 и, как правило, в несколько раз больше 2. Каждый ММС-подмодуль 40 имеет пару управляющих выводов g1i, g2i, с помощью которых на его коммутационное состояние может влиять блок управления 14. Чтобы демпфировать доли переменного тока выше частоты сети, в каждом ММС-модуле 30 может быть последовательно включена индуктивность L30 и/или последовательно с преобразовательной схемой 12 - индуктивность L12 (фиг. 1).
ММС-подмодуль 40 на фиг. 3 содержит последовательную схему 43 из двух IGBT (биполярные транзисторы с изолированным затвором). При этом эмиттер 41e первого IGBT 41 электрически соединен с коллектором 42c второго IGBT 42. Последовательная схема 43 из двух IGBT 41, 42 перекрыта емкостью 44. Для этого первый вывод e1 емкости 44 электрически соединен с коллектором 41с IGBT 41, а второй вывод e2 емкости 44 - с эмиттером 42e IGBT 42. Между эмиттером 41e и коллектором 41с IGBT 41 расположен безынерционный диод 41d. Между эмиттером 42e и коллектором 42с IGBT 42 расположен безынерционный диод 42d.
Когда IGBT 42 заперт, а к выводам c, d ММС-подмодуля 40 приложено большее напряжение Ucd, чем к емкости 44, последняя заряжается через безынерционный диод 41d. Когда IGBT 41 отперт, в то время как IGBT 42 заперт, а к выводам c, d ММС-подмодуля 40 приложено меньшее напряжение Ucd, чем к емкости 44, последняя может разряжаться через безынерционный диод 41d, т.е. электрическая энергия отдается на выводы c, d ММС-подмодуля 40. Когда IGBT 41 заперт, в то время как IGBT 42 отперт, выводы c, d ММС-подмодуля 40 короткозамкнуты, а емкость 44 сохраняет свое заряженное состояние. Посредством известного управления несколькими последовательно включенными ММС-подмодулями 40 можно для каждого ММС-модуля 30 настроить почти любую характеристику напряжения. Следовательно, можно достичь эксплуатационной характеристики ММС-модулей, идентичной управляемому источнику напряжения, который, однако, в среднем значении не может ни отдавать, ни потреблять мощность.
На фиг. 4 изображены возможные для примеров, изображенных на фиг. 1, 5, и для каждого из трех частичных напряжений u1, u2, u3 характеристики в зависимости от времени t. Каждая фаза имеет постоянную долю 1 и переменную долю с амплитудой 1. Частичные напряжения u1, u2, u3 и постоянная доля представляют собой относительные величины, отнесенные к масштабному коэффициенту, например, 1 MB. В данном примере период составляет приблизительно 6 мс, а частота f - приблизительно 167 Гц. Чем выше частота f, тем компактнее могут быть выполнены трансформаторы. При непосредственном подключении к сети трехфазного тока преобразователь следует эксплуатировать с частотой этой сети.
На максимуме u1(tmax1) первой фазы u1(t) переменная доля составляет, следовательно, 1, тогда как переменная доля сдвинутых на ±120° обеих других фаз u2, u3 составляет в этот момент -0,5. Из этого следует, что в этот момент tmax1 сумма Σui(tmax1) частичных напряжений u1(tmax1)+u2(tmax1)+u3(tmax1), включая доли постоянного напряжения, составляет Σui(tmax1)=1+1+1-0,5+1-0,5=3.
Как доказано ниже, это относится также к каждому другому моменту t. Для системы трехфазного тока и ωt=2πf справедливо:
Σui(t)=3+u1(t)+u2(t)+u3(t)=3+cos(ωt)+cos(ωt-2π/3)+cos(ωt+2π/3).
При cos(ωt+2π/3)=cosωtcos2π/3-sinωtsin2π/3 и cos(ωt-2π/3)=cosωtcos2π/3+sinωtsin2π/3 следует:
cos(ωt-2π/3)=+cos(ωt-2π/3)=2cosωtcos2π/3.
При cos2π/3=-1/2 из этого следует:
cos(ωt-2π/3)=+cos(ωt+2π/3)=-2/2cosωt=-cosωt.
Таким образом:
Σui(t)=3+u1(t)+u2(t)+u3(t)=3+cos(ωt)+cos(ωt-2π/3)+cos(ωt+2π/3)=3.
При сдвинутой на 120° характеристике синусоидальных переменных долей трех частичных напряжений u1(t), u2(t), u3(t) переменные доли, следовательно, взаимно точно уничтожаются. Это относится, как правило, к системам с n-м числом фаз, разность которых между соседними фазами составляет 2 π/n. В режиме инвертора постоянное напряжение UDC может быть без остатка разделено на n-e число синусоидальных частичных напряжений с эквидистантной разностью фаз 2π/n.
То же справедливо также в случае обратного направления передачи мощности, т.е. в режиме выпрямителя. При n-фазном запитывании из многофазного трансформатора 20 синусоидальными частичными напряжениями U21 с эквидистантной разностью фаз 2π/n к последовательной схеме 43 из ММС-модулей 30 в каждый момент приложено общее напряжение Σui(t)=n, которое складывается из суммы постоянных долей n-го числа частичных напряжений.
Если емкость развязывающего конденсатора 16 выбирается достаточно большой, то можно достичь того, что при номинальной нагрузке трансформатора 20 разность от деления эффективного значения падения напряжения U21 на одной из последовательных схем 17 на эффективное значения падения напряжения U16 на развязывающем конденсаторе 16 последовательной схемы 17 будет больше 6 или 10, особенно предпочтительно больше 20.
В качестве альтернативы или дополнительно падение напряжения U16 в режиме инвертора по его воздействию на величину исходного напряжения U22 можно компенсировать путем уменьшения числа обмоток первичной обмотки 21 и/или увеличения числа обмоток вторичной обмотки 22. Во избежание возрастания исходного напряжения U22 вследствие меньшего падения напряжения U16 в режиме частичной нагрузки и/или холостого хода можно в таком режиме согласовать амплитуду переменных долей частичных напряжений u1(t), u2(t), u3(t) посредством блока управления 14 так, чтобы (выработанное преобразователем) исходное напряжение U22 в значительной степени не зависело от нагрузки. С помощью любой из названных мер можно в режиме инвертора уменьшить расходы и потребность в конструктивном пространстве для развязывающего конденсатора 16.
В режиме выпрямителя падение напряжения U16 по его воздействию на величину исходного напряжения UDC можно в качестве альтернативы или дополнительно компенсировать путем увеличения числа обмоток первичной обмотки 21 и/или уменьшения числа обмоток вторичной обмотки 22. Во избежание возрастания (выработанного преобразовательной схемой 12) исходного напряжения UDC вследствие меньшего падения напряжения U16 в режиме частичной нагрузки и/или холостого хода можно в таком режиме согласовать амплитуду переменных долей частичных напряжений u1(t), u2(t), u3(t) посредством блока управления 14 так, чтобы (выработанное преобразовательной схемой 12) исходное напряжение UDC в значительной степени не зависело от нагрузки. С помощью любой из названных мер можно в режиме выпрямителя уменьшить расходы и потребность в конструктивном пространстве для развязывающего конденсатора 16.
На фиг. 5 изображен второй вариант выполнения преобразователя 10. Отличие от первого варианта заключается в том, что каждые два подводящих провода a″, b′ (или а′″, b″) к схемотехнически соседним последовательным схемам 17 объединены в один общий подводящий провод. За счет этого токи через схемотехнически соседние последовательные схемы 17 могут временно, по меньшей мере, частично компенсироваться на своем общем подающем проводе. Это уменьшает поля рассеяния и омические потери. Для общих подводящих проводов можно выбрать меньшее общее сечение.
Кроме того, во втором примере вторичная сторона 22s трансформатора 20 соединена в треугольник. Второй пример может быть видоизменен таким образом, чтобы вторичная сторона 22s трансформатора 20 была соединена в звезду.
На фиг. 6 изображена блок-схема способа эксплуатации 100 для преобразования постоянного напряжения UDC, по меньшей мере, в трехфазное переменное напряжение U22,
Figure 00000005
,
Figure 00000006
. При этом на первом этапе 110 к последовательной схеме 12 из ММС-модулей 30 прикладывается постоянное напряжение UDC. На втором этапе 120 ММС-модули 30 для вырабатывания и приложения нескольких сдвинутых по фазе напряжений u1(t), u2(t), u3(t) к их выводам a, b управляются со сдвигом по фазе. На третьем этапе 130 сдвинутые по фазе напряжения U21 прикладываются к обмоткам 21 первой стороны 21s многофазного трансформатора 20 посредством развязывающих конденсаторов 16.
На фиг. 7 изображена блок-схема способа эксплуатации 200 для преобразования, по меньшей мере, трехфазного переменного напряжения U22,
Figure 00000007
,
Figure 00000008
в постоянное напряжение UDC. При этом на первом этапе 210 ко второй стороне 22s трансформатора 20 прикладывается, по меньшей мере, трехфазное переменное напряжение U22,
Figure 00000007
,
Figure 00000008
. На втором этапе 220 на обмотках 21 первой стороны 21s многофазного трансформатора 20 посредством развязывающих конденсаторов 16 отбираются, по меньшей мере, трехфазные напряжения U21,
Figure 00000009
,
Figure 00000010
. На третьем этапе 230 последовательно включенные ММС-модули 30 для вырабатывания и приложения нескольких сдвинутых по фазе напряжений u1(t), u2(t), u3(t) к их выводам a, b управляются со сдвигом по фазе.
Как в режиме на фиг. 6, так и в режиме на фиг. 7 каждый из подмодулей 40 содержит полумост 43 и емкость 44, включенную параллельно ему, причем каждая ветвь 41z, 42z каждого полумоста 43 содержит полупроводниковый выключатель 41, 42.

Claims (18)

1. Преобразователь (10), содержащий n-фазный трансформатор (20) и преобразовательную схему (12) из n-го числа ММС-модулей (30), причем число n составляет, по меньшей мере, три, причем каждый ММС-модуль (30) содержит, по меньшей мере, два последовательно включенных подмодуля (40), причем каждый подмодуль (40) содержит полумост (43) и емкость (44), включенную параллельно полумосту (43), причем каждая ветвь (41z, 42z) каждого полумоста (43) содержит полупроводниковый выключатель (41, 42), причем ММС-модули (30) включены последовательно, а между непосредственно соединенными между собой электрически ММС-модулями (30) предусмотрен соответствующий электрический отвод (18), причем преобразователь (10) содержит развязывающие конденсаторы (16) для подвода электроэнергии к трансформатору (20) и/или для отбора электроэнергии от него, причем каждая обмотка (21) первой стороны (21s) трансформатора (20) образует с одним из развязывающих конденсаторов (16) последовательную схему (17), причем каждая из последовательных схем (17) включена параллельно одному из ММС-модулей (30), отличающийся тем, что для двух последовательных схем (17), электрически соединенных с одним и тем же отводом (18), предусмотрено только одно электрическое соединение с отводом (18).
2. Преобразователь по п. 1, отличающийся тем, что он содержит блок (14) ММС-управления полупроводниковыми выключателями (41, 42), чтобы посредством преобразовательной схемы (12) вырабатывать для последовательных схем (17) несколько сдвинутых по фазе по отношению друг к другу напряжений (u1, u2, u3).
3. Способ эксплуатации для преобразования постоянного напряжения (Udc), по меньшей мере, в трехфазное переменное напряжение (U22, U22′, U22″), включающий в себя следующие этапы (110, 120, 130):
- приложение (110) постоянного напряжения (Udc) к последовательной схеме из ММС-модулей (30), причем каждый из ММС-модулей (30) содержит, по меньшей мере, два последовательно включенных подмодуля (40), причем каждый подмодуль (40) содержит полумост (43) и емкость (44), включенную параллельно полумосту (43), причем каждая ветвь (41z, 42z) каждого полумоста (43) содержит полупроводниковый выключатель (41, 42),
- сдвинутое по фазе управление (120) ММС-модулями (30) для вырабатывания нескольких сдвинутых по фазе напряжений (u1, u2, u3) на выводах (a, b) ММС-модулей (30) и
- приложение (130) сдвинутых по фазе напряжений (u1, u2, u3) к обмоткам (21) первой стороны (21s) многофазного трансформатора (20) посредством развязывающих конденсаторов (16), причем каждая обмотка (21) первой стороны (21s) трансформатора (20) образует с одним из развязывающих конденсаторов (16) последовательную схему (17), каждую из которых включают параллельно одному из ММС-модулей (30), причем для двух последовательных схем (17), электрически соединенных с одним и тем же отводом (18), выполняют только одно электрическое соединение с отводом (18).
4. Способ по п. 3, отличающийся тем, что частное от деления эффективного значения падения напряжения (U21) на одной из последовательных схем (17) на эффективное значение падения напряжения (U16) на развязывающем конденсаторе (16) последовательной схемы (17) больше 6 или 10, особенно предпочтительно больше 20.
5. Способ по п. 3 или 4, отличающийся тем, что сумма (Σui) падений напряжения (Uab) на ММС-модулях (30) постоянная.
6. Способ по п. 3 или 4, отличающийся тем, что ток (I12) через последовательную схему (12) ММС-модулей (30) постоянный.
7. Способ по п. 5, отличающийся тем, что ток (I12) через последовательную схему (12) ММС-модулей (30) постоянный.
8. Способ по любому из пп. 3, 4, 7, отличающийся тем, что сумма (Σui) падений напряжения (Uab) на ММС-модулях (30) не зависит от нагрузки.
9. Способ по п. 5, отличающийся тем, что сумма (Σui) падений напряжения (Uab) на ММС-модулях (30) не зависит от нагрузки.
10. Способ по п. 6, отличающийся тем, что сумма (Σui) падений напряжения (Uab) на ММС-модулях (30) не зависит от нагрузки.
11. Способ эксплуатации для преобразования, по меньшей мере, трехфазного переменного напряжения (U22, U22′, U22″) в постоянное напряжение (Udc), включающий в себя следующие этапы (210, 220, 230):
- приложение (210), по меньшей мере, трехфазного переменного напряжения (U22, U22′, U22″) ко второй стороне (22s) трансформатора (20),
- отбор (220), по меньшей мере, трехфазных напряжений (u1, u2, u3) на обмотках (21) первой стороны (21s) многофазного трансформатора (20) посредством развязывающих конденсаторов (16), причем каждая обмотка (21) первой стороны (21s) трансформатора (20) образует с одним из развязывающих конденсаторов (16) последовательную схему (17), каждую из которых включают параллельно одному из ММС-модулей (30), причем для двух последовательных схем (17), электрически соединенных с одним и тем же отводом (18), выполняют только одно электрическое соединение с отводом (18),
- сдвинутое по фазе управление (230) последовательно включенными ММС-модулями (30) для вырабатывания нескольких сдвинутых по фазе напряжений (u1, u2, u3) на выводах (а, b) ММС-модулей (30), причем каждый из ММС-модулей (30) содержит, по меньшей мере, два последовательно включенных подмодуля (40), причем каждый подмодуль (40) содержит полумост (43) и емкость (44), включенную параллельно полумосту (43), причем каждая ветвь (41z, 42z) каждого полумоста (43) содержит полупроводниковый выключатель (41, 42).
12. Способ по п. 11, отличающийся тем, что частное от деления эффективного значения падения напряжения (U21) на одной из последовательных схем (17) на эффективное значение падения напряжения (U16) на развязывающем конденсаторе (16) последовательной схемы (17) больше 6 или 10, особенно предпочтительно больше 20.
13. Способ по п. 11 или 12, отличающийся тем, что сумма (Σui) падений напряжения (Uab) на ММС-модулях (30) постоянная.
14. Способ по п. 11 или 12, отличающийся тем, что ток (I12) через последовательную схему (12) ММС-модулей (30) постоянный.
15. Способ по п. 13, отличающийся тем, что ток (I12) через последовательную схему (12) ММС-модулей (30) постоянный.
16. Способ по любому из пп. 11, 12, 15, отличающийся тем, что сумма (Σui) падений напряжения (Uab) на ММС-модулях (30) не зависит от нагрузки.
17. Способ по п. 13, отличающийся тем, что сумма (Σui) падений напряжения (Uab) на ММС-модулях (30) не зависит от нагрузки.
18. Способ по п. 14, отличающийся тем, что сумма (Σui) падений напряжения (Uab) на ММС-модулях (30) не зависит от нагрузки.
RU2015102584/07A 2012-06-28 2013-06-11 Преобразователь и способ его эксплуатации для преобразования напряжений RU2600125C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012211122 2012-06-28
DE102012211122.0 2012-06-28
PCT/EP2013/062003 WO2014001079A1 (de) 2012-06-28 2013-06-11 Stromrichter und betriebsverfahren zum wandeln von spannungen

Publications (2)

Publication Number Publication Date
RU2015102584A RU2015102584A (ru) 2016-08-20
RU2600125C2 true RU2600125C2 (ru) 2016-10-20

Family

ID=48652035

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015102584/07A RU2600125C2 (ru) 2012-06-28 2013-06-11 Преобразователь и способ его эксплуатации для преобразования напряжений

Country Status (6)

Country Link
EP (1) EP2845303B1 (ru)
BR (1) BR112014032612B8 (ru)
ES (1) ES2575181T3 (ru)
PL (1) PL2845303T3 (ru)
RU (1) RU2600125C2 (ru)
WO (1) WO2014001079A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2656302C1 (ru) * 2017-06-26 2018-06-04 Общество с ограниченной ответственностью "ЧЭАЗ-ЭЛПРИ" Подмодуль полумостовой силового полупроводникового модуля
RU2677253C2 (ru) * 2017-06-26 2019-01-16 Общество с ограниченной ответственностью "ЧЭАЗ-ЭЛПРИ" Подмодуль полумостовой силового полупроводникового модуля

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107104600B (zh) * 2016-02-23 2019-09-17 西门子公司 模块化多电平变换器及电力电子变压器
CN106026163B (zh) * 2016-05-27 2019-04-09 南京工程学院 一种基于mmc光伏并网逆变器的低电压穿越控制方法及系统
WO2019242848A1 (de) * 2018-06-20 2019-12-26 Siemens Aktiengesellschaft Einrichtung und verfahren zur gleichstromversorgung
WO2022152124A1 (zh) * 2021-01-13 2022-07-21 南京南瑞继保电气有限公司 模块化批量取能换流电路及控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU836739A1 (ru) * 1977-11-03 1981-06-07 Московский Ордена Ленина Энергетическийинститут Способ преобразовани посто нногоНАпР жЕНи B КВАзиСиНуСОидАльНОЕ
CN201830161U (zh) * 2010-10-22 2011-05-11 刘文华 一种模块化多电平变流器中的功率模块的工作电源

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011141059A1 (en) * 2010-05-11 2011-11-17 Abb Research Ltd An ac/dc converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU836739A1 (ru) * 1977-11-03 1981-06-07 Московский Ордена Ленина Энергетическийинститут Способ преобразовани посто нногоНАпР жЕНи B КВАзиСиНуСОидАльНОЕ
CN201830161U (zh) * 2010-10-22 2011-05-11 刘文华 一种模块化多电平变流器中的功率模块的工作电源

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2656302C1 (ru) * 2017-06-26 2018-06-04 Общество с ограниченной ответственностью "ЧЭАЗ-ЭЛПРИ" Подмодуль полумостовой силового полупроводникового модуля
RU2677253C2 (ru) * 2017-06-26 2019-01-16 Общество с ограниченной ответственностью "ЧЭАЗ-ЭЛПРИ" Подмодуль полумостовой силового полупроводникового модуля

Also Published As

Publication number Publication date
ES2575181T3 (es) 2016-06-27
BR112014032612A2 (pt) 2017-06-27
EP2845303A1 (de) 2015-03-11
BR112014032612B8 (pt) 2023-04-25
BR112014032612B1 (pt) 2021-08-17
EP2845303B1 (de) 2016-04-13
PL2845303T3 (pl) 2016-10-31
WO2014001079A1 (de) 2014-01-03
RU2015102584A (ru) 2016-08-20

Similar Documents

Publication Publication Date Title
Zamiri et al. A new cascaded switched-capacitor multilevel inverter based on improved series–parallel conversion with less number of components
RU2600125C2 (ru) Преобразователь и способ его эксплуатации для преобразования напряжений
CA2565707C (en) Low harmonics, polyphase converter circuit
US20090244936A1 (en) Three-phase inverter
EP2605396B1 (en) A track-bound vehicle inverter
JP5682459B2 (ja) 5レベル変換回路
CN102647097A (zh) 电源设备
US11996711B2 (en) Single stage charger for high voltage batteries
US20110222317A1 (en) Converter circuit and unit and system comprising such converter circuit
KR20160013176A (ko) 병렬로 접속된 다단 컨버터들을 가지는 컨버터 어셈블리 및 상기 다단 컨버터들을 제어하기 위한 방법
JPWO2014030181A1 (ja) 電力変換装置
US10312825B2 (en) Five-level half bridge inverter topology with high voltage utilization ratio
Babaei et al. New 8-level basic structure for cascaded multilevel inverters with reduced number of switches and DC voltage sources
Hosseini Montazer et al. A generalized diode containing bidirectional topology for multilevel inverter with reduced switches and power loss
JP2013172530A (ja) 電力変換装置
Won et al. Auxiliary power supply for medium-voltage power electronics systems
Singh et al. A new topology of transistor clamped 5-level H-Bridge multilevel inverter with voltage boosting capacity
Baruschka et al. A new modular multilevel AC/DC converter topology applied to a modular multilevel DC/DC converter
Dutta Some aspects on 3-phase bridge inverter (180 degree mode)
Wei et al. A new four-level converter for low and medium voltage applications
CN117730476A (zh) 具有多种运行模式的基于单元的多电平转换器和相关联的控制方法
RU2609770C1 (ru) Устройство гарантированного электропитания
KR101862517B1 (ko) 독립형 멀티 h-브리지를 이용한 다상 인버터
RU69353U1 (ru) Высоковольтный преобразователь частоты
Khajehzadeh et al. An introduction to inverters and applications for system design and control wave power

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20220114