RU2599865C2 - Способ определения по меньшей мере одного пригодного пути движения для объекта в ткани - Google Patents

Способ определения по меньшей мере одного пригодного пути движения для объекта в ткани Download PDF

Info

Publication number
RU2599865C2
RU2599865C2 RU2013138570/14A RU2013138570A RU2599865C2 RU 2599865 C2 RU2599865 C2 RU 2599865C2 RU 2013138570/14 A RU2013138570/14 A RU 2013138570/14A RU 2013138570 A RU2013138570 A RU 2013138570A RU 2599865 C2 RU2599865 C2 RU 2599865C2
Authority
RU
Russia
Prior art keywords
intensity
path
movement
initial position
possible path
Prior art date
Application number
RU2013138570/14A
Other languages
English (en)
Other versions
RU2013138570A (ru
Inventor
Ахмет ЭКЫН
Хуберт Сесиль Франсуа МАРТЕНС
Original Assignee
Медтроник Баккен Рисерч Сентер Б.В.</STRONG>
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Медтроник Баккен Рисерч Сентер Б.В.</STRONG> filed Critical Медтроник Баккен Рисерч Сентер Б.В.</STRONG>
Publication of RU2013138570A publication Critical patent/RU2013138570A/ru
Application granted granted Critical
Publication of RU2599865C2 publication Critical patent/RU2599865C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • A61B90/11Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/08Volume rendering
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • G06T2207/101363D ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30241Trajectory
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Computer Graphics (AREA)
  • Robotics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Processing Or Creating Images (AREA)

Abstract

Изобретение относится к области медицины, в частности к диагностике и хирургии. Для определения пригодного пути для движения хирургического и/или диагностического устройства, в теле человека или животного используют метод трехмерной визуализации. Выбирают вероятное начальное положение опорной точки устройства, определяют возможный путь движения между соответствующим вероятным начальным положением и заданным целевым местоположением опорной точки устройства. На несегментированном изображении ткани оценивают возможный путь движения в качестве пригодного пути в зависимости от информации о локальных экстремумах интенсивности и/или вариации интенсивности, возникающих из данных интенсивности вдоль возможного пути движения. Выходные данные, включающие в себя подходящий путь, отображают на устройстве отображения, входящем в компьютеризированную систему по определению пригодного пути. Группа изобретений позволяет исключить этап сегментации, избежать проблем с неоднородностью интенсивности изображений, добавлять функциональную информацию в этап поиска и отображать информацию о пригодном пути в виде графиков и миниатюр. 3 н. и 11 з.п. ф-лы, 4 ил.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Изобретение относится к способу определения по меньшей мере одного пригодного пути для движения объекта, в частности хирургического и/или диагностического устройства, в ткани человека или ткани животного с помощью набора данных интенсивности, получаемого с помощью метода трехмерной визуализации, путь движения соединяет начальное положение устройства с заданным целевым местоположением. Изобретение также относится к машиночитаемому носителю информации, такому как запоминающее устройство, гибкий диск, диск CD, DVD, Blue-Ray или оперативное запоминающее устройство (RAM), а также к компьютерному программному продукту, содержащему используемый компьютером носитель информации, содержащий используемый компьютером программный код, и к компьютеризированной системе.
УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ
Системы поддержки принятия решений о медицинских диагнозах или системы компьютерной диагностики или диагностики с компьютерным ассистированием (CAD) используют в медицине для того, чтобы помогать пользователям, таким как медицинские эксперты или врачи, в интерпретации медицинских изображений. Методы рентгеновской визуализации, магнитно-резонансной визуализации (MRI) и ультразвуковая диагностика дают значительное количество информации, которую пользователь имеет для того, чтобы анализировать и оценивать всесторонне за короткое время. Системы CAD помогают сканировать цифровые изображения, например, из магнитно-резонансной визуализации, на типичные явления и для того, чтобы выделять заметные структуры, такие как сосуды, нервные пути, желудочки, функционально выразительные области и/или области опухолей. Обычно технологии машинного обучения, такие как дерево решений и нейронная сеть, используют для построения классификаторов, основываясь на большом числе известных случаев с экспериментальным подтверждением, т.е. случаев, для которых диагноз подтвержден патологией. Классификатор основывает свой диагноз на вычислительной структуре, построенной из известных случаев и введенных признаков, для случая неизвестной структуры. Выходные данные классификатора указывают на оценочную природу неизвестной структуры и необязательно значение достоверности. Поскольку точность оснащения для медицинской визуализации улучшается для того, чтобы обнаруживать очень маленькие структуры, и поскольку возрастает число цифровых изображений, подлежащих обработке, этот тип CAD становится все более важным в качестве инструмента для того, чтобы помогать пользователям, таким как врачи. Полученную с помощью компьютера классификацию рассматривают как вторую возможность для пользователя, такого как врач, чтобы повысить точность и достоверность, связанные с диагнозом.
Хирургическое вмешательство с компьютерным ассистированием (CAS) представляет хирургическую идею и набор способов, в которых используют компьютерные технологии для дохирургического планирования и для контроля или выполнения хирургических вмешательств. CAS также известна как компьютерная хирургия, вмешательство с компьютерным ассистированием, хирургия под визуальным контролем и хирургическая навигация, но эти термины в большей или меньшей степени представляют собой синонимы CAS.
Традиционный подход к определению пригодного пути движения для хирургического и/или диагностического устройства (безопасная хирургическая траектория) в терапии под визуальным контролем, таким как MRI, всегда содержит два основных этапа: сегментация каждой критической структуры в пространственной области, задающей вероятный(е) путь(и) движения вокруг этих областей, и после этого определение соответствующего безопасного или пригодного пути. Одна важная область применения представляет собой хирургические операции на головном мозге. В деталях традиционное планирование хирургической операции преимущественно придерживается следующих этапов.
На первом этапе целевое местоположение задают вручную или автоматическим или полуавтоматическим образом. Это включает или совмещение магнитно-резонансного (MR) объема с шаблоном, часто в стереотаксической системе координат, и обнаружение анатомических структур по этой трансформации, или идентификацию некоторых ориентировочных точек и плоскостей, таких как средняя сагиттальная плоскость и точки AC/PC для того, чтобы определять местоположение цели. Когда цель определена, планирование сводится к обнаружению входной точки. Во многих случаях путь между входными и целевыми точками должен быть прямым и не должен попадать в критические структуры.
Второй этап представляет собой идентификацию критических структур, таких как сосуды, извилины и борозды, желудочки и некоторые функционально выразительные области в головном мозге. Это включает сегментацию этих структур, например, на T1 взвешенных MR изображениях с контрастированием посредством применения набора алгоритмов сегментации изображений. Функционально выразительные области определяют посредством анализа данных fMRI (функциональных магнитно-резонансных изображений) и/или DTI (диффузионно-тензорных изображений).
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Цель изобретения состоит в том, чтобы предоставить усовершенствованный способ и усовершенствованную систему для определения по меньшей мере одного пригодного пути движения для хирургического и/или диагностического устройства в ткани с помощью набора данных, получаемого с помощью метода трехмерной визуализации.
Эту цель достигают посредством настоящего изобретения, как определено в независимых пунктах формулы изобретения.
Способ в соответствии с изобретением содержит этапы, на которых: (i) задают целевое местоположение исходной точки устройства и выбирают по меньшей мере одно вероятное начальное положение исходной точки устройства; (ii) определяют возможный путь движения между соответствующим вероятным начальным положением и заданным целевым местоположением; и (iii) оценивают возможный путь движения в качестве пригодного пути в зависимости от информации о локальных экстремумах интенсивности и/или вариации интенсивности, возникающих из данных интенсивности вдоль возможного пути движения.
Вместо упомянутого ранее двухэтапного подхода к планированию хирургической операции, состоящего из первоначального определения критических структур, которых следует избегать, посредством сегментации их на множестве этапов и последующего определения пригодного пути движения (безопасной траектории), в качестве функции этих результатов сегментации, прямой поиск пригодного пути движения, пропуская этап сегментации, осуществляют в способе в соответствии с изобретением. Другими словами, способ в соответствии с изобретением не рассматривает положение и протяжение критических структур как целое, а просто ищет информацию о максимумах интенсивности и/или минимумах интенсивности и/или вариации интенсивности (информация об интенсивности), возникающих из данных интенсивности вдоль возможного пути движения, указывающих на присутствие критической структуры в домене возможного пути. Критические структуры представляют собой структуры внутри ткани, такие как сосуды, нервные пути, желудочки и/или функционально выразительные области. Следовательно, информацию об экстремумах интенсивности и/или вариации интенсивности из набора данных непосредственно используют для того, чтобы определять по меньшей мере один пригодный путь движения. Способ в соответствии с изобретением имеет среди прочего следующие преимущества:
прямая оценка возможных путей с помощью характеристик интенсивности без необходимости процесса сегментации;
автоматическая адаптация к локальным характеристикам интенсивности, тем самым избегая проблем с неоднородностью интенсивности, сказывающихся, например, на MR изображениях;
гибкость для добавления других типов ограничений, например, интеграция функциональной информации в этап поиска для определения вероятного пути(ей) движения, и
поддержка непрямых путей посредством расширения способа на поиск множества линейных сегментов;
возможность предоставления объясняющего отображения информации о пути в виде графиков интенсивности и миниатюр на основе изображений.
Для того чтобы определять уровень безопасности возможного пути, анализируют профиль интенсивности вдоль вероятного пути движения на основе информации об экстремумах интенсивности и/или вариации интенсивности. Безопасный или пригодный путь не должен иметь большие максимумы или большие минимумы в области пути. Эти максимумы и/или минимумы обнаруживают посредством так называемого подхода скользящего окна, где для каждой точки центрируют окно и вычисляют максимум и минимум интенсивности внутри окна. Если центральный пиксель представляет собой максимум или минимум, он может представлять собой критическую структуру. Чтобы подтвердить это, разность максимума и минимума в окне сравнивают с интенсивностью в целевом местоположении для того, чтобы определять рельефность пика и впадины. После этого, принимая во внимание некоторые пространственные ограничения, траекторию определяют как безопасную или небезопасную. Возможный путь, определяемый как безопасный, представляет собой пригодный путь.
Согласно предпочтительному варианту осуществления изобретения, возможный путь движения представляет собой линейный путь движения, соединяющий начальное положение и целевое местоположение вдоль кратчайшей траектории. Линейный путь движения представляет собой наиболее широко используемый тип пути. Типичное хирургическое и/или диагностическое устройство, использующее линейный путь, представляет собой устройство в форме иглы или стержня.
Согласно другому предпочтительному варианту осуществления изобретения, оценка учитывает экспертную оценку данных интенсивности в области вокруг возможного пути движения. Экспертная оценка предпочтительно представляет собой зависящее от случая решение эксперта о том, является ли вариация интенсивности или локальный максимум (пик) или локальный минимум (впадина) результатом критической структуры. Следовательно, по отношению к настоящему изобретению термин «эксперт» относится к человеку, имеющему знания для того, чтобы интерпретировать данные интенсивности на основании отображаемых структур.
Согласно еще одному другому предпочтительному варианту осуществления изобретения оценка возможного пути движения представляет собой автоматическую оценку, осуществляемую посредством компьютеризированной системы. Эта компьютеризированная система предпочтительно представляет собой систему CAD (диагностирование с компьютерным ассистированием) или CAS (хирургическое вмешательство с компьютерным ассистированием).
Предпочтительно экспертную оценку вместе с соответствующей информацией об интенсивности и/или вариации интенсивности используют для обучения компьютеризированной системы. Компьютеризированная система использует адаптивный алгоритм к вариациям интенсивности посредством обучения на динамическом диапазоне интенсивности входных данных. Соответствующая компьютеризированная система основана на технологии машинного обучения, такой как дерево решений, метод опорных векторов, адаптивный бустинг или нейронная сеть. Классификатор в этой системе основывает свой диагноз на вычислительной структуре, построенной из известных случаев и введенных экстремумов интенсивности и/или вариации интенсивности вдоль возможного пути движения.
Метод трехмерной визуализации предпочтительно представляет собой метод медицинской визуализации для того, чтобы генерировать трехмерное изображение внутренней части объекта из большой серии двухмерных рентгеновских изображений, сформированных вокруг одной оси вращения. Метод трехмерной визуализации, например, представляет собой метод рентгеновской компьютерной томографии (CT) или метод ультразвуковой визуализации. Согласно предпочтительному варианту осуществления изобретения метод трехмерной визуализации представляет собой метод магнитно-резонансной визуализации (MRI), метод ядерной магнитно-резонансной визуализации (NMRI) или метод магнитно-резонансной томографии (MRT). Данные интенсивности получают из T1-взвешенных MR изображений и/или T2-взвешенных MR изображений и/или T*2-взвешенных MR изображений и/или посредством MRI с переносом намагниченности и/или посредством режима с подавлением сигнала свободной воды (FLAIR) и/или посредством магнитно-резонансной ангиографии и/или посредством магнитного резонанса закрытой внутричерепной динамики спинномозговой жидкости (MR-GILD).
Согласно предпочтительному варианту осуществления изобретения, ткань человека или животного представляет собой ткань головного мозга. Важное применение способа определения пути заключается в планировании операции на головном мозге, причем соответствующая ткань представляет собой ткань головного мозга. Критические структуры внутри этой ткани представляют собой сосуды, извилины и борозды, желудочки и/или функционально выразительные области.
В первой альтернативе определяют допустимые углы рыскания и тангажа допустимого пути. Выбранные углы удовлетворяют двум ограничениям: 1) начальное положение должно находиться на том же полушарии, что и целевое местоположение, и 2) поиск должен происходить в направлении верхней части головного мозга, а не в направлении боков или ниже целевого местоположения. Имея уже определенные углы рыскания и тангажа в пределах предварительного заданного диапазона углов, лучи от целевого местоположения идут в направлении поверхности головного мозга, где расположены возможные начальные положения. Наконец, профиль интенсивности каждого возможного пути (возможной траектории) анализируют и помечают в качестве безопасного или небезопасного и/или дают непрерывное значение безопасности. Возможный путь, помеченный как безопасный или имеющий соответствующее значение безопасности, представляет собой пригодный путь.
Во втором подходе определяют срез в осевом направлении, которое соответствует верхней части головы (непосредственно удовлетворяя ограничению, что поиск должен происходить в направлении верхней части головного мозга, а не с боков или ниже целевого местоположения). Для целевого местоположения на левой стороне головного мозга выбирали левую половину среза, а для целевого местоположения справа выбирали только область среза, соответствующую правому полушарию головного мозга (удовлетворяя ограничению, что начальное положение должно быть на том же полушарии, что и целевое местоположение). После этого линии между каждой подходящей точкой на срезе и предварительно определяемым целевым местоположением, как описано выше, формируют возможные пути.
Согласно другому варианту осуществления изобретения, способ включает дополнительный этап отображения по меньшей мере одного возможного пути движения или по меньшей мере начального положения по меньшей мере одного возможного пути движения. В предпочтительном режиме графического представления вероятных начальных положений отображают представляющую интерес область вероятного начального положения(й), где начальное положение(я) пригодных путей отображают первым цветом, а начальное положение(я) других путей отображают вторым цветом. В частности, это может иметь форму окрашенной карты поверхности коры, где, например, первый цвет является зеленым, который указывает пригодные пути, которые удовлетворяют ограничениям, требующим избегать критических структур, а второй цвет является красным, который указывает другие (небезопасные) начальные положения. Если ткань представляет собой ткань головного мозга, окрашенная карта поверхности коры отображает возможные входные положения на черепе.
Предпочтительно возможный путь движения отображают в виде профиля интенсивности. Более предпочтительно профиль интенсивности отображают в связи с по меньшей мере одним изображением области вокруг локальных экстремумов, например, в виде миниатюрного изображения.
Согласно другому предпочтительному варианту осуществления изобретения, определяют приемлемый порог информации о локальных экстремумах интенсивности и/или вариации интенсивности для данного возможного пути или по меньшей мере частично определяют посредством смежных путей указанного данного возможного пути.
По другому аспекту настоящего изобретения профиль интенсивности вычисляют посредством интегрирования данных интенсивности по максимальному поперечному сечению устройства, перпендикулярному направлению движения вдоль возможного пути движения. Это интегрирование можно реализовать различными способами. В одном из вариантов осуществления значение интенсивности, которое ведет к наибольшему изменению интенсивности вдоль пути, используют для того, чтобы представлять поперечное сечение. В другом варианте осуществления множество путей рассматривают отдельно для того, чтобы принять решение о безопасности каждого отдельного пути. После этого безопасность поперечного сечения вычисляют как объединение всех отдельных путей.
Согласно другому аспекту изобретения, поперечное сечение можно задавать, чтобы соотнести с границей безопасности (задается как расстояние до ближайшей критической структуры) вокруг возможного пути. Внутри предварительно заданной площади поперечного сечения критическая структура, на которую указывают конкретные характеристики интенсивности, отсутствует.
В другом аспекте изобретения все возможные пути оценивают как безопасные или нет. После этого для каждого пути границу безопасности вычисляют посредством обнаружения ближайшего пути, который помечен как небезопасный. Затем для безопасных путей входные точки на поверхности головного мозга могут иметь цветовое кодирование как функцию вычисленной границы безопасности. Для небезопасных путей можно использовать отличающееся цветовое кодирование, которое может представлять собой функцию общего числа минимумов и максимумов интенсивности вдоль пути, или схему цветового кодирования, которая выделяет только либо минимумы интенсивности, либо максимумы интенсивности, либо и те и другие, которые можно наблюдать вдоль пути.
Изобретение дополнительно относится к машиночитаемому носителю информации, такому как запоминающее устройство, гибкий диск, диск CD, DVD, Blue-Ray или оперативное запоминающее устройство (RAM), содержащему набор инструкций, которые предписывают компьютеру осуществлять указанный выше способ, и компьютерному программному продукту, содержащему используемый компьютером носитель информации, содержащий используемый компьютером программный код, причем используемый компьютером программный код выполнен с возможностью исполнять указанный выше способ.
Изобретение также относится к компьютеризированной системе, содержащей блок обработки, память, интерфейс данных, дисплей и устройство ввода, причем система выполнена с возможностью осуществления указанного выше способа. Предпочтительно компьютеризированная система представляет собой систему CAD (диагностирования с компьютерным ассистированием) или CAS (хирургического вмешательства с компьютерным ассистированием).
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Эти и другие аспекты изобретения будут видны и разъяснены со ссылкой на варианты осуществления, описанные далее в настоящем документе.
На чертежах:
на фиг.1 представлен вид области поиска на коронарном срезе головы человека. Область вероятных путей движения состоит из множества вероятных путей (три из них показаны в явной форме), соединяющих соответствующие начальные положения с общим целевым местоположением;
на фиг.2 представлен профиль интенсивности «безопасного» вероятного пути движения, который, следовательно, является пригодным путем движения;
на фиг.3 представлен профиль интенсивности «небезопасного» вероятного пути движения; и
на фиг.4 представлен вид сверху головного мозга с визуализацией области вероятных путей, подразделенных на пригодные пути и небезопасные пути.
ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
На фиг.1 представлен вид области поиска на коронарном срезе головы 10 человека. На изображении показана верхняя часть черепа 12 и ткань 14 головного мозга внутри черепа 12. Область 16 возможных путей для движения объекта, такого как хирургическое или диагностическое устройство (не показано) в ткани 14 головного мозга, состоит из множества возможных путей 18, 20, 22 (три из них показаны в явной форме), соединяющих соответствующие вероятные начальные положения 24, 26, 28 с общим целевым местоположением 30.
Пригодный путь 32 для движения устройства в ткани 14 определяют посредством набора данных интенсивности, получаемых методом трехмерной магнитно-резонансной визуализации, пригодный путь 32 движения соединяет начальное положение 28 устройства с заданным целевым местоположением 30. Соответствующий способ определения включает этапы, на которых:
задают целевое местоположение 30 исходной точки устройства и выбирают по меньшей мере одно вероятное начальное положение 24, 26, 28 исходной точки устройства;
определяют по меньшей мере один возможный путь 18, 20, 22 движения между соответствующим вероятным начальным положением 24, 26, 28 и заданным общим целевым местоположением 30; и
оценивают возможный путь 18, 20, 22 движения в качестве пригодного пути 32 в зависимости от информации о локальных минимумах/максимумах (экстремумах) интенсивности и/или вариации интенсивности, возникающих из данных интенсивности вдоль возможного пути 18, 20, 22 движения.
Пригодный путь 32 для движения устройства в ткани 14 представляет собой безопасный путь, который не сталкивается с критической структурой (изображенной во вставках на фиг.3).
Для того, чтобы определять уровень безопасности возможного пути 18, 20, 22, анализируют профиль 34, 36 интенсивности (показанный на фиг.2 и 3) вдоль возможного пути 18, 20, 22 движения, основываясь на информации об экстремумах интенсивности и/или вариации интенсивности. Безопасный пригодный путь 32 не должен иметь большие максимумы или большие минимумы в области ткани (головного мозга). В целом существуют различные возможности для определения признака «большой».
Предпочтительный подход для обнаружения максимумов и/или минимумов этого типа представляет собой подход скользящего окна. В подходе скользящего окна для каждой точки или вокселя (объемного элемента, представленного точкой) центруют окно и максимальную и минимальную интенсивность внутри окна вычисляют для того, чтобы убедиться, что соответствующая точка/воксель, который должен быть локальным максимумом или минимумом, является глобальным максимумом или минимумом. После этого можно осуществлять какую-либо комбинацию следующих этапов:
- абсолютная разность между интенсивностью текущей точки или вокселя и интенсивностью целевого местоположения 30 должна находиться внутри стандартного отклонения интенсивности K* всей ткани (например, объема головного мозга). Коэффициент K можно точно указывать отдельно (например K=1), и он задает верхний и нижний порог интенсивности. Текущая точка или воксель представляет собой большой минимум, если интенсивность этой точки/вокселя ниже, чем нижний порог интенсивности, и большой максимум, если выше, чем верхний порог интенсивности.
- градиент по x, y, z для объема, окружающего текущую точку/воксель, вычисляют посредством взятия производных по x, y, z соответственно. Из производных вычисляют величину градиента для каждой точки/вокселя. Затем строят гистограмму из величин градиента. Некоторый процентиль (например, P=80%) гистограммы вычисляют и присваивают в качестве порогового значения. Указанная выше абсолютная разность между интенсивностью текущей точки/вокселя и интенсивностью в целевом местоположении 30 сравнивают с этим пороговым значением для того, чтобы найти минимум или максимум.
Целевое местоположение 30 устанавливают изначально (или находят в каком-либо месте), и поиск вероятного начального положения 24, 26, 28 начинают из этого целевого местоположения 30. По существу, значение интенсивности в целевом местоположении 30 уже известно, и его можно использовать для обнаружения минимумов и максимумов.
Если пиксель/воксель представляет собой максимум или минимум, он указывает на критическую структуру. После этого, учитывая некоторые пространственные ограничения, определяют, являются ли возможные пути 18, 20, 22 безопасными или небезопасными. Возможный путь 22 движения, который определен как безопасный, представляет собой пригодный путь 32. Критические структуры внутри показанной ткани головного мозга представляют собой сосуды, извилины и борозды, желудочки и/или функционально выразительные области.
В первой альтернативе определяют допустимые углы рыскания и тангажа пригодного пути 32. Выбранные углы удовлетворяют два ограничения: 1) начальное положение должно находиться на том же полушарии, что и целевое местоположение 30, и 2) поиск должен происходить в направлении верхней части головного мозга, а не боков или ниже целевого местоположения 30. Определив углы рыскания и тангажа внутри этого предварительно заданного углового диапазона, лучи из целевого местоположения 30 идут в направлении поверхности головного мозга, где расположены вероятные начальные положения 24, 26, 28. Наконец, профиль интенсивности каждого возможного пути (возможной траектории) 18, 20, 22 анализируют и помечают в качестве безопасных или небезопасных и/или дают непрерывное значение безопасности. Возможный путь 18, 20, 22, помеченный как безопасный или имеющий соответствующее значение безопасности, представляет собой пригодный путь 32.
Во втором подходе определяют срез в осевом направлении, который соответствует верхней части головы (непосредственно удовлетворяет ограничение, что поиск должен проходить в направлении верхней части головного мозга, а не боков или ниже целевого местоположения). Для целевого местоположения 30 на левой стороне головного мозга выбирают левую половину среза, а для целевого местоположения 30 на правой стороне выбирают только область среза, соответствующую правому полушарию головного мозга (удовлетворяет ограничение, что начальное положение должно находиться в том же полушарии, что и целевое местоположение). После этого линии между каждой подходящей точкой на срезе и предварительно определяемым целевым местоположением 30, как описано выше, формируют возможные пути 18, 20, 22.
На фиг.2 изображен профиль 34 интенсивности безопасного возможного пути 22 движения; на фиг.3 изображен профиль 36 интенсивности небезопасного возможного пути 20 движения. Соответствующий путь обоих профилей интенсивности начинается в целевом местоположении 30. Профиль 34 интенсивности на фиг.2 не демонстрирует больших флуктуаций (большие минимумы или большие максимумы за пределами порогов интенсивности, задаваемых стандартным отклонением интенсивности K* вокруг интенсивности целевого местоположения 30) интенсивности до конца пути, где имеет место выступающий максимум в профиле 34 интенсивности. Это ожидается, поскольку это соответствует интенсивности черепа 12, а не ткани головного мозга. Как результат, этот возможный путь 22 помечают как безопасный. Возможный путь на фиг.3 имеет пики (локальные максимумы) внутри области головного мозга; следовательно, его рассматривают как небезопасный. Только безопасный возможный путь 22 движения, соответствующий профилю 34 интенсивности, показанному на фиг.2, представляет собой пригодный путь 32.
Дополнительный аспект способа представляет собой усовершенствованную стратегию визуализации. В дополнение к профилям 34, 36 интенсивности пользователь также может видеть изображение 38 (миниатюрное изображение) области вокруг локальных максимумов или локальных минимумов, щелкая на графики, как показано на фиг.2 и 3. На обеих фигурах только максимумы связаны с миниатюрным изображением; однако как максимумы, так и минимумы можно визуализировать аналогичным образом. Кроме того, можно увеличивать размер миниатюрного изображения, чтобы получить больше информации о пространственном контексте.
В другом варианте осуществления на поиск траекторий можно добавлять ограничения, не связанные с интенсивностью. Это может иметь форму задания области поиска, как изложено на этапе обнаружения возможной входной точки. Область поиска также можно задавать посредством использования результата другого способа в форме карты, на которой задают допустимые и неприемлемые точки. Эту карту можно генерировать на основе анализа другой модальности, такой как fMRI, DTI, T2 и т.д. Ее также можно генерировать из того же MR T1 контраста, используемого для анализа траектории. Например, можно использовать результат корковой сегментации и маску головного мозга, чтобы ограничивать область поиска для обнаружения безопасной траектории.
На фиг.4 представлен вид сверху головного мозга с визуализацией представляющей интерес области 40, состоящей из вероятных начальных положений 24, 26, 28 возможных путей 18, 20, 22 внутри области 16 возможных путей; представляющая интерес область 40 подразделена на области 42 вероятных начальных положений 28 пригодных путей 32 и остальную область 44 небезопасных возможных путей 18, 20.
Пользователь соответствующей компьютерной системы, например, такой как хирург, может иметь вид головного мозга на дисплее системы, изображающий представляющую интерес область 40 (ROI) вероятных начальных положений 24, 26, 28, содержащую области 42, окрашенные зеленым цветом, для того, чтобы обозначить начальные положения 28 безопасных пригодных путей 32, и другую область 44, окрашенную красным цветом, для того, чтобы обозначить начальные положения 24, 26 небезопасных путей.
Если пользователь помещает курсор 46 на вероятное начальное положение, соответствующий график интенсивности (как показано на фиг.2 и 3) показывают в одном из вариантов осуществления изобретения. В примере, показанном на фиг.4, курсор 46 указывает на одну из областей 42 вероятных начальных положений 28 пригодных путей 32. Система будет изображать соответствующий профиль интенсивности «безопасного» пригодного пути 32 движения, например, показанный на фиг.2. В компьютерной системе, представляющей собой систему хирургического вмешательства с компьютерным ассистированием (CAS), курсор 46 будет повторять движение хирургического и/или диагностического устройства.
Несмотря на то, что изобретение проиллюстрировано и описано подробно на чертежах и в указанном выше описании, такие иллюстрации и описание следует рассматривать как иллюстративные или примерные, а не ограничивающие; изобретение не ограничено раскрытыми вариантами осуществления. Специалисты в данной области смогут понять и выполнить другие вариации раскрытых вариантов осуществления посредством практического осуществления описываемого в заявке изобретения, изучив чертежи, описание и приложенную формулу изобретения. В формуле изобретения слово «содержит» не исключает другие элементы или этапы, а формы единственного числа не исключают множества. Сам факт того, что определенные характеристики перечислены во взаимно различных зависимых пунктах формулы изобретения, не указывает на то, что комбинация этих характеристик не может быть использована с пользой. Номера позиций в формуле изобретения не следует толковать в качестве ограничения объема.

Claims (14)

1. Способ определения по меньшей мере одного пригодного пути (32) для движения объекта, в частности, хирургического и/или диагностического устройства, в ткани (14) человека или ткани животного с помощью набора данных интенсивности, получаемого посредством метода трехмерной визуализации, путем осуществления поиска пригодного пути (32) движения, причем пригодный путь (32) движения соединяет начальное положение (28) устройства с заданным целевым местоположением (30), при этом способ включает в себя этапы, на которых:
задают целевое местоположение (30) опорной точки устройства и выбирают по меньшей мере одно вероятное начальное положение (24, 26, 28) опорной точки устройства;
определяют возможный путь (18, 20, 22) движения между каждым из по меньшей мере одного вероятного начального положения (24, 26, 28) и заданным целевым местоположением (30); и
сразу после определения оценивают возможный путь (18, 20, 22) движения в качестве пригодного пути (32) в зависимости от информации о локальных экстремумах интенсивности и/или вариации интенсивности, возникающих из данных интенсивности вдоль каждого возможного пути (18, 20, 22) движения, причем оценка осуществляется на несегментированном изображении ткани и формирует выходные данные, включающие в себя подходящий путь; и
отображают выходные данные на устройстве отображения.
2. Способ по п. 1, в котором возможный путь (18, 20, 22) движения представляет собой линейный путь движения, соединяющий по меньшей мере одно вероятное начальное положение (24, 26, 28) и целевое местоположение (30) по кратчайшей траектории.
3. Способ по п. 1, в котором оценка содержит экспертную оценку данных интенсивности в области вокруг указанного возможного пути (18, 20, 22) движения.
4. Способ по п. 1, в котором оценка возможного пути (18, 20, 22) движения представляет собой автоматическую оценку, осуществляемую посредством компьютеризированной системы.
5. Способ по п. 3, в котором экспертную оценку вместе с соответствующей информацией о локальных экстремумах интенсивности и/или вариации интенсивности используют для обучения компьютеризированной системы.
6. Способ по п. 1, в котором метод трехмерной визуализации представляет собой метод магнитно-резонансной визуализации, метод ядерной магнитно-резонансной визуализации или метод магнитно-резонансной томографии.
7. Способ по п. 1, в котором устройство отображения является дисплеем, и отображение включает в себя отображение на дисплее по меньшей мере одного возможного пути (18, 20, 22) и по меньшей мере одно вероятное начальное положение (24, 26, 28) возможного пути (18, 20, 22).
8. Способ по п. 7, в котором отображают представляющую интерес область (40) вероятного начального положения (24, 26, 28), причем начальное положение (28) пригодного пути (32) отображают первым цветом и начальное положение (24, 26) другого пути (18, 22) отображают вторым цветом.
9. Способ по п. 7, в котором каждый возможный путь (18, 20, 22) отображают в виде профиля (34, 36) интенсивности.
10. Способ по п. 9, в котором профиль (34, 36) интенсивности отображают в связи с по меньшей мере одним изображением (38) области вокруг локальных экстремумов профиля (34, 36) интенсивности.
11. Способ по п. 1, в котором дополнительно приемлемый порог информации о локальных экстремумах интенсивности и/или вариации интенсивности для данного возможного пути (18, 20, 22) движения определяют или по меньшей мере отчасти определяют посредством путей, расположенных в непосредственной близости от указанного данного возможного пути (18, 20, 22) движения.
12. Способ по п. 1, в котором информацию об интенсивности и/или вариации интенсивности вычисляют посредством интегрирования данных интенсивности по максимальному поперечному сечению устройства, перпендикулярному направлению движения вдоль возможного пути (18, 20, 22) движения.
13. Машиночитаемый носитель информации, содержащий набор инструкций, которые предписывают компьютеру осуществлять способ согласно одному из предшествующих пунктов формулы изобретения, относящихся к способу.
14. Компьютеризированная система, содержащая блок обработки, память, интерфейс данных, дисплей и устройство ввода, при этом система выполнена с возможностью осуществления способа согласно любому из предшествующих пунктов формулы изобретения, относящихся к способу.
RU2013138570/14A 2011-01-20 2012-01-13 Способ определения по меньшей мере одного пригодного пути движения для объекта в ткани RU2599865C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11151552.4 2011-01-20
EP11151552 2011-01-20
PCT/IB2012/050169 WO2012098485A1 (en) 2011-01-20 2012-01-13 Method for determining at least one applicable path of movement for an object in tissue

Publications (2)

Publication Number Publication Date
RU2013138570A RU2013138570A (ru) 2015-02-27
RU2599865C2 true RU2599865C2 (ru) 2016-10-20

Family

ID=45558793

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013138570/14A RU2599865C2 (ru) 2011-01-20 2012-01-13 Способ определения по меньшей мере одного пригодного пути движения для объекта в ткани

Country Status (7)

Country Link
US (2) US9286671B2 (ru)
EP (1) EP2665437B1 (ru)
JP (1) JP6223189B2 (ru)
CN (1) CN103327925B (ru)
BR (1) BR112013018261A2 (ru)
RU (1) RU2599865C2 (ru)
WO (1) WO2012098485A1 (ru)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5241316B2 (ja) * 2008-05-13 2013-07-17 キヤノン株式会社 画像処理装置及び画像処理方法
WO2014139023A1 (en) 2013-03-15 2014-09-18 Synaptive Medical (Barbados) Inc. Intelligent positioning system and methods therefore
SG11201507610RA (en) 2013-03-15 2015-10-29 Synaptive Medical Barbados Inc Planning, navigation and simulation systems and methods for minimally invasive therapy
CN105342701B (zh) * 2015-12-08 2018-02-06 中国科学院深圳先进技术研究院 一种基于影像信息融合的病灶虚拟穿刺系统
US11842030B2 (en) 2017-01-31 2023-12-12 Medtronic Navigation, Inc. Method and apparatus for image-based navigation
EP3546021A1 (en) * 2018-03-29 2019-10-02 Koninklijke Philips N.V. Planning system for planning a radiation therapy procedure
DE102018108643A1 (de) * 2018-04-11 2019-11-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Positionsbestimmungsvorrichtung zum Bestimmen einer Position eines Gegenstands innerhalb einer tubulären Struktur
JP7179877B2 (ja) * 2019-02-08 2022-11-29 富士フイルム株式会社 開頭術シミュレーション装置、方法およびプログラム
FR3104934B1 (fr) * 2019-12-18 2023-04-07 Quantum Surgical Méthode de planification automatique d’une trajectoire pour une intervention médicale
US11694375B2 (en) * 2020-02-18 2023-07-04 Jpmorgan Chase Bank, N.A. Systems and methods for pixel-based quantum state visualization
CN112614141B (zh) * 2020-12-18 2023-09-19 深圳市德力凯医疗设备股份有限公司 血管扫描路径的规划方法、装置、存储介质及终端设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090070143A1 (en) * 2007-09-10 2009-03-12 Sultan Haider Method and system for differential diagnosis neuro solution
US20110007071A1 (en) * 2009-07-08 2011-01-13 Marcus Pfister Method for Supporting Puncture Planning in a Puncture of an Examination Object

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1162251A (zh) * 1994-09-30 1997-10-15 俄亥俄医疗器械公司 用于神经外科手术的立体规划过程用的装置和方法
CN1100516C (zh) * 1997-08-27 2003-02-05 北京航空航天大学 机器人脑外科设备系统及其所采用的图象和坐标处理方法
US6675037B1 (en) * 1999-09-29 2004-01-06 Regents Of The University Of Minnesota MRI-guided interventional mammary procedures
US6505065B1 (en) * 1999-10-29 2003-01-07 Koninklijke Philips Electronics, N.V. Methods and apparatus for planning and executing minimally invasive procedures for in-vivo placement of objects
US6671538B1 (en) * 1999-11-26 2003-12-30 Koninklijke Philips Electronics, N.V. Interface system for use with imaging devices to facilitate visualization of image-guided interventional procedure planning
US6985612B2 (en) 2001-10-05 2006-01-10 Mevis - Centrum Fur Medizinische Diagnosesysteme Und Visualisierung Gmbh Computer system and a method for segmentation of a digital image
US20030220557A1 (en) * 2002-03-01 2003-11-27 Kevin Cleary Image guided liver interventions based on magnetic tracking of internal organ motion
JP4516957B2 (ja) * 2003-01-25 2010-08-04 パーデュー リサーチ ファンデーション 3次元オブジェクトについて検索を行なうための方法、システムおよびデータ構造
JP3983759B2 (ja) * 2004-11-26 2007-09-26 株式会社日立メディコ 核磁気共鳴撮像装置
EP1856642A2 (en) * 2005-02-23 2007-11-21 Koninklijke Philips Electronics N.V. Method for the prediction of the course of a catheter
US7904135B2 (en) 2005-05-06 2011-03-08 General Hospital Corporation Magnetic resonance spatial risk map for tissue outcome prediction
DE102005037000B4 (de) * 2005-08-05 2011-06-01 Siemens Ag Vorrichtung zur automatisierten Planung eines Zugangspfades für einen perkutanen, minimalinvasiven Eingriff
JP2007130287A (ja) * 2005-11-11 2007-05-31 Hitachi Medical Corp 医用画像表示装置
CN1803102A (zh) * 2005-12-02 2006-07-19 北京航空航天大学 基于医学图像的预显示穿刺轨迹的受限手术规划方法
US8150497B2 (en) * 2006-09-08 2012-04-03 Medtronic, Inc. System for navigating a planned procedure within a body
US8160676B2 (en) * 2006-09-08 2012-04-17 Medtronic, Inc. Method for planning a surgical procedure
EP1905377B1 (de) * 2006-09-28 2013-05-29 BrainLAB AG Planung von Bewegungspfaden medizinischer Instrumente
US8315689B2 (en) * 2007-09-24 2012-11-20 MRI Interventions, Inc. MRI surgical systems for real-time visualizations using MRI image data and predefined data of surgical tools
JP2009201701A (ja) * 2008-02-28 2009-09-10 Hitachi Medical Corp 術具誘導手術支援装置
CN105182263A (zh) 2008-04-28 2015-12-23 康奈尔大学 分子mri中的磁敏度精确量化
US8568302B2 (en) * 2008-11-11 2013-10-29 Intuitive Surgical Operations, Inc. Method and system for steerable medical device path definition and following during insertion and retraction
WO2012092511A2 (en) * 2010-12-29 2012-07-05 The Ohio State University Automated trajectory planning for stereotactic procedures
US9141763B2 (en) * 2011-02-07 2015-09-22 Siemens Aktiengesellschaft Method and system for patient-specific computational modeling and simulation for coupled hemodynamic analysis of cerebral vessels
RU2013154552A (ru) * 2011-05-10 2015-06-20 Конинклейке Филипс Н.В. Управляемое пользователем планирование пути в реальном маштабе времени
US9008414B2 (en) * 2011-10-04 2015-04-14 Medtronic Navigation, Inc. Method and apparatus for assisted trajectory planning
BR112014012955A2 (pt) * 2011-12-03 2017-06-13 Koninklijke Philips Nv sistema de planejamento, sistema tendo portas de visualização acopladas operatoriamente, método para o planejamento de um procedimento, e, método para o acoplamento operacional de portas de visualização
US10244991B2 (en) * 2014-02-17 2019-04-02 Children's National Medical Center Method and system for providing recommendation for optimal execution of surgical procedures

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090070143A1 (en) * 2007-09-10 2009-03-12 Sultan Haider Method and system for differential diagnosis neuro solution
US20110007071A1 (en) * 2009-07-08 2011-01-13 Marcus Pfister Method for Supporting Puncture Planning in a Puncture of an Examination Object

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VAILLANT М. et al. A Path-Planning Algorithm for Image-Guided Neurosurgery, 1997, c.468-470. SHAMIR et al. Trajectory planning method for reduced patient risk in image-guided neurosurgery: concept and preliminary results, 2010, с.2-3. *

Also Published As

Publication number Publication date
CN103327925B (zh) 2016-12-14
EP2665437A1 (en) 2013-11-27
US20130287280A1 (en) 2013-10-31
US20160196650A1 (en) 2016-07-07
US9286671B2 (en) 2016-03-15
US9569844B2 (en) 2017-02-14
EP2665437B1 (en) 2016-07-13
WO2012098485A1 (en) 2012-07-26
CN103327925A (zh) 2013-09-25
BR112013018261A2 (pt) 2016-11-16
JP6223189B2 (ja) 2017-11-01
RU2013138570A (ru) 2015-02-27
JP2014502909A (ja) 2014-02-06

Similar Documents

Publication Publication Date Title
RU2599865C2 (ru) Способ определения по меньшей мере одного пригодного пути движения для объекта в ткани
US10226298B2 (en) System and method for computer-assisted planning of a trajectory for a surgical insertion into a skull
US8634616B2 (en) Method, apparatus, and computer program product for acquiring medical image data
JP4139869B2 (ja) 医用画像処理装置
US8805471B2 (en) Surgery-assistance apparatus, method and program
US10699434B2 (en) Determination of result data on the basis of medical measurement data from various measurements
US10524823B2 (en) Surgery assistance apparatus, method and program
US20120053443A1 (en) Surgery-assistance apparatus and method, and computer-readable recording medium storing program
US20130303900A1 (en) Method and apparatus for processing of stroke ct scans
JP6595729B2 (ja) 医療画像における変化検出
Gill et al. Automated detection of epileptogenic cortical malformations using multimodal MRI
Zuluaga et al. Stability, structure and scale: improvements in multi-modal vessel extraction for SEEG trajectory planning
JP2016508769A (ja) 医用画像処理
JP6196624B2 (ja) 可変深さ定位表面投影
Bangare et al. Regenerative pixel mode and tumour locus algorithm development for brain tumour analysis: A new computational technique for precise medical imaging
Somasundaram et al. Fully automatic method to identify abnormal MRI head scans using fuzzy segmentation and fuzzy symmetric measure
Chiţă et al. Automatic segmentation of the preterm neonatal brain with MRI using supervised classification
CN111971751A (zh) 用于评估动态数据的系统和方法
Miao et al. CoWRadar: Visual Quantification of the Circle of Willis in Stroke Patients.
JP2023511663A (ja) 弱教師あり病変セグメンテーション
Jucevicius et al. Automated 2D Segmentation of Prostate in T2-weighted MRI Scans
Piedra et al. Assessing variability in brain tumor segmentation to improve volumetric accuracy and characterization of change
US20070070068A1 (en) Method and apparatus for processing of diagnostic image data
WO2017198518A1 (en) Image data processing device
Nardotto et al. An automatic segmentation method for MRI multiparametric volumes

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210114