RU2599721C1 - Способ каталитического облагораживания бензинов термических процессов - Google Patents

Способ каталитического облагораживания бензинов термических процессов Download PDF

Info

Publication number
RU2599721C1
RU2599721C1 RU2015130118/04A RU2015130118A RU2599721C1 RU 2599721 C1 RU2599721 C1 RU 2599721C1 RU 2015130118/04 A RU2015130118/04 A RU 2015130118/04A RU 2015130118 A RU2015130118 A RU 2015130118A RU 2599721 C1 RU2599721 C1 RU 2599721C1
Authority
RU
Russia
Prior art keywords
gasolines
boiling point
straight
fraction
thermal processes
Prior art date
Application number
RU2015130118/04A
Other languages
English (en)
Inventor
Владимир Павлович Доронин
Олег Валерьевич Потапенко
Олег Германович Белявский
Александр Витальевич Глазов
Дмитрий Валерьевич Храпов
Наталья Владимировна Короткова
Original Assignee
Акционерное общество "Газпромнефть - Омский НПЗ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Газпромнефть - Омский НПЗ" filed Critical Акционерное общество "Газпромнефть - Омский НПЗ"
Priority to RU2015130118/04A priority Critical patent/RU2599721C1/ru
Application granted granted Critical
Publication of RU2599721C1 publication Critical patent/RU2599721C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/32Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions in the presence of hydrogen-generating compounds
    • C10G47/34Organic compounds, e.g. hydrogenated hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к способу облагораживания бензинов термических процессов, включающий смешение их с нефтяными фракциями - донорами водорода при температуре менее 100°C с последующей переработкой в условиях каталитического крекинга при температуре 420-480°С в системе реактор-регенератор, на катализаторе для проведения реакций переноса водорода. В качестве доноров водорода используют следующие нефтяные фракции: прямогонная широкая бензиновая фракция с началом кипения 62°С и с переменным концом кипения до 180°С, рафинат комплекса производства ароматики с началом кипения 62°С и с переменным концом кипения до 180°С, прямогонная керосиновая фракция с пределами температур кипения 140-240°С, прямогонная дизельная фракция с пределами температур кипения 180-360°С, при их соотношении с бензинами термических процессов 1:(1-3). Бензины термических процессов включают бензины процессов термокрекинга, висбрекинга, коксования. Технический результат - каталитическое облагораживание бензинов термических процессов без использования молекулярного водорода, расширение сырьевой базы для получения качественных товарных бензинов, а также повышение выхода целевой бензиновой фракции. 1 з.п. ф-лы, 2 табл., 9 пр.

Description

Настоящее изобретение относится к нефтеперерабатывающей промышленности, а именно к способу облагораживания бензинов термических процессов.
Известен способ переработки бензинов термических процессов путем гидроочистки бензинов или их смеси с дизельным топливом или вакуумным газойлем (патент RU №2114897). Недостатками данного способа являются сложность аппаратурного оформления, вызванная большим экзотермическим эффектом реакций гидрирования непредельных соединений, снижение октанового числа получаемого бензина, высокие затраты на водород и необходимость создания высокого давления водорода.
Известен способ каталитического облагораживания бензинов термического крекинга, висбрекинга и коксования (патент RU 2089590). Способ каталитического облагораживания включает подачу бензинов термических процессов в количестве 5-30 мас. % на сырье в отпарную зону реактора каталитического крекинга, где осуществляют облагораживание при температуре 470-510°С, массовой скорости 0,3-1,0 час-1 и кратности циркуляции катализатора 20-120 кг/кг бензина. Недостатком данного способа является низкий выход облагораживаемого бензина.
Известен способ переработки бензинов термических процессов, включающий подачу их в различные зоны реактора каталитического крекинга (патент RU №2147597). Недостатками данного способа являются нарушение гидродинамики псевдоожиженного слоя катализатора в реакционной зоне, низкая активность катализатора в случае введения сырья в отпарную зону реактора, нарушение гидродинамики в системе отпарки катализатора, необходимость дополнительной гидроочистки получаемого бензина.
Известен способ переработки бензинов термических процессов, по которому смесь бензинов и вакуумного газойля подвергают каталитическому крекингу в присутствии углеводородного газа - разбавителя при молярном соотношении газ-разбавитель:сырье, равном 0,5-3,5:1 (патент RU №2086604). Недостатками способа являются снижение выхода бензина по сравнению с крекингом чистого вакуумного газойля, нарушение гидродинамики псевдоожиженного слоя катализатора в реакционной зоне за счет более высокого коэффициента расширения бензиновой фракции при ее испарении.
Известен способ каталитического облагораживания легких углеводородов нефти и катализаторы для его осуществления по патенту RU №2276182, Синопек. Способ осуществляют путем введения бензинов в реактор каталитического крекинга вакуумного газойля, контактирования при температуре от 200 до 450°С, давлении от 0,1 до 0,5 МПа, времени реакции от 1 до 20 секунд с регенерированным катализатором, с последующим разделением продукта и отработанного катализатора, регенерацией отпаренного катализатора и возвращением его обратно в реактор для повторного использования посредством циркуляции. В получаемом продукте наблюдается уменьшение содержания олефинов и снижение содержания серы. Недостатками данного способа являются невысокая степень снижения содержания серы в бензине и необходимость гидроочистки получаемого продукта, а также большие капитальные затраты на создание отдельного регенератора.
Наиболее близким является способ переработки бензинов термических процессов (патент RU 2469070, прототип), который включает смешение углеводородных фракций нефти и переработку в условиях каталитического крекинга. При этом бензины термических процессов (бензины процессов термокрекинга, висбрекинга, коксования, пиролиза) смешивают с бензиновыми фракциями, кипящими в интервале 62-85°С, содержащими более 20 мас. % нафтенов (прямогонная фракция 62-85°С, фракция 62-85°С комплекса производства ароматики) в соотношении 1:(0,5-2) при температуре менее 100°С, смесь подают в реактор каталитического крекинга, соединенный с регенератором, или в реактор в составе системы из двух реакторов с одним регенератором, в одном из которых проводят каталитический крекинг вакуумного газойля, при этом переработку бензинов термических процессов осуществляют на катализаторе, обеспечивающем проведение реакций переноса водорода. Недостатком данного способа является низкий ресурс бензиновых фракций с пределами кипения 62-85°С для всех НПЗ.
Целью настоящего изобретения является расширение сырьевой базы для получения качественных товарных бензинов, а также повышение выхода целевой бензиновой фракции.
Предлагаемый способ каталитического облагораживания бензинов термических процессов без использования молекулярного водорода заключается в их смешении с нефтяными фракциями - донорами водорода при температуре менее 100°C с последующей переработкой в условиях каталитического крекинга при температуре 420-480°С в системе реактор-регенератор, на катализаторе для проведения реакций переноса водорода. В качестве доноров водорода используют следующие нефтяные фракции: прямогонная широкая бензиновая фракция с началом кипения 62°С и с переменным концом кипения до 180°С, рафинат комплекса производства ароматики с началом кипения 62°С и с переменным концом кипения до 180°С, прямогонная керосиновая фракция с пределами температур кипения 140-240°С, прямогонная дизельная фракция с пределами температур кипения 180-360°С, при их соотношении с бензинами термических процессов 1:(1-3). Бензины термических процессов включают бензины процессов термокрекинга, висбрекинга, коксования.
Содержание классов углеводородов и серы в используемых бензинах-акцепторах водорода и в используемых нефтяных фракциях-донорах водорода приведены в таблице 1 (в мас. %).
Figure 00000001
Каталитические испытания проводили на модельной установке с загрузкой катализатора 21 г в интервале температур 350-500°С при весовом соотношении катализатор : сырье, равном 4. Состав газообразных продуктов крекинга анализировали на газовом хроматографе «Хромос ГХ-1000». Количественный состав жидких продуктов определяли на газовом хроматографе «Кристаллюкс-4000М», оборудованном капиллярной колонкой (ZB-5, 60 м × 0,32 мм × 1,00 мкм) и модулем ПФД/ПИД-детекторов: пламенно-фотометрическим (ПФД) - для анализа сернистых соединений и пламенно-ионизационным (ПИД) - для анализа углеводородной части. Кроме того, компонентный состав получаемых бензинов определяли на газовом хроматографе, оборудованном капиллярной колонкой DB-1 (100 м × 0,25 мм × 0,50 мкм) по ASTM D 5134. Общее содержание серы в исходном сырье и жидких продуктах крекинга устанавливали методом рентгено-флюоресцентной спектроскопии на приборе ARL OPTIM′X WD-XRF spectrometr («Thermo Techno»).
Содержание коксовых отложений на катализаторе определяли по убыли массы образца после его прокаливания до 550°С.
Сущность изобретения иллюстрируется следующими примерами. Характеристики продуктов крекинга приведены в таблице 2.
Пример 1. Бензин коксования смешивают с прямогонной бензиновой фракцией 62-105°С в соотношении 1:2, смешение осуществляют при температуре 40°С, смесь крекируют при температуре 450°С.
Химический состав применяемого катализатора (в мас. %):
оксид алюминия - 32,6;
оксид натрия - 0,42;
оксиды редкоземельных элементов - 1,9;
оксид железа - 0,8;
оксид кремния - 62,8;
примеси (оксиды магния, кальция, марганца, фосфора) - 2,48.
Катализатор и условия проведения процесса обеспечивают низкое содержание олефиновых соединений и серы в бензине крекинга.
Пример 2. Бензин термокрекинга смешивают с прямогонной бензиновой фракцией 62-180°С в соотношении 1:1, смешение осуществляют при температуре 40°С, смесь вводят в реактор крекинга, процесс проводят при температуре 480°С. Катализатор и условия проведения процесса обеспечивают низкое содержание олефиновых соединений и серы в бензине крекинга.
Пример 3. Бензин висбрекинга смешивают с рафинатом комплекса производства ароматики (фракция 62-105°С) в соотношении 1:3, смешение осуществляют при температуре 60°С, смесь вводят в реактор крекинга, процесс проводят при температуре 420°С.
Пример 4. Бензин висбрекинга смешивают с рафинатом комплекса производства ароматики (фракция 62-180°С) в соотношении 1:3, смешение осуществляют при температуре 60°С, смесь вводят в реактор крекинга, процесс проводят при температуре 450°С.
Пример 5. Бензин висбрекинга смешивают с прямогонной керосиновой фракцией 140-240°С в соотношении 1:1, смешение осуществляют при температуре 80°С, смесь вводят в реактор крекинга, процесс проводят при температуре 460°С.
Пример 6. Бензин коксования смешивают с прямогонной дизельной фракцией 180-360°С в соотношении 1:1, смешение осуществляют при температуре 100°С, смесь вводят в реактор крекинга, процесс проводят при температуре 420°С. Выход бензина крекинга выше 100 мас. % на исходный бензин связан с частичным крекингом дизельной фракции до бензина.
Пример 7. Бензин висбрекинга смешивают с прямогонной бензиновой фракцией 62-180°С, бензины берут в соотношении 1:3, смешение осуществляют при температуре 60°С, смесь вводят в реактор крекинга, процесс проводят при температуре 350°С. Низкие температуры крекинга не позволяют добиться значительного снижения в бензине олефиновых соединений и серы.
Пример 8. Бензин коксования смешивают с прямогонной бензиновой фракцией 62-105°С, бензины берут в соотношении 1:3, смешение осуществляют при температуре 60°С, смесь вводят в реактор крекинга, процесс проводят при температуре 500°С. Высокая температура крекинга приводит к низкому выходу целевой бензиновой фракции.
Пример 9 (сравнительный по прототипу). Бензин коксования смешивают с прямогонной бензиновой фракцией 62-85°С в соотношении 1:2, смешение осуществляют при температуре 20°С, смесь подвергают каталитическому крекингу при температуре 450°С.
Как следует из таблицы 2, применение указанных нефтяных фракций для облагораживания бензинов термических процессов без использования молекулярного водорода позволяет расширить сырьевую базу для получения качественных товарных бензинов. Полученный в предлагаемых по способу условиях бензин имеет низкое содержание сернистых и непредельных соединений одновременно с его высоким выходом.
Figure 00000002
1 БК - бензин коксования, БТ - бензин термокрекинга, БВ - бензин висбрекинга, ПБ1 - прямогонная бензиновая фракция 62-85°С, ПБ2 - прямогонная бензиновая фракция 62-105°С, ПБ3 - прямогонная бензиновая фракция 62-180°С, РКПА1 - рафинат комплекса производства ароматики (фракция 62-105°С), РКПА2 - рафинат комплекса производства ароматики (фракция 62-180°С), КС - прямогонная керосиновая фракция 140-240°С, ДТ - прямогонная дизельная фракция 180-360°С.

Claims (2)

1. Способ каталитического облагораживания бензинов термических процессов путем контактирования с нефтяными фракциями - донорами водорода при температуре менее 100°C и переработки в условиях каталитического крекинга в лифт-реакторе на катализаторе для проведения реакций переноса водорода, отличающийся тем, что в качестве доноров водорода используют следующие нефтяные фракции: прямогонная широкая бензиновая фракция с началом кипения 62°C и с переменным концом кипения до 180°C, рафинат комплекса производства ароматики с началом кипения 62°C и с переменным концом кипения до 180°C, прямогонная керосиновая фракция с пределами температур кипения 140-240°C, прямогонная дизельная фракция с пределами температур кипения 180-360°C, при их соотношении с бензинами термических процессов 1:(1-3), с последующей их переработкой при температуре каталитического крекинга 420-480°C в системе реактор - регенератор.
2. Способ по п. 1, отличающийся тем, что бензины термических процессов включают бензины процессов термокрекинга, висбрекинга, коксования.
RU2015130118/04A 2015-07-21 2015-07-21 Способ каталитического облагораживания бензинов термических процессов RU2599721C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015130118/04A RU2599721C1 (ru) 2015-07-21 2015-07-21 Способ каталитического облагораживания бензинов термических процессов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015130118/04A RU2599721C1 (ru) 2015-07-21 2015-07-21 Способ каталитического облагораживания бензинов термических процессов

Publications (1)

Publication Number Publication Date
RU2599721C1 true RU2599721C1 (ru) 2016-10-10

Family

ID=57127648

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015130118/04A RU2599721C1 (ru) 2015-07-21 2015-07-21 Способ каталитического облагораживания бензинов термических процессов

Country Status (1)

Country Link
RU (1) RU2599721C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2802007C1 (ru) * 2022-12-14 2023-08-22 федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) Каталитическая композиция на основе никеля для интенсификации внутрипластовой гидротермальной конверсии высоковязкой нефти в условиях до- и субкритических воздействий и способ ее использования

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU336994A1 (ru) * 1969-08-04 1980-04-30 Khuramshin T Z Способ очистки крекинг-бензина
RU2469070C1 (ru) * 2011-10-13 2012-12-10 Учреждение Российской академии наук Институт проблем переработки углеводородов Сибирского отделения РАН (ИППУ СО РАН) Способ переработки бензинов термических процессов и катализатор для его осуществления

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU336994A1 (ru) * 1969-08-04 1980-04-30 Khuramshin T Z Способ очистки крекинг-бензина
RU2469070C1 (ru) * 2011-10-13 2012-12-10 Учреждение Российской академии наук Институт проблем переработки углеводородов Сибирского отделения РАН (ИППУ СО РАН) Способ переработки бензинов термических процессов и катализатор для его осуществления

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2802007C1 (ru) * 2022-12-14 2023-08-22 федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) Каталитическая композиция на основе никеля для интенсификации внутрипластовой гидротермальной конверсии высоковязкой нефти в условиях до- и субкритических воздействий и способ ее использования

Similar Documents

Publication Publication Date Title
KR102457860B1 (ko) 공급 원료 탄화수소를 석유 화학 제품으로 전환하는 시스템 및 방법
RU2733847C2 (ru) Интегрированный способ для увеличения производства олефинов переработкой и обработкой тяжелого остатка крекинга
KR102150269B1 (ko) 중유로부터 파라핀 스트림을 생산하기 위한 초임계수 경질화 공정
RU2700710C1 (ru) Способ переработки сырой нефти в легкие олефины, ароматические соединения и синтетический газ
RU2627662C2 (ru) Способ конверсии углеводородных исходных материалов посредством термического парового крекинга
JP2020521844A (ja) 部分触媒再循環を有する高過酷度流動接触分解システムおよびプロセス
KR20210114540A (ko) 석유계 물질을 처리하기 위한 수소화 처리 및 고-가혹도 유동화 촉매 분해를 포함한 시스템 및 방법
RU2661875C2 (ru) Повышение производства топлив путем интеграции процессов вакуумной перегонки и деасфальтизации растворителем
CN106459786B (zh) 用于将高沸烃原料转化为较轻沸烃产物的方法
RU2623226C2 (ru) Способ получения олефинов посредством термического парового крекинга в крекинг-печах
JP2015199957A (ja) ナフサ系フィードを処理する接触分解装置(ncc)と接触改質装置とアロマティクス・コンプレックスとを用いる軽質オレフィンおよびbtxの製造方法
JP2017502110A (ja) 軽質オレフィンの製造のための溶剤脱瀝および流動接触分解の統合された方法
KR102339837B1 (ko) 업그레이딩 공정에 수소처리 단계를 부가하여 중유의 향상된 업그레이딩 방법
US20210198585A1 (en) Method to produce light olefins from crude oil
RU2469070C1 (ru) Способ переработки бензинов термических процессов и катализатор для его осуществления
US11248180B2 (en) Supercritical water process integrated with visbreaker
RU2599721C1 (ru) Способ каталитического облагораживания бензинов термических процессов
JP5314546B2 (ja) 重質油の熱分解方法
ES2916256T3 (es) Procedimiento de craqueo catalítico fluido
RU2759378C1 (ru) Способ получения сырья для производства технического углерода
WO2016011521A1 (en) Process for producing styrene-, methylstyrene- and ethylbenzene-free c6-c9 aromatic hydrocarbon blends
SU1696458A1 (ru) Способ переработки вакуумного газойл
US20230093607A1 (en) Processes integrating hydrocarbon cracking with metathesis for producing propene
RU2572514C1 (ru) Способ получения автомобильного бензина
WO2017149728A1 (ja) 石油の処理装置