RU2599154C1 - Способ ремонтно-изоляционных работ в скважине (варианты) - Google Patents
Способ ремонтно-изоляционных работ в скважине (варианты) Download PDFInfo
- Publication number
- RU2599154C1 RU2599154C1 RU2015152747/03A RU2015152747A RU2599154C1 RU 2599154 C1 RU2599154 C1 RU 2599154C1 RU 2015152747/03 A RU2015152747/03 A RU 2015152747/03A RU 2015152747 A RU2015152747 A RU 2015152747A RU 2599154 C1 RU2599154 C1 RU 2599154C1
- Authority
- RU
- Russia
- Prior art keywords
- fiber
- cement
- well
- length
- grouting composition
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000009413 insulation Methods 0.000 title claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 63
- 239000000835 fiber Substances 0.000 claims abstract description 40
- 239000004568 cement Substances 0.000 claims abstract description 38
- 239000013505 freshwater Substances 0.000 claims abstract description 29
- 239000011398 Portland cement Substances 0.000 claims abstract description 20
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims abstract description 14
- 239000003999 initiator Substances 0.000 claims abstract description 14
- 235000019353 potassium silicate Nutrition 0.000 claims abstract description 10
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims abstract description 8
- PASHVRUKOFIRIK-UHFFFAOYSA-L calcium sulfate dihydrate Chemical compound O.O.[Ca+2].[O-]S([O-])(=O)=O PASHVRUKOFIRIK-UHFFFAOYSA-L 0.000 claims abstract description 8
- 239000008398 formation water Substances 0.000 claims abstract description 8
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 8
- 239000011707 mineral Substances 0.000 claims abstract description 8
- 239000000843 powder Substances 0.000 claims abstract description 8
- 238000002360 preparation method Methods 0.000 claims abstract description 8
- 239000001110 calcium chloride Substances 0.000 claims abstract description 7
- 229910001628 calcium chloride Inorganic materials 0.000 claims abstract description 7
- WYYQVWLEPYFFLP-UHFFFAOYSA-K chromium(3+);triacetate Chemical compound [Cr+3].CC([O-])=O.CC([O-])=O.CC([O-])=O WYYQVWLEPYFFLP-UHFFFAOYSA-K 0.000 claims abstract description 7
- 239000004927 clay Substances 0.000 claims abstract description 6
- 229910052751 metal Inorganic materials 0.000 claims abstract description 4
- 239000002184 metal Substances 0.000 claims abstract description 4
- 150000003839 salts Chemical class 0.000 claims abstract description 4
- 150000002739 metals Chemical class 0.000 claims abstract description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 20
- 238000002347 injection Methods 0.000 claims description 20
- 239000007924 injection Substances 0.000 claims description 20
- 239000012783 reinforcing fiber Substances 0.000 claims description 18
- 239000003153 chemical reaction reagent Substances 0.000 claims description 16
- 229920002748 Basalt fiber Polymers 0.000 claims description 15
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 8
- 229920002401 polyacrylamide Polymers 0.000 claims description 7
- 230000003247 decreasing effect Effects 0.000 claims description 5
- 239000012209 synthetic fiber Substances 0.000 claims description 5
- 229920002994 synthetic fiber Polymers 0.000 claims description 3
- 238000005086 pumping Methods 0.000 abstract description 19
- 238000007789 sealing Methods 0.000 abstract description 6
- 239000000126 substance Substances 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 2
- 230000003014 reinforcing effect Effects 0.000 abstract 3
- 239000003795 chemical substances by application Substances 0.000 abstract 2
- 238000010276 construction Methods 0.000 abstract 1
- 230000000246 remedial effect Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 13
- -1 polypropylene Polymers 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000004743 Polypropylene Substances 0.000 description 9
- 229920001155 polypropylene Polymers 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000004570 mortar (masonry) Substances 0.000 description 8
- 239000004575 stone Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 239000002002 slurry Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- 230000004941 influx Effects 0.000 description 4
- 230000000149 penetrating effect Effects 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000004005 microsphere Substances 0.000 description 3
- 239000002557 mineral fiber Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 244000309464 bull Species 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920005646 polycarboxylate Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- MGQIWUQTCOJGJU-UHFFFAOYSA-N [AlH3].Cl Chemical compound [AlH3].Cl MGQIWUQTCOJGJU-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000011436 cob Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011440 grout Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000012758 reinforcing additive Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/10—Sealing or packing boreholes or wells in the borehole
- E21B33/13—Methods or devices for cementing, for plugging holes, crevices or the like
- E21B33/138—Plastering the borehole wall; Injecting into the formation
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/42—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
- C09K8/428—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells for squeeze cementing, e.g. for repairing
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/42—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
- C09K8/46—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Lining And Supports For Tunnels (AREA)
Abstract
Предложение относится к нефтедобывающей промышленности, в частности, к ремонтно-изоляционным работ в скважинах с применением тампонажных составов. Технический результат предложенного изобретения заключается в повышение эффективности ремонтно-изоляционных работ в скважине за счет использования тампонажного состава с более высокой герметизирующей способностью. Способ ремонтно-изоляционных работ - РИР в скважине включает приготовление и закачку в скважину тампонажного состава, содержащего структурообразующий реагент, инициатор структурообразования и армирующее волокно. В качестве структурообразующего реагента в тампонажном составе используют портландцемент тампонажный или гельцемент, состоящий из смеси портландцемента тампонажного и глинопорошка в количестве 5-20% от массы портландцемента тампонажного, либо жидкое стекло или кремнийорганические продукты, или полиакриламид, или гидролизованный полиакрилонитрил, или фосфогипс. В качестве инициатора структурообразования используют пресную воду или соли поливалентных металлов (хлористого кальция, алюмохлорида, ацетата хрома, минерализованной пластовой воды), в качестве армирующего волокна используют синтетическое волокно строительное микроармирующее - ВСМ или минеральное армирующее волокно - базальтовое, причем диаметр волокна составляет 10-35 мкм, а длина - 3-18 мм, волокно добавляют в количестве 0,5-5 кг на 1 м3 тампонажного состава. Закачку тампонажного состава осуществляют несколькими порциями в зависимости от удельной приемистости нарушения, так, при удельной приемистости нарушения от 1,5 до 4 м3/(ч·МПа) закачку начинают с использованием волокна с увеличением его длины по мере закачивания от 3, 6, 12 и до 18 мм, а при удельной приемистости от 4 до 20 м3/(ч·МПа) несколькими порциями с уменьшением длины волокна от 18, 12, 6 и до 3 мм. 1 табл.
Description
Изобретение относится к нефтедобывающей промышленности, в частности к ремонтно-изоляционным работам в скважинах с применением тампонажных составов.
Известен способ цементирования обсадных колон, включающий приготовление и закачку в скважину тампонажного состава, содержащего портландцемент, поливинилпирролидон, поликарбоксилат, ультрадисперсный кремнезем, пеногаситель и воду при следующем соотношении компонентов, вес. ч.: портландцемент - 100, поливинилпирролидон - 0,7-0,8, поликарбоксилат Melflux 1641F - 0,25-0,4, ультрадисперсный кремнезем в виде белой сажи БС-120 - 0,2-0,4, пеногаситель - 0,03-0,04, вода техническая - 42-43 (патент RU №2520608, МПК С09К 8/467, опубл. 27.06.2014, Бюл. №18).
Ультрадисперсный кремнезем принимает непосредственное участие в формировании структуры цементного камня, встраиваясь в структуру гидратов и заполняя поры, тем самым повышая непроницаемость цементного камня, а также приводит к образованию первичного каркаса, что обеспечивает кинетику набора прочности цементного камня на ранних сроках твердения.
Недостатком известного способа является использование белой сажи в тампонажном составе, так как ее недостаточно для создания армированного состава ввиду очень малых размеров частиц белой сажи.
Наиболее близким по технической сущности к заявленному изобретению является способ восстановления герметичности обсадных колонн (патент RU №2471963, МПК Е21В 33/138, опубл. 10.01.2013, Бюл. №1), включающий приготовление и закачку в скважину тампонажного состава, состоящего из структурообразующего реагента, инициатора структурообразования, армирующего волокна и добавки. В качестве структурообразующего реагента используют портландцемент тампонажный, в качестве инициатора структурообразования используют пресную воду, в качестве армирующего волокна используют фиброволокно длиной 3-18 мм и диаметром 22-35 мкм, в качестве добавки - алюмосиликатные микросферы, содержание которых не превышает 20% в составе. Закачку тампонажного состава в скважину с приемистостью более 250 м3/сут в интервал негерметичности колонны и продавку ее за колонну осуществляют созданием в конце закачки давления, превышающего давление разрушения микросфер, затем осуществляют промывку скважины.
Недостатками известного способа являются низкая эффективность герметизации из-за недостаточно высокой прочности и долговечности цементного камня, так как из-за малой плотности алюмосиликатные микросферы не распределяются равномерно во всем объеме тампонажного состава, а всплывают на его поверхность, что также усложняет процесс приготовления и закачки тампонажного состава.
Технической задачей изобретения является повышение эффективности ремонтно-изоляционных работ (РИР) в скважине за счет повышения герметизирующей способности тампонажного состава.
Техническая задача решается способом ремонтно-изоляционных работ - РИР в скважине, включающим приготовление и закачку в скважину тампонажного состава, содержащего структурообразующий реагент, инициатор структурообразования и армирующее волокно.
По первому варианту новым является то, что в качестве структурообразующего реагента в тампонажном составе используют портландцемент тампонажный или гельцемент, состоящий из смеси портландцемента тампонажного и глинопорошка в количестве 5-20% от массы портландцемента тампонажного, в качестве инициатора структурообразования используют пресную воду, в качестве армирующего волокна используют синтетическое волокно строительное микроармирующее - ВСМ или минеральное армирующее волокно - базальтовое, причем диаметр волокна составляет 10-35 мкм, а длина - 3-18 мм, волокно добавляют в количестве 0,5-5 кг на 1 м3 тампонажного состава, причем закачку тампонажного состава осуществляют несколькими порциями в зависимости от удельной приемистости нарушения, так, при удельной приемистости нарушения от 1,5 до 4 м3/(ч·МПа) закачку начинают с использованием волокна с увеличением его длины по мере закачивания от 3, 6, 12 и до 18 мм, а при удельной приемистости от 4 до 20 м3/(ч·МПа) несколькими порциями с уменьшением длины волокна от 18, 12, 6 и до 3 мм.
По второму варианту новым является то, что в качестве структурообразующего реагента в тампонажном составе используют жидкое стекло, или кремнийорганические продукты, или полиакриламид, или гидролизованный полиакрилонитрил, или фосфогипс, в качестве инициатора структурообразования используют соли поливалентных металлов (хлористого кальция, алюмохлорида, ацетата хрома, минерализованной пластовой воды) в соотношении к структурообразующему реагенту 1:(0,1-3) соответственно, в качестве армирующего волокна используют синтетическое волокно строительное микроармирующее - ВСМ или минеральное армирующее волокно - базальтовое волокно, причем диаметр волокна составляет 10-35 мкм, а длина - 3-18 мм, волокно добавляют в количестве 0,5-5 кг на 1 м3 тампонажного состава, причем закачку тампонажного состава осуществляют несколькими порциями в зависимости от удельной приемистости нарушения, так при удельной приемистости нарушения от 1,5 до 4 м3/(ч·МПа) закачку начинают с использованием волокна с увеличением его длины по мере закачивания от 3, 6, 12 и до 18 мм, а при удельной приемистости от 4 до 20 м3/(ч·МПа) несколькими порциями с уменьшением длины волокна от 18, 12, 6 и до 3 мм.
В процессе РИР используют тампонажные составы с добавлением синтетических или минеральных армирующих волокон диаметром 10-35 мкм и длиной 3-18 мм.
Портландцемент тампонажный по ГОСТ 1581-96.
Гельцемент состоит из смеси портландцемента тампонажного и глинопорошка в количестве 5-20% от массы портландцемента тампонажного.
Комовая глина Биклянского карьера (глинопорошок) по ГОСТ 25795-83.
Синтетическое волокно строительное микроармирующее (ВСМ) представляет собой однокомпонентное полипропиленовое волокно цилиндрической формы.
В качестве минерального волокна используют базальтовое волокно, получают его из расплавленной базальтовой породы.
Стекло натриевое жидкое (жидкое стекло) по ГОСТ 13078-81. Густая жидкость желтого или серого цвета без механических примесей и включений, видимых невооруженным глазом, плотностью в пределах 1360-1450 кг/м3.
Кремнийорганические продукты представляют собой жидкость от желтого до черного цвета. Допускается наличие механических примесей и взвеси, выпадающих в осадок при отстаивании. Условная вязкость при температуре 20,0±0,5°С по вискозиметру ВЗ-246 с диаметром сопла 4 мм составляет не более 30 с. Температура замерзания должна составлять не выше минус 50°С.
Полиакриламид представляет собой порошок модифицированного полиакриламида молекулярной массы 5-12 млн. дальтон, с содержанием основного вещества не менее 90%, массовой долей нерастворимого в воде остатка не более 0,3%, с анионностью 5-20% и временем растворения в пресной воде не более 60 мин.
Гидролизованный полиакрилонитрил представляет собой вязкую жидкость от желтого до темно-коричневого цвета с вязкостью 1%-ного водного раствора в пределах 22-40 мПа·с и сухим остатком не менее 10% или порошок желтого цвета (допускается оранжевый оттенок) с массовой долей основного вещества не менее 95% и pH 1%-ного водного раствора в пределах 9-12,5.
Фосфогипс представляет собой твердое мелкокристаллическое вещество от светло-серого до темно-серого цвета с наличием частиц (комков). Массовая доля основного вещества (CaSO4·2 H2O) в пересчете на сухой дигидрат составляет не менее 92%.
Хлористый кальций (кальций хлористый технический) по ГОСТ 450-77.
Алюмохлорид (гидроксохлористый алюминий) представляет собой жидкость слабо желтого или серого цвета с зеленоватым оттенком. Массовая доля основного вещества в пересчете на AlCl3 составляет 200-300 г/дм3. Показатель активности водородных ионов pH должен находиться в пределах 0,8-2.
Ацетат хрома представляет собой твердое кристаллическое вещество, выпускается в виде 50%-ного водного раствора с плотностью 1300 кг/м3.
Минерализованная пластовая вода плотностью 1180 кг/м3.
Предлагаемые способы РИР в скважине, включающие приготовление и закачку в скважину тампонажного состава, содержащего структурообразующий реагент, инициатор структурообразования и синтетическое или минеральное армирующее волокно, позволяют повысить эффективность РИР в скважине путем повышения герметизирующей способности тампонажного состава за счет высокой подвижности при закачивании и его проникновения в мелкие поры и трещины под избыточным давлением. В то же время тампонажный состав не растекается в порах и трещинах, а создает в устье полостей прочный тампон, что обеспечивает его экономное расходование и сокращение потерь на поглощение пористыми пластами тампонажного состава на 25-35%. Применение в тампонажном составе синтетического или минерального волокна обеспечивает высокую стойкость полученного тампонажного камня к образованию и распространению трещин и сдерживает тенденцию их увеличения, также обеспечивает трехмерное упрочнение материала.
Определяют удельную приемистость нарушения. Готовят тампонажный состав. В скважину через насосно-компрессорные трубы (НКТ) в интервал нарушения закачивают тампонажный состав, содержащий синтетическое или минеральное волокно. Необходимый объем тампонажного состава в зависимости от удельной приемистости изолируемого интервала устанавливают из опыта промысловых работ и составляет 1,5-200 м3.
Тампонажный состав по первому варианту РИР, содержащий тампонажный портландцемент или гельцемент, пресную воду и синтетическое или минеральное армирующее волокно, готовится непосредственно на скважине, причем диаметр волокна составляет 10-35 мкм, а длина - 3-18 мм, волокно добавляют в количестве 0,5-5 кг на 1 м3 тампонажного состава, причем при удельной приемистости от 1,5 до 4 м3/(ч·МПа) используют волокно длиной 3 или 6 мм, а при удельной приемистости от 4 до 20 м3/(ч·МПа) - длиной 12 или 18 мм. Тампонажный состав легко закачивается в зону нарушения, имеет достаточное для закачивания время отверждения (4-14 ч) и улучшенные по сравнению с наиболее близким аналогом показатели прочности отвержденного цементного камня. Механическую прочность цементного камня на сжатие через 2 и 180 сут исследовали в лабораторных условиях по стандартным методикам. Результаты исследований тампонажного состава по предлагаемому способу на примере ВСМ и наиболее близкому способу представлены в таблице. По предлагаемому способу оптимальным является содержание ВСМ в пределах 0,5-5 кг в 1 м3 тампонажного состава на основе портландцемента.
Результаты испытаний также показали, что прочность цементного камня на сжатие по предлагаемому способу через 2 и 180 сут выше, чем у наиболее близкого способа, что доказывает лучшую герметизирующую способность предлагаемого способа.
ВСМ и базальтовое волокно улучшают структурно-механические свойства отвержденного тампонажного состава, поэтому предлагается их использовать с такими реагентами, как жидкое стекло, кремнийорганические продукты, полиакриламид, гидролизованный поиакрилонитрил, фосфогипс, а также резиновая или каучуковая крошка, древесная мука. В РИР предлагается применять перечисленные реагенты с добавлением волокна, при этом в качестве инициатора структурообразования используют соли поливалентных металлов (хлористого кальция, алюмохлорида, ацетата хрома, минерализованной пластовой воды) и т.п.
Примеры практического осуществления способа по предлагаемым вариантам
Пример 1-1 (по первому варианту). Тампонажный состав содержит портландцемент тампонажный, пресную воду и полипропиленовое волокно.
В скважине методом поинтервальной опрессовки было выявлено нарушение целостности эксплуатационной колонны диаметром 168 мм в интервале 878-880 м. Удельная приемистость нарушения составила 2,9 м3/(ч·МПа). Закачали 6 м3 тампонажного раствора из 7,5 т тампонажного портландцемента, раствор затворяли на пресной воде с использованием цементировочного агрегата ЦА-320 и цементосмесительного агрегата СМН-20 при В/Ц=0,5. Приготовленный раствор закачивали в скважину по эксплуатационной колонне через промежуточную емкость, в процессе закачивания в раствор, проходящий через промежуточную емкость, постепенно добавляли полипропиленовое волокно. При закачивании первых 1,5 м3 раствора было добавлено 1,5 кг базальтового волокна длиной 3 мм, диаметром 10 мкм, при закачивании следующих 1,5 м3 раствора было добавлено 1,5 кг базальтового волокна длиной 6 мм, диаметром 18 мкм, при закачивании следующих 1,5 м3 раствора было добавлено 1,5 кг базальтового волокна длиной 12 мм, диаметром 25 мкм, при закачивании следующих 1,5 м3 раствора было добавлено 1,5 кг базальтового волокна длиной 18 мм диаметром 35 мкм. Тампонажный раствор продавили закачиванием по эксплуатационной колонне пресной воды. Оставили скважину на ожидание затвердевания тампонажного раствора в течение 24 ч. Далее разбурили мост, полученный из отвержденного тампонажного раствора, опрессовали давлением эксплуатационную колонну, по результатам опрессовки колонну признали герметичной.
Пример 1-2 (по первому варианту). Тампонажный состав содержит базальтовое волокно, пресную воду и гельцемент.
В скважине методом поинтервальной опрессовки было выявлено нарушение целостности эксплуатационной колонны диаметром 146 мм в интервале 680-681 м. Удельная приемистость нарушения составила 5 м3/(ч·МПа). Закачали 4 м3 тампонажного раствора из 3,5 т гельцемента (смесь 3,22 т портландцемента тампонажного и 0,28 т глинопорошка), раствор затворяли на пресной воде с использованием цементировочного агрегата ЦА-320 и цементосмесительного агрегата СМН-20 при В/Ц=0,8, затворенный раствор через промежуточную емкость закачивали в колонну НКТ, спущенную на глубину 650 м, в процессе закачивания в раствор, проходящий через промежуточную емкость, постепенно добавляли базальтовое волокно. При закачивании первого 1 м3 тампонажного раствора было добавлено 2 кг базальтового волокна длиной 18 мм, диаметром 35 мкм, при закачивании второго 1 м3 раствора было добавлено 2 кг базальтового волокна длиной 12 мм, диаметром 25 мкм, при закачивании третьего 1 м3 раствора было добавлено 2 кг базальтового волокна длиной 6 мм, диаметром 18 мкм, при закачивании четвертого 1 м3 раствора было добавлено 2 кг базальтового волокна длиной 3 мм, диаметром 10 мкм. Тампонажный раствор продавили закачиванием в колонну НКТ пресной воды. Провели контрольную промывку. Оставили скважину на ожидание затвердевания тампонажного раствора в течение 24 ч. Далее разбурили мост, полученный из отвержденного тампонажного раствора, опрессовали давлением эксплуатационную колонну, по результатам опрессовки колонну признали герметичной.
Пример 2-1 (по второму варианту). В тампонажный состав входят жидкое стекло, гидролизованный полиакрилонитрил, раствор хлористого кальция, минерализованная пластовая вода плотностью 1180 кг/м3 и полипропиленовое волокно.
Способ применяли с целью ограничения притока подошвенной воды, проникающей в нефтенасыщенный интервал пласта по системе вертикальных трещин. Удельная приемистость изолируемого интервала составляла 1,5 м3/(ч·МПа). Предварительно в пласт в качестве инициатора структурообразования был закачан раствор хлористого кальция плотностью 1300 кг/м3 в объеме 3 м3, буфер из пресной воды в объеме 0,3 м3. В интервал перфорации 1162-1167 м через колонну НКТ закачали тампонажный состав из 5 м3 гидролизованного полиакрилонитрила и 1 м3 жидкого стекла, содержащий 12 кг ВСМ длиной 6 мм, диаметром 18 мкм, буфер из пресной воды в объеме 0,3 м3. Инициатором структурообразования тампонажного состава служила также минерализованная подошвенная вода, содержащаяся в пласте. Скважину оставили на время отверждения тампонажного состава на 24 ч. По результатам последующего освоения скважины обводненность продукции снизилась на 23%, дебит нефти возрос на 3 т/сут.
Пример 2-2 (по второму варианту). В тампонажный состав входят кремнийорганический продукт, минерализованная пластовая вода плотностью 1180 кг/м3 и полипропиленовое волокно.
Способ применяли с целью ограничения притока подошвенной воды, проникающей в нефтенасыщенный интервал пласта по высокопроницаемому пропластку. Удельная приемистость изолируемого интервала составляла 1,0 м3/(ч·МПа). В интервал перфорации 1222-1227 м через колонну НКТ закачали буфер из пресной воды в объеме 0,3 м3, тампонажный состав из 2 м3 кремнийорганического продукта и 2 м3 пластовой воды, содержащий 2 кг полипропиленового волокна длиной 3 мм, диаметром 10 мкм, буфер из пресной воды в объеме 0,3 м3. Скважину оставили на время отверждения тампонажного состава на 24 ч. По результатам последующего освоения скважины обводненность продукции снизилась на 19%, дебит нефти возрос на 2 т/сут.
Пример 2-3 (по второму варианту). В тампонажный состав входят полиакриламид, ацетат хрома, пресная вода и полипропиленовое волокно.
Способ применяли с целью ограничения притока подошвенной воды, проникающей в нефтенасыщенный интервал пласта по высокопроницаемым трещинам карбонатного пласта. Удельная приемистость изолируемого интервала составляла 2,0 м3/(ч·МПа). В интервал перфорации 1201-1209 м через колонну НКТ, спущенную до глубины 1271 м, закачали гелеобразующий раствор, представляющий собой растворенные в 40 м3 пресной воды 200 кг полиакриламида и 0,05 м3 ацетата хрома, в раствор во время закачивания добавляли полипропиленовое волокно длиной 3 мм, диаметром 10 мкм в количестве 40 кг. Закачанные реагенты продавили в изолируемый интервал пресной водой. Скважину оставили для отверждения тампонажного состава на 24 ч. По результатам последующего освоения скважины обводненность продукции снизилась на 34%, дебит нефти возрос на 4 т/сут.
Пример 2-4 (по второму варианту). В тампонажный состав входят гидролизованный полиакрилонитрил, алюмохлорид и базальтовое волокно.
Способ применяли с целью ограничения притока подошвенной воды, проникающей в нефтенасыщенный интервал пласта по системе вертикальных трещин. Удельная приемистость изолируемого интервала составляла 5,0 м3/(ч·МПа). В интервал перфорации 1300-1311 м через колонну НКТ, спущенную до глубины 1270 м, закачали последовательно 5 м3 алюмохлорида, 0,2 м3 пресной воды в качестве буфера, 5 м3 гидролизованного полиакрилонитрила, при закачивании в гидролизованный полиакрилонитрил и алюмохлорид добавляли базальтовое волокно длиной 3 мм, диаметром 18 мкм. Закачанные реагенты продавили в изолируемый интервал пресной водой. Скважину оставили для отверждения тампонажного состава на 24 ч. По результатам последующего освоения скважины обводненность продукции снизилась на 15%, дебит нефти возрос на 2,5 т/сут.
Пример 2-5 (по второму варианту). В тампонажный состав входят фосфогипс, жидкое стекло, пресная вода и армирующее волокно.
В скважине методом поинтервальной опрессовки было выявлено нарушение целостности эксплуатационной колонны диаметром 146 мм в интервале 530-531 м. Удельная приемистость нарушения составила 4 м3/(чМПа). В скважину до глубины 500 м спустили колонну НКТ, через которую в изолируемый интервал закачали последовательно 0,2 м3 пресной воды в качестве буфера, 2 м3 жидкого стекла, 0,2 м3 пресной воды в качестве буфера, 2 м3 20%-ной суспензии фосфогипса в пресной воде, 0,2 м3 пресной воды в качестве буфера, 2 м3 жидкого стекла, 0,2 м3 пресной воды в качестве буфера, 2 м3 20%-ной суспензии фосфогипса в пресной воде. Жидкости закачивали цементировочным агрегатом ЦА-320, в процессе закачивания в раствор постепенно добавляли полипропиленовое волокно длиной 6 мм, диаметром 18 мкм в количестве 16 кг. Тампонажный раствор продавили закачиванием по эксплуатационной колонне пресной воды. Оставили скважину для отверждения тампонажного раствора в течение 24 ч. Далее разбурили мост, полученный из отвержденного тампонажного раствора, опрессовали давлением эксплуатационную колонну, по результатам опрессовки колонну признали герметичной.
Все вышеприведенные примеры использования предлагаемого способа доказывают решение технической задачи изобретения - повышение эффективности РИР в скважине за счет использования тампонажного состава с более высокой c герметизирующей способностью.
Claims (2)
1. Способ ремонтно-изоляционных работ в скважине, включающий приготовление и закачку в скважину тампонажного состава, содержащего структурообразующий реагент, инициатор структурообразования и армирующее волокно, отличающийся тем, что в качестве структурообразующего реагента в тампонажном составе используют портландцемент тампонажный или гельцемент, состоящий из смеси портландцемента тампонажного и глинопорошка в количестве 5-20% от массы портландцемента тампонажного, в качестве инициатора структурообразования используют пресную воду, в качестве армирующего волокна используют синтетическое волокно строительное микроармирующее - ВСМ или минеральное армирующее волокно - базальтовое, причем диаметр волокна составляет 10-35 мкм, а длина - 3-18 мм, волокно добавляют в количестве 0,5-5 кг на 1 м3 тампонажного состава, причем закачку тампонажного состава осуществляют несколькими порциями в зависимости от удельной приемистости нарушения, так, при удельной приемистости нарушения от 1,5 до 4 м3/(ч·МПа) закачку начинают с использованием волокна с увеличением его длины по мере закачивания от 3, 6, 12 и до 18 мм, а при удельной приемистости от 4 до 20 м3/(ч·МПа) несколькими порциями с уменьшением длины волокна от 18, 12, 6 и до 3 мм.
2. Способ ремонтно-изоляционных работ в скважине, включающий приготовление и закачку в скважину тампонажного состава, содержащего структурообразующий реагент, инициатор структурообразования и армирующее волокно, отличающийся тем, что в качестве структурообразующего реагента в тампонажном составе используют жидкое стекло, или кремнийорганические продукты, или полиакриламид, или гидролизованный полиакрилонитрил, или фосфогипс, в качестве инициатора структурообразования используют соли поливалентных металлов (хлористого кальция, алюмохлорида, ацетата хрома, минерализованной пластовой воды) в соотношении к структурообразующему реагенту 1:(0,1-3) соответственно, в качестве армирующего волокна используют синтетическое волокно строительное микроармирующее - ВСМ или минеральное армирующее волокно - базальтовое волокно, причем диаметр волокна составляет 10-35 мкм, а длина - 3-18 мм, волокно добавляют в количестве 0,5-5 кг на 1 м3 тампонажного состава, причем закачку тампонажного состава осуществляют несколькими порциями в зависимости от удельной приемистости нарушения, так, при удельной приемистости нарушения от 1,5 до 4 м3/(ч·МПа) закачку начинают с использованием волокна с увеличением его длины по мере закачивания от 3, 6, 12 и до 18 мм, а при удельной приемистости от 4 до 20 м3/(ч·МПа) несколькими порциями с уменьшением длины волокна от 18, 12, 6 и до 3 мм.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015152747/03A RU2599154C1 (ru) | 2015-12-08 | 2015-12-08 | Способ ремонтно-изоляционных работ в скважине (варианты) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015152747/03A RU2599154C1 (ru) | 2015-12-08 | 2015-12-08 | Способ ремонтно-изоляционных работ в скважине (варианты) |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2599154C1 true RU2599154C1 (ru) | 2016-10-10 |
Family
ID=57127392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015152747/03A RU2599154C1 (ru) | 2015-12-08 | 2015-12-08 | Способ ремонтно-изоляционных работ в скважине (варианты) |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2599154C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2730157C1 (ru) * | 2020-04-30 | 2020-08-19 | Публичное акционерное общество «Татнефть» имени В.Д. Шашина | Способ герметизации эксплуатационной колонны добывающей скважины |
CN113929421A (zh) * | 2021-11-15 | 2022-01-14 | 中铁十一局集团西安建设有限公司 | 一种自密实回填材料及其制备方法及应用 |
RU2825087C1 (ru) * | 2023-11-02 | 2024-08-20 | федеральное государственное автономное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" | Способ получения гелеобразующей композиции для изоляции водопритоков в скважину |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110278006A1 (en) * | 2009-01-30 | 2011-11-17 | M-I L.L.C. | Defluidizing lost circulation pills |
RU2458962C1 (ru) * | 2011-03-18 | 2012-08-20 | Общество с ограниченной ответственностью "ЛУКОЙЛ-ПЕРМЬ" | Фиброармированный тампонажный материал для цементирования продуктивных интервалов, подверженных перфорации в процессе освоения скважин |
RU2471963C1 (ru) * | 2011-08-05 | 2013-01-10 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ восстановления герметичности обсадных колонн |
RU2504640C1 (ru) * | 2012-07-27 | 2014-01-20 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ изоляции зон водопритока в скважине |
RU2507377C1 (ru) * | 2012-10-02 | 2014-02-20 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ изоляции зон водопритока в скважине |
-
2015
- 2015-12-08 RU RU2015152747/03A patent/RU2599154C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110278006A1 (en) * | 2009-01-30 | 2011-11-17 | M-I L.L.C. | Defluidizing lost circulation pills |
RU2458962C1 (ru) * | 2011-03-18 | 2012-08-20 | Общество с ограниченной ответственностью "ЛУКОЙЛ-ПЕРМЬ" | Фиброармированный тампонажный материал для цементирования продуктивных интервалов, подверженных перфорации в процессе освоения скважин |
RU2471963C1 (ru) * | 2011-08-05 | 2013-01-10 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ восстановления герметичности обсадных колонн |
RU2504640C1 (ru) * | 2012-07-27 | 2014-01-20 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ изоляции зон водопритока в скважине |
RU2507377C1 (ru) * | 2012-10-02 | 2014-02-20 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ изоляции зон водопритока в скважине |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2730157C1 (ru) * | 2020-04-30 | 2020-08-19 | Публичное акционерное общество «Татнефть» имени В.Д. Шашина | Способ герметизации эксплуатационной колонны добывающей скважины |
CN113929421A (zh) * | 2021-11-15 | 2022-01-14 | 中铁十一局集团西安建设有限公司 | 一种自密实回填材料及其制备方法及应用 |
RU2825087C1 (ru) * | 2023-11-02 | 2024-08-20 | федеральное государственное автономное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" | Способ получения гелеобразующей композиции для изоляции водопритоков в скважину |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2656266C2 (ru) | Способ обработки подземного пласта суспензией цементного раствора с возможностью образования проницаемого отвердевшего цементного раствора | |
RU2337124C1 (ru) | Базовая основа тампонажного раствора для цементирования скважин | |
RU2553807C1 (ru) | Газоблокирующий тампонажный материал для цементирования горизонтальных скважин с малыми кольцевыми зазорами | |
RU2458962C1 (ru) | Фиброармированный тампонажный материал для цементирования продуктивных интервалов, подверженных перфорации в процессе освоения скважин | |
RU2599154C1 (ru) | Способ ремонтно-изоляционных работ в скважине (варианты) | |
RU2571474C1 (ru) | Способ изоляции водопритоков в трещиноватых карбонатных коллекторах | |
US7500520B2 (en) | Method of cementing well bores | |
CN101633836B (zh) | 一种地面预注浆加固用速凝早强水泥浆液 | |
RU2405926C1 (ru) | Способ проведения ремонтно-изоляционных работ в условиях больших поглощений | |
CN105567188B (zh) | 用于提高氰凝类堵漏剂堵漏性能的助剂及其制备方法,氰凝类堵漏剂 | |
RU2474603C2 (ru) | Высокоструктурированная тампонажная смесь | |
CN108585648A (zh) | 注浆浆液配方及其制备方法 | |
RU2618539C1 (ru) | Способ ремонтно-изоляционных работ в скважине | |
RU2726754C1 (ru) | Тампонажный раствор | |
JP6961270B1 (ja) | 地盤固結材および地盤改良工法 | |
WO2015020564A1 (ru) | Ремонтно-изоляционный, тампонажный состав на основе магнезиальных вяжущих веществ "quick-stone" | |
CN114574181A (zh) | 一种凝胶组织封堵材料及其制备方法 | |
RU2507380C1 (ru) | Тампонажный раствор низкой плотности | |
RU2483093C1 (ru) | Состав для изоляции водопритока и поглощающих зон в скважине и способ его применения | |
CN104803632A (zh) | 一种防腐蚀地基用砼的制备方法 | |
RU2405927C1 (ru) | Способ ликвидации зон поглощения в скважине | |
RU2614997C1 (ru) | Способ ограничения водопритока в трещиноватых карбонатных коллекторах | |
CN104496347A (zh) | 一种环保型无机高韧性混凝土 | |
RU2710862C1 (ru) | Состав для изоляции водопритока в скважину | |
RU2408780C1 (ru) | Способ изоляции вод и интенсификации притока нефти в карбонатных пластах |