RU2593286C1 - Термосифон - Google Patents

Термосифон Download PDF

Info

Publication number
RU2593286C1
RU2593286C1 RU2015127568/03A RU2015127568A RU2593286C1 RU 2593286 C1 RU2593286 C1 RU 2593286C1 RU 2015127568/03 A RU2015127568/03 A RU 2015127568/03A RU 2015127568 A RU2015127568 A RU 2015127568A RU 2593286 C1 RU2593286 C1 RU 2593286C1
Authority
RU
Russia
Prior art keywords
pipe
ammonia
evaporator
diameter
filled
Prior art date
Application number
RU2015127568/03A
Other languages
English (en)
Inventor
Григорий Меркулович Долгих
Илья Павлович Рило
Кристина Артуровна Желудкова
Дмитрий Анатольевич Клещин
Original Assignee
Общество с ограниченной ответственностью Научно-производственное объединение "Фундаментстройаркос"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью Научно-производственное объединение "Фундаментстройаркос" filed Critical Общество с ограниченной ответственностью Научно-производственное объединение "Фундаментстройаркос"
Priority to RU2015127568/03A priority Critical patent/RU2593286C1/ru
Application granted granted Critical
Publication of RU2593286C1 publication Critical patent/RU2593286C1/ru

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Изобретение относится к строительству промышленных и гражданских объектов в криолитозоне с целью обеспечения их надежности. Термосифон включает конденсатор, испаритель и транзитный участок между ними в виде круглой с обеих сторон заглушенной трубы, вертикально установленной и погруженной на глубину испарителя в грунт, из полости трубы откачан воздух, взамен полость заправлена аммиаком, часть полости заполнена жидким аммиаком, остальной объем - насыщенным паром аммиака. Диаметр трубы составляет 33,7×3,5 мм, в испарителе по оси симметрии трубы коаксиально установлена внутренняя труба диаметром 20×2 мм из материала с низким коэффициентом теплопроводности. Степень заполнения термосифона аммиаком составляет 0,45-0,85 (отношение объема жидкости к общему внутреннему объему трубы). Внизу внутренняя труба на длине 600 мм перфорирована шестью отверстиями диаметром 10 мм, длина термосифона 10-16 м, уровень аммиака в испарителе выше торца внутренней трубы не менее 0,1 м, конденсатор с площадью теплообменной поверхности оребрения 2,44 м2, длина оребренной трубы 1,18 м, диаметр оребрения 67 мм. Технический результат состоит в повышении надежности работы термосифона заполненного аммиаком, обеспечении более низких температур охлаждаемого грунта и интенсивности теплообмена при простоте конструктивного исполнения. 1 ил., 1 табл., 1 пр.

Description

Изобретение относится к строительству промышленных и гражданских объектов в криолитозоне с целью обеспечения их надежности. Наиболее применяемым и эффективным методом инженерной защиты несущей способности фундаментов зданий и сооружений в криолитозоне является технология и технические средства активной термостабилизации грунтов с использованием криогенного ресурса и термосифонов. Одним из способов сохранения расчетной отрицательной температуры мерзлых оснований под сооружениями является использование искусственного замораживания талых или охлаждения мерзлых грунтов оснований с применением парожидкостных охлаждающих устройств - двухфазных термосифонов. В этих целях применяют термосифоны (термостабилизаторы) различных конструкций с использованием технологии испарительного термосифона. Наиболее простой по конструкции однотрубный термостабилизатор грунта - заглушенная с двух сторон труба, установленная вертикально и частично погруженная в грунт. Из полости трубы откачан воздух, часть трубы заправлена легкокипящей жидкостью (аммиак, углекислый газ, фреон) до определенной степени заполнения.
Известны технические решения [1] закрытых конвективных термосифонов с использованием жидкого теплоносителя. пригодные для практического использования - одноканальный с изоляционной рубашкой предотвращающей нагрев в верхних слоях грунтов теплоносителя в термосифоне, что способствует ускоренному замораживанию нижних слоев грунта (рис. 2.5а). Предполагалось также, что изоляционная рубашка обеспечит растяжение конвективных контуров (рис. 2.5, а) в отличие от обычной трубы (рис. 2.1, б). Специальные исследования особенностей теплообмена в одноканальных жидкостных термосифонах не подтвердили этих предположений. В результате конвективные термосифоны в качестве термостабилизаторов грунтов оказались малоэффективны с точки зрения интенсивности протекающих в них теплообменных процессов и распределения температурного поля по длине испарителя, что отражается на экономической эффективности, ее снижении.
Известно устройство для замораживания грунта, характеризующееся тем, что оно имеет замораживающую колонку, при этом замораживающая колонка представляет собой две коаксиально расположенные трубы, выполненные из металла [2]. При работе такого устройства в силу высокой теплопроводности материала, например сплава в виде стали, внутренней (питательной) трубы происходит интенсивный теплообмен между жидким хладоносителем, опускающимся по внутренней трубе и подымающимся по кольцевому каналу, образованному внутренней трубой и наружной (замораживающей). Это снижает эффективность работы устройства за счет низкой производительности единицы жидкого хладоносителя по выносу им тепла из грунта.
Известно устройство, в котором внутренняя труба замораживающей колонки выполнена из пластмассы, а хладоносителем является воздух [3]. В устройстве многократно уменьшается теплообмен через стенку внутренней трубы, что повышает производительность замораживающей колонки. Однако одновременно с этим вдоль замораживающей колонки увеличивается неравномерность охлаждения грунта, которая по длине колонки достигает недопустимого значения. Сущность технического решения заключается прежде всего в том, что ранее указанный технический результат достигается за счет наличия у устройства внутренней трубы замораживающей колонки со стенкой с ограниченной величиной коэффициента теплопередачи. Справочные значения соотношений теплопроводности λ материалов стальной и пластмассовой стенки внутренней трубы и коэффициента теплопередачи Кст стенки из таких материалов при толщине стенки 0,01 метра и без учета ее кривизны в поперечном сечении составляют 200-800. Таким образом, существенно увеличить эффективность замораживающей колонки за счет изменения теплотехнических параметров только ее внутренней трубы в конвективном термосифоне не представляется возможным.
Наиболее близким к описываемому изобретению является термосифон [4], работающий в испарительном пленочном режиме с геометрическими размерами диаметром - 60 мм и длиной 5 м, предназначенный для термостабилизации грунтов в криолитозоне с целью обеспечения устойчивости строящихся объектов. Надежность работы таких термостабилизаторов зависит от ряда факторов и обстоятельств. Интенсивность притока тепла к испарителю в грунте может обеспечивать только испарение с поверхности жидкого хладагента, то есть с поверхности пленки стекающего конденсата. При этом могут иметь место ситуации: срыв пленки конденсата на поверхности испарителя, зависание каймы пленки в термосифоне, сопровождающееся замедлением ее движения или вовсе остановкой на промежуточном участке испарителя, покрытие пленкой части поверхности испарителя. Последнее обусловлено смачиваемостью стенки испарителя хладагентом либо отклонением от оси трубы термосифона. При отклонении оси трубы от вертикали стекающая под воздействием гравитационного поля пленка конденсата стремится сосредоточиться в «тальвеге» поверхности, жидкость стекает в нижнюю часть испарителя сосредоточенным потоком. Местный срыв пленки будет происходить в зоне стыков труб, вмятин, заусенцев и прочих неоднородностей на внутренней поверхности трубы. Пленка не будет достигать нижней части термосифона и при недостаточном количестве (дефиците) хладагента. Наблюдается неравномерное распределение температуры по длине испарителя в результате ее повышения с увеличением глубины погружения испарителя в грунт.
Перечисленные недостатки пленочных испарительных термосифонов существенно снижают их тепловую эффективность, как следствие, в целом снизятся технико-экономические показатели в процессе эксплуатации при наличии вышеуказанных факторов.
Изобретение направлено на повышение экономичности и надежности работы термосифона (термостабилизатора грунта), заполненного аммиаком, обеспечение более низких температур охлаждаемого грунта и интенсивности теплообмена при простоте конструктивного исполнения.
Решение поставленной задачи обеспечивается тем, что в термосифоне, включающем конденсатор, испаритель и транзитный участок между ними в виде круглой с обеих сторон заглушенной трубы, вертикально установленной и погруженной на глубину длины испарителя в грунт, из полости трубы откачан воздух, взамен полость заправлена аммиаком, часть полости заполнена жидким аммиаком, остальной объем - насыщенным паром аммиака, испаритель выполнен в виде коаксиально смонтированных труб, наружная труба диаметром 33,7×3,5 мм стальная, в испарителе по центру коаксиально установлена труба диаметром 20×2 мм из материала с низким коэффициентом теплопроводности (полиэтилена), степень заполнения термосифона аммиаком составляет 0,45-0,85 (отношение объема жидкости к общему внутреннему объему трубы), внизу внутренняя труба на длине 600 мм перфорирована шестью отверстиями диаметром 10 мм, длина термосифона 10-16 м, уровень аммиака в испарителе выше торца внутренней трубы не менее 0,1 м, конденсатор с площадью теплообменной поверхности оребрения 2,44 м2, длина оребренной трубы 1,18 м, диаметр оребрения 67 мм.
На чертеже представлен общий вид термосифона (термостабилизатора грунта). Термосифон длиной 10-16 м в виде стальной трубы 1 марки 09Г2С диаметром 33,7×3,5 мм содержит испаритель 2, конденсатор 3 и транзитный участок между ними 4. Конденсатор - верхняя часть трубы с алюминиевым оребрением 5 диаметром 67 мм, длино1 1,18 м и общей площадью поверхности теплообмена 2,44 м2. Внутри испарителя коаксиально установлена труба 6 из материала с низким коэффициентом теплопроводности, диаметром 20×2 мм (полиэтиленовая). Внизу труба перфорирована шестью отверстиями 7 диаметром 10 мм с межцентровыми расстояниями по прямой линии и оси симметрии трубы 100 мм и на расстоянии последнего отверстия от нижнего края трубы 10 мм. Внутренняя полость термосифона взамен откачанного воздуха заполнена жидким 8 и газообразным 9 аммиаком. Термосифон погружен в грунт 10 на глубину, равную длине испарителя.
Заявленный термосифон с внутренним устройством типа трубы перфорированной в нижней ее части для интенсификации процесса теплообмена и снижения температуры на теплообменной поверхности испарителя работает следующим образом.
С наступлением холодов в криолитозоне и при снижении температуры воздуха ниже 0°С в термосифоне наблюдается протекание процессов испарения и конденсации аммиака соответственно в испарителе 2 и конденсаторе 3, который охлаждается атмосферным воздухом. Образующийся в конденсаторе жидкий аммиак стекает пленкой по стенкам трубы транзитного участка 4 и испарителя, где смешивается с основной массой жидкого аммиака 8. Степень заполнения термосифона жидким аммиаком составляет 0,45-0,85 (отношение объема жидкости к общему внутреннему объему трубы). В пространстве испарителя, заполненного газообразным аммиаком 9, происходит испарение жидкого аммиака с поверхности пленки в результате его нагрева теплом грунта 10. Холодные слои жидкого аммиака по внутренней полиэтиленовой трубе 6, коаксиально установленной по оси симметрии трубы 1, опускаются и через отверстия 7 попадают в межкольцевое пространство. Под воздействием передающегося тепла от грунта к теплообменной поверхности испарителя жидкий аммиак нагревается и испаряется. Образующаяся парожидкостная смесь движется вверх под воздействием разностей температуры аммиака по высоте испарителя и плотностей аммиака во внутренней трубе и межкольцевом пространстве. Над уровнем аммиака 8 происходит сепарация парожидкостной смеси с выделением пара аммиака и его последующим движением вместе с испарившимся аммиаком с поверхности пленки по транзитному участку в конденсатор 3, который охлаждается окружающим холодным воздухом, проходящим между кольцевыми алюминиевыми ребрами 5.
Пример
В условиях полигона проведены испытания на стенде трех термосифонов с одинаковыми геометрическими размерами: длина термосифонов составляла 12 м, длина внутренней трубы - 9 м, степень заполнения термосифона жидким аммиаком - 0,8, скорость охлаждающего конденсатор воздуха - 5 м/с. При этом внутренние устройства были разные - с внутренними трубами из различных материалов - стали, полиэтилена - и без внутренней трубы. Результаты испытаний термосифонов приведены в таблице.
Figure 00000001
Результаты испытаний показали два эффекта - наиболее низкие температуры на внешней поверхности испарителя при работе термосифона с внутренней полиэтиленовой трубой по сравнению с работой термосифонов с металлической трубой или без нее и наличие изотермического участка в интервале 4-10 м от низа внешней трубы испарителя.
Выполнение испарителя термосифона в виде коаксиально смонтированных труб определенных диаметров, а внутренней трубы из материала с низким коэффициентом теплопроводности (полиэтилена), с соблюдением соотношения площадей теплообменных поверхностей конденсатора и испарителя при определенной степени заполнения аммиаком термосифона предопределяет геометрию контуров циркуляции хладагента в испарителе и, как следствие, эффект значительного снижения и изотермического распределения температуры по внешней поверхности испарителя на отдельном его участке длиной примерно 6 м. Снижение температуры для отдельных режимов работы термосифонов с внутренней полиэтиленовой трубой происходит на 10°С и более. Степень заполнения в совокупности с наличием внутренних устройств (трубы) по результатам исследований оказывает существенное влияние на интенсивность и глубину протекающих процессов замораживания грунтов.
Предшествующий уровень техники (прототип в том числе) не обеспечивает термосифонному устройству функционирование способом данного изобретения и с оператором преимуществ к тому, которое предоставляет данное изобретение. В изобретении сочетаются преимущества конвективных термосифонов с контурами циркуляции в жидкой фазе и испарительных термосифонов, обладающих высокой интенсивностью теплообменных процессов в парожидкостных средах на стадиях испарения и конденсации хладагента.
Источники информации
1. Макаров В.И. Термосифоны в северном строительстве. Новосибирск: Наука, 1985, с. 28, рис. 2.5а.
2. Хакимов Х.Р. Замораживание грунтов в строительных целях. - М.: Госстройиздат. - 1962. - С. 122-127.
3. Придорогин В.М. Исследования противофильтрационных элементов земляных плотин мерзлого типа. Автореферат диссертации на соискание ученой степени кандидата технических наук. Л., 1974.
4. Макаров В.И. Термосифоны в северном строительстве. Новосибирск: Наука, 1985, с. 35, 36, рис. 2.7 д, е.

Claims (1)

  1. Термосифон, включающий конденсатор, испаритель и транзитный участок между ними в виде круглой с обеих сторон заглушенной трубы, вертикально установленной и погруженной на глубину испарителя в грунт, из полости трубы откачан воздух, взамен полость заправлена аммиаком, часть полости заполнена жидким аммиаком, остальной объем - насыщенным паром аммиака, отличающийся тем, что диаметр трубы составляет 33,7×3,5 мм, в испарителе по оси симметрии трубы коаксиально установлена внутренняя труба диаметром 20×2 мм из материала с низким коэффициентом теплопроводности, степень заполнения термосифона аммиаком составляет 0,45-0,85 (отношение объема жидкости к общему внутреннему объему трубы), внизу внутренняя труба на длине 600 мм перфорирована шестью отверстиями диаметром 10 мм, длина термосифона 10-16 м, уровень аммиака в испарителе выше торца внутренней трубы не менее 0,1 м, конденсатор с площадью теплообменной поверхности оребрения 2,44 м2, длина оребренной трубы 1,18 м, диаметр оребрения 67 мм.
RU2015127568/03A 2015-07-08 2015-07-08 Термосифон RU2593286C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015127568/03A RU2593286C1 (ru) 2015-07-08 2015-07-08 Термосифон

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015127568/03A RU2593286C1 (ru) 2015-07-08 2015-07-08 Термосифон

Publications (1)

Publication Number Publication Date
RU2593286C1 true RU2593286C1 (ru) 2016-08-10

Family

ID=56612904

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015127568/03A RU2593286C1 (ru) 2015-07-08 2015-07-08 Термосифон

Country Status (1)

Country Link
RU (1) RU2593286C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2661167C2 (ru) * 2016-12-26 2018-07-12 Общество с ограниченной ответственностью "ТермоСтабилизационныеСистемы" Термостабилизатор грунтов
CN115404915A (zh) * 2022-09-05 2022-11-29 烟台大学 一种离子型稀土开采工艺地下水污染防控方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3220470A (en) * 1962-10-08 1965-11-30 Joseph C Balch Soil refrigerating system
US3788389A (en) * 1971-08-25 1974-01-29 Mc Donnell Douglas Corp Permafrost structural support with heat pipe stabilization
SU737564A1 (ru) * 1976-08-05 1980-05-30 Ленинградский Гидрометеорологический Институт Устройство дл замораживани и охлаждени грунта
SU815122A1 (ru) * 1979-04-02 1981-03-23 Всесоюзный Научно-Исследовательскийинститут Природных Газов "Вниигаз" Устройство дл аккумул ции холодаВ ОСНОВАНии СООРужЕНий
RU2519012C2 (ru) * 2012-04-28 2014-06-10 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Способ и устройство для круглогодичных охлаждения, замораживания грунта основания фундамента и теплоснабжения сооружения на вечномерзлом грунте в условиях криолитозоны
RU143963U1 (ru) * 2014-03-11 2014-08-10 Евгений Самуилович Ашпиз Охлаждаемое основание сооружений

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3220470A (en) * 1962-10-08 1965-11-30 Joseph C Balch Soil refrigerating system
US3788389A (en) * 1971-08-25 1974-01-29 Mc Donnell Douglas Corp Permafrost structural support with heat pipe stabilization
SU737564A1 (ru) * 1976-08-05 1980-05-30 Ленинградский Гидрометеорологический Институт Устройство дл замораживани и охлаждени грунта
SU815122A1 (ru) * 1979-04-02 1981-03-23 Всесоюзный Научно-Исследовательскийинститут Природных Газов "Вниигаз" Устройство дл аккумул ции холодаВ ОСНОВАНии СООРужЕНий
RU2519012C2 (ru) * 2012-04-28 2014-06-10 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Способ и устройство для круглогодичных охлаждения, замораживания грунта основания фундамента и теплоснабжения сооружения на вечномерзлом грунте в условиях криолитозоны
RU143963U1 (ru) * 2014-03-11 2014-08-10 Евгений Самуилович Ашпиз Охлаждаемое основание сооружений

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2661167C2 (ru) * 2016-12-26 2018-07-12 Общество с ограниченной ответственностью "ТермоСтабилизационныеСистемы" Термостабилизатор грунтов
CN115404915A (zh) * 2022-09-05 2022-11-29 烟台大学 一种离子型稀土开采工艺地下水污染防控方法

Similar Documents

Publication Publication Date Title
US9746248B2 (en) Heat pipe having a wick with a hybrid profile
US9909819B2 (en) Evaporator tube having an optimised external structure
RU2593286C1 (ru) Термосифон
US3840068A (en) Permafrost structural support with heat pipe stabilization
RU2527969C1 (ru) Охлаждающее устройство для глубинной температурной стабилизации грунтов, оснований зданий и сооружений
RU2655857C1 (ru) Охлаждающий термосифон для площадочной термостабилизации грунтов (варианты)
US3902547A (en) Permafrost structural support with compatible heat pipe means
RU168171U1 (ru) Устройство для охлаждения грунта с локальной зоной термостабилизации
RU2415226C1 (ru) Система для температурной стабилизации основания сооружений на вечномерзлых грунтах
JP2017145556A (ja) 凍結工法
RU2256746C2 (ru) Способ охлаждения грунта и тепловая свая для его охлаждения
KR102005339B1 (ko) 곡면 다공판을 구비한 열사이펀
RU2629281C1 (ru) Охлаждающий термосифон для глубинной термостабилизации грунтов (варианты)
RU139080U1 (ru) Термосвая для сооружений, возводимых на вечномерзлых грунтах (варианты)
RU149337U1 (ru) Гравитационная тепловая труба
RU2470114C2 (ru) Термосвая для опор моста
JP2019517651A (ja) 伝熱管
RU2250302C1 (ru) Тепловая свая
JP2010040958A (ja) 冷却装置
RU158306U1 (ru) Охлаждающее устройство для температурной стабилизации многолетнемерзлых грунтов
JP3201763U (ja) 地中熱交換器
RU2384671C1 (ru) Свайная опора для сооружений, возводимых на вечномерзлом грунте
RU2786186C1 (ru) Устройство для термостабилизации грунта вокруг свай
RU2384672C1 (ru) Охлаждаемая свайная опора для сооружений, возводимых на вечномерзлом грунте
RU2704091C1 (ru) Конденсатор охлаждающего термосифона для термостабилизации грунтов в криолитозоне