RU2590891C1 - Электронная отпаянная пушка для вывода электронного потока из вакуумной области пушки в атмосферу или иную газовую среду - Google Patents

Электронная отпаянная пушка для вывода электронного потока из вакуумной области пушки в атмосферу или иную газовую среду Download PDF

Info

Publication number
RU2590891C1
RU2590891C1 RU2015106564/07A RU2015106564A RU2590891C1 RU 2590891 C1 RU2590891 C1 RU 2590891C1 RU 2015106564/07 A RU2015106564/07 A RU 2015106564/07A RU 2015106564 A RU2015106564 A RU 2015106564A RU 2590891 C1 RU2590891 C1 RU 2590891C1
Authority
RU
Russia
Prior art keywords
gun
window
electron
dielectric
electronic
Prior art date
Application number
RU2015106564/07A
Other languages
English (en)
Inventor
Игорь Анатольевич Леонтьев
Юрий Михайлович ЯШНОВ
Олег Юрьевич КУДРЯШОВ
Юрий Дмитриевич Степанов
Михаил Петрович Духновский
Карл Георгиевич Симонов
Юрий Юрьевич Федоров
Original Assignee
Общество С Ограниченной Ответственностью "Твинн"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Твинн" filed Critical Общество С Ограниченной Ответственностью "Твинн"
Priority to RU2015106564/07A priority Critical patent/RU2590891C1/ru
Application granted granted Critical
Publication of RU2590891C1 publication Critical patent/RU2590891C1/ru

Links

Images

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

Изобретение относится к электронной технике, а именно к электронным пушкам, предназначенным для вывода электронного потока из вакуумной области пушки наружу: в атмосферу или иную газовую среду, и может быть использовано в полупроводниковой и квантовой электронике, в медицине, в плазмохимии. Технический результат - повышение средней плотности мощности. Электронная отпаянная пушка включает металлический корпус, в торце которого соосно катоду расположено окно вывода электронов. Окно выполнено из теплопроводящего диэлектрика переменной толщины по площади окна, поверхность диэлектрика, обращенная к катоду, имеет токопроводящее покрытие, электрически связанное с корпусом пушки. 6 з.п. ф-лы, 2 ил.

Description

Изобретение относится к электронной технике, а именно к электронным пушкам, предназначенным для вывода электронного потока из вакуумной области пушки наружу: в атмосферу или иную газовую среду, и может быть использовано в полупроводниковой электронике для создания мощных миниатюрных структур, в квантовой электронике при изготовлении электроионизационных лазеров, в медицине для стерилизации инструментов и поверхности биологических объектов, в плазмохимии для полимеризации и ускорения медленно протекающих химических реакций, а также в других областях техники.
В существующих электронных отпаянных пушках вывод высокоскоростного потока электронов из вакуумной области пушки наружу осуществляется через тонкую металлическую фольгу, при прохождении которой электроны выделяют в ней часть своей энергии, что приводит к нагреву фольги, ограничивая плотность мощности пушки (Вт/см2). У металлов, используемых в качестве материала фольги, - титана, бериллия и т.п. коэффициент теплопроводности не превышает λ=2 Вт/(см·K), что не позволяет поднять среднюю плотность мощности электронной отпаянной пушки более 10 Вт/см2 при средней плотности тока 30-100 мкА/см2 / Симонов К.Г. Электронные отпаянные пушки. М. Радио и Связь, 1985, 125 с./.
Для повышения средней плотности мощности электронной отпаянной пушки применяют форсированные (принудительные) способы охлаждения фольги, реализуемые в виде каркаса из металлических трубок, имеющих тепловой контакт с фольгой, по которым протекает вода /Там же/.
Недостатком устройств, использующих принудительное водяное охлаждение, является то, что поток тепла ограничен теплопроводностью материала фольги, а также громоздкостью и сложностью конструкции.
Наиболее близким по технической сущности и достигаемому результату является электронная отпаянная пушка для вывода ленточного электронного потока из вакуумной области пушки в атмосферу или иную газовую среду, включающая корпус в виде металлической трубы, в торцевой части которой расположено окно вывода электронов, выполненное в виде фольги, вакуумно-плотно соединенной с опорным основанием окна, и расположенные в корпусе соосно ленточный катод, продольная ось которого параллельна продольной оси окна вывода электронов, и фокусирующие электроды /Патент РФ №2267830/.
В данной электронной отпаянной пушке выводное окно выполнено в виде тонкой металлической фольги, укрепленной на продольных перемычках, по которым выделяемое в фольге тепло стекает к охлаждаемому основанию пушки.
Недостатком данной пушки является небольшая величина ее средней плотности мощности, так как отводимый поток тепла, выделенный в фольге, ограничен теплопроводностью металла фольги λ<2 Вт/(см·K) и материалом перемычек.
Задачей изобретения является устранение выше указанного недостатка.
Техническим результатом предложенного технического решения является повышение средней плотности мощности.
Указанная задача решается, а технический эффект достигается за счет того, что в электронной отпаянной пушке для вывода электронного потока из вакуумной области пушки в атмосферу или иную газовую среду, включающей корпус в виде металлической трубы, в торцевой части которой расположено окно вывода электронов, вакуумно-плотно соединенное с опорным основанием окна, и расположенные в корпусе соосно катод, продольная ось которого параллельна продольной оси окна вывода электронов, и фокусирующие электроды, окно вывода электронов выполнено из теплопроводящего диэлектрика переменной толщины по площади окна, поверхность диэлектрика, обращенная к катоду, имеет токопроводящее покрытие, при этом токопроводящее покрытие электрически соединено с опорным основанием и корпусом пушки.
Диэлектрическое окно вывода электронов выполнено из алмаза.
Поверхность диэлектрика, обращенная наружу, имеет токопроводящее покрытие, электрически связанное с корпусом пушки, при этом токопроводящие покрытия выполнены из металла.
Диэлектрическое окно состоит из толстых и тонких участков, последовательно сменяющих друг друга, по крайней мере, по одному из направлений, при этом вдоль толстых участков диэлектрического окна расположены трубки охлаждения, имеющие тепловой контакт с поверхностью структуры.
Опорное основание имеет систему охлаждения.
Сущность изобретения.
В ходе проведенных исследований были установлены следующие факты.
Существуют теплопроводящие диэлектрики с теплопроводностью, большей теплопроводности металлов фольг, например алмаз, у которого коэффициент теплопроводности λ=20 Вт/(см·K) значительно больше коэффициентов теплопроводности титана λ=0,2 Вт/(см·K), бериллия λ=2 Вт/(см·K) /Физические величины: Справочник / А.П. Бабичев, Н.А. Бабушкина и др. Под ред. И.С. Григорьева. - М.: Энергоатомиздат, 1991. - 1232 с./. Поскольку поток тепла в твердом теле прямо пропорционален его коэффициенту теплопроводности, то замена титана на алмаз при всех прочих равных условиях, повысит величину отводимой мощности в 100 раз, а по сравнению с бериллием в 10 раз.
Помимо высокой теплопроводности алмаз имеет более высокий предел прочности - σ=500 МПа, а у титана и бериллия с σ≈250 МПа /Там же/, что позволяет алмазу выдерживать больший перепад давления между вакуумом пушки и атмосферой при той же конструкции окна вывода электронов или делать окно тоньше, тем самым повысить плотность мощности.
Кроме того, глубина проникновения электронов в вещество имеет тенденцию расти при переходе от металлов к полупроводникам и далее к диэлектрикам /Там же/, что объясняется снижением потерь энергии высокоэнергичного электрона при его взаимодействии со свободными электронами вещества: у диэлектриков зона проводимости, где существуют свободные электроны, пуста. Это снижает энергетические потери потока электронов в окне, выполненном из диэлектрика.
Все три указанные выше преимущества теплопроводящего диэлектрика, в частности алмаза, по сравнению с металлами фольг, используемыми в существующих электронных отпаянных пушках, включая прототип, позволяют создать на базе диэлектрического окна вывода электронов электронную отпаянную пушку с существенно большей средней плотностью мощности. При сохранении площади окна возрастет средняя мощность пушки, кроме того, можно создать мощную электронную отпаянную пушку, работающую в непрерывном режиме.
При прохождении электронов сквозь диэлектрическое окно часть из них оседает в нем и диэлектрик заряжается. Нанесенный на поверхность диэлектрика тонкий токопроводящий слой электрически замкнут с опорным основанием окна и стенками пушки, при этом они вместе образуют токопроводящую полость, практически полностью охватывающую катод, фиг. 1. В такой конструкции заряд диэлектрика полностью экранируется токопроводящей полостью и не оказывает влияния на траектории электронов внутри пушки. Более того, этот отрицательный заряд не повлияет на скорости электронов после прохождения ими окна вследствие консервативности постоянного электрического поля: их торможение внутри диэлектрика скомпенсируется ровно таким же ускорением, после его прохождения (закон сохранения энергии).
Накопление заряда в диэлектрике приведет к росту в нем напряженности электрического поля и, когда она достигнет пробойной величины Eпр≈150 кВ/мм /Там же/, произойдет пробой диэлектрика: заряд мгновенно стечет через тонкий токопроводящий слой на землю. Вся энергия, выделенная в диэлектрике при пробое, перейдет в тепло. Ее объемная плотность равна
Figure 00000001
, что приведет к росту температуры диэлектрика за один пробой
Figure 00000002
или ΔT=0,05 градуса для алмаза, т.е. стекание тока при пробое произойдет без перегрева и разрушения диэлектрика.
Таким образом, использование теплопроводящего диэлектрика с токопроводящим покрытием в качестве окна вывода электронной отпаянной пушки позволяет существенно повысить среднюю плотность мощности пушки.
На фиг. 1 схематично показана в разрезе электронная отпаянная пушка.
На фиг. 2 приведена в разрезе более эффективная конструкция диэлектрического окна переменной толщины с трубками охлаждения.
Электронная пушка состоит из катодного узла 1, включающего катод и фокусирующие электроды и закрепленного на катодном держателе 2 через высоковольтный изолятор 3 на торце корпуса 4. Соосно катодному узлу 1 на противоположном торце корпуса установлено диэлектрическое окно 5 с толстыми 6 и тонкими 7 участками для вывода электронов, вакуумно-плотно соединенное с основанием 8. Основание 8 вакуумно-плотно соединено с корпусом пушки 4. На поверхность диэлектрика, обращенную внутрь пушки, нанесен тонкий слой токопроводящего покрытия 9.
Электронная пушка работает следующим образом.
На катод, например прямонакальный, и фокусирующие электроды, выполненные, например, из молибдена, катодного узла 1 от высоковольтного источника(ов) питания (не показан) подается отрицательное относительно земли напряжение. Корпус пушки 4, выполненный, например, из стали, заземлен. Внутри пушки между катодным узлом 1 и корпусом 4 создано электрическое поле, которое формирует высокоскоростной поток электронов, эмитированных катодом, и направляет его на тонкие участки 7 диэлектрического окна 5 вывода электронов, выполненное, например, из алмаза. Поток электронов проходит сквозь тонкие участки 7 окна с малыми потерями, поскольку их толщина в несколько раз меньше глубины проникновения электронов в материал окна. Электроны, перехваченные диэлектрическим окном, после их накопления (см. выше), уходят из диэлектрика в токопроводящее покрытие 9, выполненное, например, из никеля толщиной 0,1-1 мкм, и стекают по нему на основание 8, выполненное, например, из стали, и далее на землю.
Выделяемая электронами внутри тонких участков 7 диэлектрика энергия отводится теплопроводящим диэлектриком через его толстые участки 6, например, к основанию 8. Поскольку коэффициент теплопроводности алмаза превышает аналогичные значения для бериллия в 10 раз, титана в - 100 раз, то во столько же раз возрастет средняя плотность мощности пушки при той же геометрии окна.
Помимо теплоотвода толстые участки 6 диэлектрического окна обеспечивают его прочность, т.е. выполняют функцию каркаса, а токопроводящее покрытие 9, электрически соединенное с основанием и корпусом пушки, обеспечивает экранировку внутреннего пространства пушки от заряда диэлектрика.
Таким образом, использование окна вывода электронов из теплопроводящего диэлектрика переменной толщины, например алмаза, с токопроводящим покрытием повышает среднюю плотность мощности электронной отпаянной пушки минимум на порядок при сохранении ее остальных параметров.
Для усиления эффекта диэлектрическое окно вывода электронов выполняют из алмаза - самого теплопроводящего из известных материалов.
Для исключения бомбардировки диэлектрического окна энергичными ионами из атмосферы внешняя поверхность окна имеет токопроводящее покрытие 10, электрически связанное с основанием пушки
Работа более эффективного диэлектрического окна пояснена на фиг. 2.
Тонкие 7 и толстые 6 участки периодически сменяют друг друга по одному из направлений, что позволяет обеспечить более высокую механическую прочность окна, так как толстые участки имеют форму «прочных балок», и равномерный теплоотвод от тонких участков, в которых идет тепловыделение, к толстыми участкам, через которые тепло (обозначен стрелками) отводится к основанию окна 8.
Использование трубок охлаждения 11 вдоль толстых участков диэлектрического окна, имеющих тепловой контакт с ними, повышает среднюю плотность мощности за счет сокращения пути теплопередачи от места его выделения до места его стока.
Для большей эффективности токопроводящие покрытия выполняют из металла, например никеля.
Для усиления эффекта и обеспечения прочности диэлектрического окна его выполняют из толстых и тонких участков, последовательно сменяющих друг друга, по крайней мере, по одному из направлений.
Для усиления эффекта применяют принудительное охлаждение, вводя вдоль толстых участков диэлектрического окна трубки охлаждения, имеющие тепловой контакт с поверхностью структуры, фиг. 2.
Для усиления эффекта основание окна принудительно охлаждают.

Claims (7)

1. Электронная отпаянная пушка для вывода электронного потока из вакуумной области пушки в атмосферу или иную газовую среду, включающая корпус в виде металлической трубы, в торцевой части расположено окно вывода электронов, вакуумно-плотно соединенное с опорным основанием окна, и расположенные в корпусе соосно катод, продольная ось которого параллельна продольной оси окна вывода электронов, и фокусирующие электроды, отличающаяся тем, что окно вывода электронов выполнено из теплопроводящего диэлектрика переменной толщины по площади окна, поверхность диэлектрика, обращенная к катоду, имеет токопроводящее покрытие, при этом токопроводящее покрытие электрически связано с опорным основанием и корпусом пушки.
2. Электронная пушка по п. 1, отличающаяся тем, что диэлектрическое окно вывода электронов выполнено из алмаза.
3. Электронная пушка по п. 1, отличающаяся тем, что поверхность диэлектрика, обращенная наружу, имеет токопроводящее покрытие, электрически связанное с корпусом пушки.
4. Электронная пушка по любому из пп. 1-3, отличающаяся тем, что токопроводящее покрытие выполнено из металла.
5. Электронная пушка по п. 1, отличающаяся тем, что диэлектрическое окно состоит из толстых и тонких участков, последовательно сменяющих друг друга, по крайней мере, по одному из направлений.
6. Электронная пушка по п. 5, отличающаяся тем, что вдоль толстых участков диэлектрического окна расположены трубки охлаждения, имеющие тепловой контакт с поверхностью окна.
7. Электронная пушка по п. 1, отличающаяся тем, что окно вывода электронов имеет систему охлаждения, расположенную по торцу окна.
RU2015106564/07A 2015-02-26 2015-02-26 Электронная отпаянная пушка для вывода электронного потока из вакуумной области пушки в атмосферу или иную газовую среду RU2590891C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015106564/07A RU2590891C1 (ru) 2015-02-26 2015-02-26 Электронная отпаянная пушка для вывода электронного потока из вакуумной области пушки в атмосферу или иную газовую среду

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015106564/07A RU2590891C1 (ru) 2015-02-26 2015-02-26 Электронная отпаянная пушка для вывода электронного потока из вакуумной области пушки в атмосферу или иную газовую среду

Publications (1)

Publication Number Publication Date
RU2590891C1 true RU2590891C1 (ru) 2016-07-10

Family

ID=56372184

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015106564/07A RU2590891C1 (ru) 2015-02-26 2015-02-26 Электронная отпаянная пушка для вывода электронного потока из вакуумной области пушки в атмосферу или иную газовую среду

Country Status (1)

Country Link
RU (1) RU2590891C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2647489C1 (ru) * 2016-10-20 2018-03-16 Общество С Ограниченной Ответственностью "Твинн" Электронная отпаянная пушка для вывода электронного потока и рентгеновского излучения из вакуумной области в атмосферу
RU2647487C1 (ru) * 2016-09-21 2018-03-16 Общество С Ограниченной Ответственностью "Твинн" Электронная отпаянная пушка для вывода электронного потока из вакуумной области пушки в атмосферу или иную газовую среду
RU2680823C1 (ru) * 2018-02-27 2019-02-27 Общество С Ограниченной Ответственностью "Твинн" Электронная отпаянная пушка для вывода электронного потока в атмосферу или иную газовую среду

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0306247A1 (en) * 1987-08-31 1989-03-08 RCA Thomson Licensing Corporation Electron gun assembly having a reinforced heater tab
US4931691A (en) * 1988-08-30 1990-06-05 Rca Licensing Corp. Electron gun assembly having a reinforced heater tab with locating means
RU2028687C1 (ru) * 1991-01-03 1995-02-09 Радиоастрономический институт АН Украины Электронная пушка
RU2267830C1 (ru) * 2004-06-30 2006-01-10 Иван Иванович Голеницкий Электронная отпаянная пушка для вывода ленточного электронного потока из вакуумной области пушки в атмосферу или иную газовую среду

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0306247A1 (en) * 1987-08-31 1989-03-08 RCA Thomson Licensing Corporation Electron gun assembly having a reinforced heater tab
US4931691A (en) * 1988-08-30 1990-06-05 Rca Licensing Corp. Electron gun assembly having a reinforced heater tab with locating means
RU2028687C1 (ru) * 1991-01-03 1995-02-09 Радиоастрономический институт АН Украины Электронная пушка
RU2267830C1 (ru) * 2004-06-30 2006-01-10 Иван Иванович Голеницкий Электронная отпаянная пушка для вывода ленточного электронного потока из вакуумной области пушки в атмосферу или иную газовую среду

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2647487C1 (ru) * 2016-09-21 2018-03-16 Общество С Ограниченной Ответственностью "Твинн" Электронная отпаянная пушка для вывода электронного потока из вакуумной области пушки в атмосферу или иную газовую среду
RU2647489C1 (ru) * 2016-10-20 2018-03-16 Общество С Ограниченной Ответственностью "Твинн" Электронная отпаянная пушка для вывода электронного потока и рентгеновского излучения из вакуумной области в атмосферу
RU2680823C1 (ru) * 2018-02-27 2019-02-27 Общество С Ограниченной Ответственностью "Твинн" Электронная отпаянная пушка для вывода электронного потока в атмосферу или иную газовую среду

Similar Documents

Publication Publication Date Title
Van Tilborg et al. Nonuniform discharge currents in active plasma lenses
US20030002627A1 (en) Cold emitter x-ray tube incorporating a nanostructured carbon film electron emitter
KR20140043146A (ko) 방사선 발생장치 및 방사선 촬영장치
JP2020526868A (ja) 電離放射線を生成するための小型放射源、複数の放射源を備えるアセンブリ、及び放射源を製造するためのプロセス
RU2590891C1 (ru) Электронная отпаянная пушка для вывода электронного потока из вакуумной области пушки в атмосферу или иную газовую среду
US3138729A (en) Ultra-soft X-ray source
Faircloth Ion sources for high-power hadron accelerators
US9177753B2 (en) Radiation generating tube and radiation generating apparatus using the same
US5467362A (en) Pulsed gas discharge Xray laser
Koval et al. Electron sources with plasma grid emitters: Progress and prospects
JP5681030B2 (ja) プラズマ・電子ビーム発生装置、薄膜製造装置及び薄膜の製造方法
JP2006338945A (ja) 中性子発生管
DE102007062150A1 (de) Vorrichtung zur Ableitung von Verlustwärme sowie Ionenbeschleunigeranordnung und Wanderfeldröhrenanordnung mit einer Wärmeleitanordnung
Kazakov et al. Influence of electron beam generation on the parameters and emission characteristics of a constricted arc discharge in a pulsed forevacuum plasma-cathode electron source
RU2680823C1 (ru) Электронная отпаянная пушка для вывода электронного потока в атмосферу или иную газовую среду
JP7073406B2 (ja) 小型電離放射線源
RU2647487C1 (ru) Электронная отпаянная пушка для вывода электронного потока из вакуумной области пушки в атмосферу или иную газовую среду
Kolpakov et al. Formation of an out-of-electrode plasma in a high-voltage gas discharge
Aleksandrov et al. Plasma Production on Current-Carrying Electrodes of the Angara-5-1 Facility
JP2014149932A (ja) 放射線発生装置及び放射線撮影システム
RU170782U1 (ru) Вакуумный разрядник
US8735866B2 (en) High-voltage electronic device
RU2740146C1 (ru) Ионный источник (ионная пушка)
RU2390068C1 (ru) Лазерный источник многозарядных ионов
RU2647489C1 (ru) Электронная отпаянная пушка для вывода электронного потока и рентгеновского излучения из вакуумной области в атмосферу