RU2589471C1 - Способ формирования объемного разряда в импульсно-периодическом газовом лазере и устройство для его реализации - Google Patents

Способ формирования объемного разряда в импульсно-периодическом газовом лазере и устройство для его реализации Download PDF

Info

Publication number
RU2589471C1
RU2589471C1 RU2014152150/28A RU2014152150A RU2589471C1 RU 2589471 C1 RU2589471 C1 RU 2589471C1 RU 2014152150/28 A RU2014152150/28 A RU 2014152150/28A RU 2014152150 A RU2014152150 A RU 2014152150A RU 2589471 C1 RU2589471 C1 RU 2589471C1
Authority
RU
Russia
Prior art keywords
discharge
volume
gas mixture
volume discharge
electrodes
Prior art date
Application number
RU2014152150/28A
Other languages
English (en)
Inventor
Александр Федорович Запольский
Евгений Васильевич Ковалев
Original Assignee
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"
Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом", Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ" filed Critical Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"
Priority to RU2014152150/28A priority Critical patent/RU2589471C1/ru
Application granted granted Critical
Publication of RU2589471C1 publication Critical patent/RU2589471C1/ru

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

Изобретение относится к лазерной технике. Устройство, реализующее способ формирования объемного разряда в импульсно-периодическом газовом лазере, содержит генератор импульсного напряжения, рабочую камеру с установленными в ней электродами, формирующими объемный разряд, а также систему для прокачки рабочей газовой смеси. Каждый из электродов выполнен в виде базы с расположенными на ней элементами с разрядными кромками. По потоку рабочей газовой смеси до и после рабочей камеры установлены сетки. Базы с элементами с разрядными кромками установлены таким образом, чтобы обеспечить отражение акустических колебаний в сторону выхода потока рабочей газовой смеси из области объемного разряда. Технический результат заключается в увеличении мощности лазера за счет увеличения частоты следования импульсов и повышения энергии излучения в каждом импульсе. 2 н. и 2 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области электротехнической промышленности, в частности к импульсной технике, и может быть использовано для систем формирования разряда в импульсно-периодических газовых лазерах.
Известен способ для возбуждения высокочастотного электрического разряда в газовом лазере [1. Патент РФ на изобретение №2132104 C1, БИ №18, 20.06.1999 г.], который заключается в том, что для возбуждения высокочастотного разряда в газовом лазере в дополнение к основному потоку лазерной газовой смеси в зону выхода газа из межэлектродного промежутка подают дополнительный поток электрически нейтральной охлажденной газовой смеси. При этом дополнительный поток газа вводят в часть основного потока, прошедшую приэлектродную зону разряда, в которой происходит основной энерговклад от разряда
Недостаток способа с точки зрения достижения заявляемого технического результата состоит в том, что создание дополнительного потока газа на выходе основного газового потока увеличивает общее проходное сечение газового потока, а это приводит к уменьшению скорости основного газового потока, если сохранять общий расход рабочей смеси (PC). Это приводит к снижению частоты следования импульсов излучения и, соответственно, выходной мощности лазера.
Известно устройство для возбуждения высокочастотного электрического разряда в газовом лазере [2. Атежев В.В., Вартапетов С.К., Жигалкин А.К. и др. «Азотный лазер с частотой повторения импульсов 11 кГц и расходимостью излучения 0.5 мрад.» Квантовая электроника, 34, №9, 790, (2004)], реализующее способ [1], которое содержит газопрокачной контур с установленными в нем двумя электродами, образующими межэлектродный промежуток, средство прокачки газа и хотя бы один дополнительный газовый канал, выход которого направлен в часть основного потока газа, прошедшую приэлектродную зону разряда.
Недостаток устройства с точки зрения достижения заявляемого технического результата состоит в том, что для исключения возникновения паразитного пробоя и увеличения частоты следования импульсов нужно создавать дополнительные газовые каналы на выходе основного газового потока PC, а это увеличивает ширину зоны PC, которую необходимо сносить перед следующим импульсом накачки [2], и требует увеличения мощности средства прокачки PC, что снижает общий КПД лазера.
Известен способ формирования объемного разряда в импульсно-периодическом газовом лазере замкнутого цикла [3. Патент РФ на изобретение №2236074, БИ №25, 10.09.2004 г.], включающий подачу импульса высокого напряжения на лезвийные электроды, прокачку рабочей газовой смеси через область объемного разряда в направлении, перпендикулярном току электрического разряда и оси оптического резонатора, гашение акустических колебаний, распространяющихся вверх и вниз по потоку газовой смеси и параллельно оси оптического резонатора лазера. Далее, дополнительно в межлезвийных пространствах электродов до полного затухания подавляют акустические колебания, распространяющиеся в направлении разрядного тока. Гашение акустических колебаний происходит путем полного их подавления в межэлектродном промежутке, что можно охарактеризовать как преобразование акустических колебаний исходя из условия обеспечения однородности плотности рабочей газовой смеси в области объемного разряда.
Недостаток способа состоит в том, что энергия акустических колебаний, не изменяя скорости потока PC, полностью затухая в межлезвийном пространстве, вместе с энергией электрического разряда дополнительно нагревает PC и электроды, а это снижает энергию излучения в каждом последующем импульсе и увеличивает вероятность возникновения стримера, ограничивая предельную частоту следования импульсов излучения.
Известно устройство для формирования объемного разряда в импульсно-периодическом газовом лазере [3], реализующее данный способ, которое содержит генератор импульсного напряжения, рабочую камеру, боковые стенки которой наклонены к оси оптического резонатора и навстречу друг другу, в камере установлены лезвийные электроды объемного разряда, в устройстве присутствует система для прокачки рабочей газовой смеси, а также сетки, установленные по потоку рабочей газовой смеси до и после рабочей камеры.
Электроды разряда выполнены в виде лезвий (элементов с разрядными кромками), наклоненных по отношению к направлению разрядного тока на определенный угол, при этом лезвия закреплены на пластинах (базах), параллельных оси резонатора лазера и плоскости, проходящей через кромки лезвийных электродов (разрядных кромок), обращенных в сторону разряда.
Лезвия электродов наклоняют для того, чтобы улучшить однородность PC лазера за счет полного затухания ударных акустических волн, возникающих при импульсно-периодическом инициировании и распространяющихся в направлении разрядного тока, вызывая акустические колебания PC. Затухание происходит при многократном отражении волн от боковых поверхностей лезвийных электродов в межлезвийном пространстве. Улучшение однородности потока PC и, соответственно, энерговклада в активный объем лазера увеличивает предельную частоту следования импульсов излучения, энергию в каждом импульсе и, следовательно, КПД лазера.
Недостатком данного устройства для формирования объемного разряда, обусловленным конструкцией электродов, является то, что нагретая в результате инициирования PC расширяется из области активного объема лазера во все стороны, в том числе и в область между лезвиями электродов. При этом из-за меньшей скорости потока в межлезвийном пространстве, по сравнению со скоростью в области объемного разряда, часть PC с продуктами химреакций задерживается в области "погранслоев" между лезвиями и, при смешивании с поступающей в активный объем новой смесью, приводит к снижению энергии последующих импульсов излучения.
Задачей предлагаемого изобретения является улучшение однородности PC в области объемного разряда и, соответственно, в области активного объема лазера за счет увеличения скорости сноса неоднородностей PC из активного объема лазера, более полного удаления прореагировавшей смеси с продуктами химреакций из пространства между лезвийными электродами, или под рабочими кромками электродов, и уменьшения дополнительного нагрева PC и электродов.
Техническим результатом в заявляемом способе формирования объемного разряда и в устройстве, реализующем способ, является увеличение мощности лазера за счет увеличения частоты следования импульсов и повышения энергии излучения в каждом импульсе.
Технический результат достигается в способе за счет того, что в отличие от известного способа формирования объемного разряда в импульсно-периодическом газовом лазере, включающего в себя подачу импульса высокого напряжения на электроды с формированием области объемного разряда, создание потока (прокачку) рабочей газовой смеси через область объемного разряда в направлении, перпендикулярном току электрического разряда и оси оптического резонатора лазера, гашение акустических колебаний, распространяющихся вверх и вниз по направлению потока газовой смеси и параллельно оси оптического резонатора, преобразование акустических колебаний в области объемного разряда исходя из условия обеспечения однородности плотности рабочей газовой смеси, в предложенном способе вышеназванное преобразование осуществляют путем удаления из области объемного разряда акустических колебаний, распространяющихся в направлении разрядного тока.
Технический результат в заявляемом устройстве достигается за счет того, что в отличие от известного устройства для формирования объемного разряда в импульсно-периодическом газовом лазере, содержащего генератор импульсного напряжения, рабочую камеру с установленными в ней электродами, формирующими объемный разряд, каждый из которых выполнен в виде базы с расположенными на ней элементами с разрядными кромками, а также систему для прокачки рабочей газовой смеси, при этом по потоку рабочей газовой смеси до и после рабочей камеры установлены сетки, в предложенном устройстве базы с элементами с разрядными кромками установлены таким образом, чтобы обеспечить отражение акустических колебаний в сторону выхода потока рабочей газовой смеси из области объемного разряда.
В устройстве формирования объемного разряда в конкретном воплощении базы могут иметь плоскую поверхность, выполненную из проводящего материала и расположенную с наклоном относительно плоскости, проходящей через разрядные кромки элементов электродов (рабочие кромки электродов).
Кроме того, элементы с разрядными кромками конкретно могут быть выполнены в виде лезвий, или остриев, или проволочек, согнутых по определенному профилю.
То есть выполнение в заявляемом устройстве баз электродов таким образом, чтобы обеспечить отражение акустических колебаний в сторону выхода потока PC из области объемного разряда позволяет осуществить предлагаемое в способе удаление из области активного объема лазера акустических колебаний, распространяющихся в направлении разрядного тока.
В частности, наклон плоской рабочей поверхности проводящих баз с электродами разряда, образованных доньями пазов между электродами (в виде лезвий, острий или проволочек, согнутых по определенному профилю), относительно плоскости, проходящей через рабочие кромки электродов (разрядные кромки элементов, расположенных на базах), в сторону выхода PC, вместо наклона самих электродов, например, лезвий, что имеет место в прототипе, не приводит к полному подавлению (затуханию) акустических колебаний, распространяющихся в направлении разрядного тока, а изменяет направление их движения в сторону выхода из области активного объема лазера. При этом скорость движения PC, вызванная акустическими колебаниями, складывается со скоростью потока PC, создаваемой системой прокачки. Это не только ускоряет вынос PC из области активного объема лазера, но и улучшает очистку пространства под кромками электродов от прореагировавшей смеси за счет колебательного движения массы PC. Увеличение скорости потока PC за счет энергии акустических колебаний позволяет повысить предельную частоту следования импульсов излучения лазера за счет более эффективного удаления прореагировавшей смеси, повышает энергию излучения в каждом импульсе. Так как движение акустических колебаний PC направлено в сторону от активного объема лазера, то их затухание происходит уже вне его и не влияет на однородность PC в активном объеме лазера при последующих импульсах инициирования. При этом уменьшается нагрев PC в активном объеме лазера и электродов разряда.
Следует отметить, что в зависимости от конкретного назначения устройства и размеров активного объема разрядного промежутка элементы с разрядной кромкой могут крепиться к проводящей базе (металлической) или составлять с ней одно целое или крепиться к изоляционной базе в случае обеспечения раздельной подачи высоковольтных импульсов на них.
На фигуре 1 (Фиг. 1а)) (изображено сечение электродов с элементами с разрядной кромкой в виде лезвий) и (Фиг. 1б)) (изображена проекция электродов с элементами с разрядной кромкой в виде проволочек, согнутых по определенному профилю) приведены варианты предлагаемого устройства электродов импульсно-периодического газового лазера, где:
1, 2 - базы электродов, формирующих объемный разряд, 3 - область объемного разряда, 4 - элементы с разрядными кромками (лезвия электродов, острия или проволочки, согнутые по определенному профилю), расположенные на базах, 5 - донья пазов между лезвиями электродов разряда или поверхности проводящих баз, 6 - угол наклона дна пазов между лезвиями или поверхностей проводящих баз относительно плоскости, проходящей через рабочие (разрядные) кромки элементов, расположенных на базах электродов, 7 - направление потока рабочей смеси, 8 - направление распространения акустических колебаний
На фигуре 2 (Фиг. 2) приведено сечение импульсно-периодического газового лазера, поясняющее расположение основных систем предлагаемого устройства для формирования объемного разряда, где:
9 - генератор импульсного напряжения (ГИН); 10 - рабочая камера; 1, 2 - базы электродов; 11 - сетки, 12 - система прокачки рабочей газовой смеси (например, вентиляторы).
Устройство (Фиг. 1) формирования объемного разряда в импульсно-периодическом лазере в самом общем случае представляет собой электрически связанную с генератором импульсного напряжения 9 рабочую камеру 10 с размещенными в ней электродами, формирующими объемный разряд, в форме проводящих баз 1, 2 с расположенными на них элементами с разрядными кромками 4. Донья пазов 5 между элементами с разрядными кромками 4 образуют поверхности проводящих баз, которые наклонены относительно плоскости, проходящей через рабочие кромки электродов, на угол 6, позволяющий обеспечить отражение акустических колебаний в сторону выхода потока рабочей газовой смеси из области объемного разряда 3. Боковые стенки рабочей камеры 10 наклонены к оси оптического резонатора и навстречу друг другу. До и после рабочей камеры по потоку рабочей газовой смеси установлены сетки 11.
Реализацию способа формирования объемного разряда в импульсно-периодическом газовом лазере проиллюстрируем на примере устройства для его реализации, варианты которого приведены на Фиг. 1.
При подаче импульса высокого напряжения от ГИН 9 на электроды (базы) 1, 2, расположенные в рабочей камере 10, в области объемного разряда 3 между кромками лезвий (Фиг. 1а)) или проволочек (Фиг. 1.б)) 4 формируется разряд, при этом рабочая смесь резко нагревается и начинает быстро расширяться во все стороны. Возникающие ударные акустические волны переходят в акустические колебания, которые распространяются вверх и вниз по потоку газовой смеси, параллельно оси оптического резонатора лазера и параллельно направлению разрядного тока. Акустические колебания, распространяющиеся вверх и вниз по потоку PC и параллельно оси оптического резонатора лазера, гасятся стоящими на их пути поглотителями в виде сеток 11 или наклоненных боковых стенок рабочей камеры 10. Акустические колебания, распространяющиеся параллельно разрядному току, достигая рабочих (разрядных) кромок элементов на базе электродов, формирующих объемный разряд, частично от них отражаются, но большей частью проходят в пространство под рабочими кромками электродов до дна пазов между элементами с разрядными кромками или поверхностей проводящих баз 1, 2.
Так как образованная доньями пазов между лезвиями каждого электрода плоская рабочая поверхность проводящей базы наклонена относительно плоскости, проходящей через рабочие кромки электродов, на угол 6 в сторону выхода потока PC из области активного объема лазера, акустические колебания отражаются от них под удвоенным углом в сторону выхода потока PC 7 (см. Фиг. 1). Величина угла 6 должна быть такой, чтобы акустические колебания после одного или двух отражений от дна пазов или плоскостей проводящих баз вышли из области активного объема лазера. При этом поток PC, создаваемый системой прокачки рабочей газовой смеси 12 в направлении 7, накладываясь на пульсирующее движение PC, вызванное акустическими колебаниями в направлении 8, создает общий поток PC с повышенной скоростью.
Для размеров, обычно применяемых в малогабаритных лазерах лезвийных электродов [4. Буцыкин И.Л., Великанов С.Д., Евдокимов П.А. и др. Импульсно-периодический DF-лазер с частотой повторения импульсов до 1200 Гц и средней мощностью ~25 Вт. Квантовая электроника, 31, №11, с. 290, (2001)], значение угла должно быть 15-25°. Средняя скорость потока PC из области активного объема увеличивается за счет энергии акустических колебаний, отраженных от дна пазов между лезвиями или поверхности проводящих баз. При этом с повышением частоты инициирования PC данный эффект усиливается, а это приводит к еще большему повышению скорости сноса прореагировавшей PC из области объемного разряда.
Таким образом, предлагаемое техническое решение не только увеличивает предельную частоту следования импульсов излучения за счет повышения скорости потока PC, но и улучшает вынос прореагировавшей PC из области между лезвиями электродов разряда, уменьшает нагрев PC и электродов, что увеличивает энергию в импульсах излучения и КПД лазера.

Claims (4)

1. Способ формирования объемного разряда в импульсно-периодическом газовом лазере, включающий в себя подачу импульса высокого напряжения на электроды с формированием области объемного разряда, создание потока (прокачку) рабочей газовой смеси через область объемного разряда в направлении, перпендикулярном току электрического разряда и оси оптического резонатора лазера, гашение акустических колебаний, распространяющихся вверх и вниз по направлению потока газовой смеси и параллельно оси оптического резонатора, преобразование акустических колебаний в области объемного разряда исходя из условия обеспечения однородности плотности рабочей газовой смеси, отличающийся тем, что вышеназванное преобразование осуществляют путем удаления из области объемного разряда акустических колебаний, распространяющихся в направлении разрядного тока, посредством отражения акустических колебаний от электродов в сторону выхода потока рабочей газовой смеси из области объемного разряда.
2. Устройство формирования объемного разряда в импульсно-периодическом газовом лазере, содержащее генератор импульсного напряжения, рабочую камеру с установленными в ней электродами, формирующими объемный разряд, каждый из которых выполнен в виде базы с расположенными на ней элементами с разрядными кромками, а также систему для прокачки рабочей газовой смеси, при этом по потоку рабочей газовой смеси до и после рабочей камеры установлены сетки, отличающееся тем, что базы с элементами с разрядными кромками установлены таким образом, чтобы обеспечить отражение акустических колебаний в сторону выхода потока рабочей газовой смеси из области объемного разряда.
3. Устройство формирования объемного разряда по п. 2, отличающееся тем, что базы имеют плоскую поверхность, выполнены из проводящего материала и расположены с наклоном относительно плоскости, проходящей через разрядные кромки элементов электродов.
4. Устройство формирования объемного разряда по п. 3, отличающееся тем, что элементы с разрядными кромками выполнены в виде лезвий, или остриев, или проволочек, согнутых по профилю.
RU2014152150/28A 2014-12-22 2014-12-22 Способ формирования объемного разряда в импульсно-периодическом газовом лазере и устройство для его реализации RU2589471C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014152150/28A RU2589471C1 (ru) 2014-12-22 2014-12-22 Способ формирования объемного разряда в импульсно-периодическом газовом лазере и устройство для его реализации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014152150/28A RU2589471C1 (ru) 2014-12-22 2014-12-22 Способ формирования объемного разряда в импульсно-периодическом газовом лазере и устройство для его реализации

Publications (1)

Publication Number Publication Date
RU2589471C1 true RU2589471C1 (ru) 2016-07-10

Family

ID=56371195

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014152150/28A RU2589471C1 (ru) 2014-12-22 2014-12-22 Способ формирования объемного разряда в импульсно-периодическом газовом лазере и устройство для его реализации

Country Status (1)

Country Link
RU (1) RU2589471C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2693734C1 (ru) * 2018-12-26 2019-07-04 федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (национальный исследовательский университет)" Генератор для получения наночастиц в импульсно-периодическом газовом разряде
RU2793616C1 (ru) * 2021-10-25 2023-04-04 Федеральное государственное бюджетное учреждение науки Институт сильноточной электроники Сибирского отделения Российской академии наук (ИСЭ СО РАН) Способ накачки в газоразрядных импульсных лазерах

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2162263C2 (ru) * 1998-12-03 2001-01-20 Российский Федеральный Ядерный Центр - Всероссийский Научно-Исследовательский Институт Экспериментальной Физики Устройство для формирования объемного самостоятельного разряда
US6556609B2 (en) * 1999-04-07 2003-04-29 Lambda Physik Ag Discharge unit for a high repetition rate excimer or molecular fluorine laser
RU2236074C2 (ru) * 2002-10-02 2004-09-10 Российский Федеральный Ядерный Центр - Всероссийский Научно-Исследовательский Институт Экспериментальной Физики Способ формирования объемного разряда в импульсно-периодическом газовом лазере и устройство для его реализации

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2162263C2 (ru) * 1998-12-03 2001-01-20 Российский Федеральный Ядерный Центр - Всероссийский Научно-Исследовательский Институт Экспериментальной Физики Устройство для формирования объемного самостоятельного разряда
US6556609B2 (en) * 1999-04-07 2003-04-29 Lambda Physik Ag Discharge unit for a high repetition rate excimer or molecular fluorine laser
RU2236074C2 (ru) * 2002-10-02 2004-09-10 Российский Федеральный Ядерный Центр - Всероссийский Научно-Исследовательский Институт Экспериментальной Физики Способ формирования объемного разряда в импульсно-периодическом газовом лазере и устройство для его реализации

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2693734C1 (ru) * 2018-12-26 2019-07-04 федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (национальный исследовательский университет)" Генератор для получения наночастиц в импульсно-периодическом газовом разряде
RU2793616C1 (ru) * 2021-10-25 2023-04-04 Федеральное государственное бюджетное учреждение науки Институт сильноточной электроники Сибирского отделения Российской академии наук (ИСЭ СО РАН) Способ накачки в газоразрядных импульсных лазерах

Similar Documents

Publication Publication Date Title
Macheret et al. Modeling of air plasma generation by repetitive high-voltage nanosecond pulses
Sheng et al. Plasma density gratings induced by intersecting laser pulses in underdense plasmas
Heijkers et al. CO2 conversion in a gliding arc plasmatron: elucidating the chemistry through kinetic modeling
RU2589471C1 (ru) Способ формирования объемного разряда в импульсно-периодическом газовом лазере и устройство для его реализации
CN108602093B (zh) 用于激励压电换能器的方法和声源装置
JP4899026B2 (ja) レーザ装置
Wei et al. Analyzing of discharge wave oscillation mechanism in electrical discharge machining
US9496114B2 (en) Microwave generator with virtual cathode oscillator and open reflectors
RU2430509C1 (ru) Устройство электрофизического воздействия на аэрозоли
RU2236074C2 (ru) Способ формирования объемного разряда в импульсно-периодическом газовом лазере и устройство для его реализации
Torgaev et al. Reduction of copper bromide molecules in the plasma of a CuBr laser during the interpulse period
Klykov et al. Energy characteristics of beam-plasma interaction in a closed volume
RU2679453C1 (ru) Способ создания импульсного повторяющегося разряда в газе и устройство для его осуществления
RU2517796C1 (ru) Устройство для формирования объемного самостоятельного разряда
Walraet et al. Propagation in a plasma of a laser beam smoothed by longitudinal spectral dispersion
RU170550U1 (ru) Газоразрядная трубка для лазера на парах стронция
RU2162262C1 (ru) Способ возбуждения веществ в газовой фазе слабозатухающей волной пробоя
JP2018202269A (ja) 超音波振動子とその駆動方法
Bolotin et al. Quasi-continuous sub-millimeter optical discharge on Novosibirsk free electron laser: experiments and elementary theory
RU2002126364A (ru) Способ формирования объемного разряда в импульсно-периодическом газовом лазере и устройство для его реализации
Volkov et al. Theory of sound amplification by stimulated emission of radiation with consideration for coagulation
Ishihara et al. Theoretical modeling of microwave-pumped high-pressure gas lasers
RU2707267C2 (ru) Генератор высокочастотных импульсов на основе разряда с полым катодом
Frolov et al. The influence of ion dynamics on the breaking of plane electron oscillations
RU2575142C1 (ru) СПОСОБ СОЗДАНИЯ АКТИВНОЙ СРЕДЫ KrF ЛАЗЕРА