RU2587083C1 - Способ получения высокодисперсных порошков оксида индия - Google Patents

Способ получения высокодисперсных порошков оксида индия Download PDF

Info

Publication number
RU2587083C1
RU2587083C1 RU2015123455/05A RU2015123455A RU2587083C1 RU 2587083 C1 RU2587083 C1 RU 2587083C1 RU 2015123455/05 A RU2015123455/05 A RU 2015123455/05A RU 2015123455 A RU2015123455 A RU 2015123455A RU 2587083 C1 RU2587083 C1 RU 2587083C1
Authority
RU
Russia
Prior art keywords
indium oxide
indium
solution
anion exchange
exchange resin
Prior art date
Application number
RU2015123455/05A
Other languages
English (en)
Inventor
Геннадий Леонидович Пашков
Светлана Васильевна Сайкова
Марина Васильевна Пантелеева
Наталья Павловна Евсевская
Original Assignee
Федеральное Государственное Бюджетное Учреждение Науки Институт Химии И Химической Технологии Сибирского Отделения Российской Академии Наук (Иххт Со Ран)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Бюджетное Учреждение Науки Институт Химии И Химической Технологии Сибирского Отделения Российской Академии Наук (Иххт Со Ран) filed Critical Федеральное Государственное Бюджетное Учреждение Науки Институт Химии И Химической Технологии Сибирского Отделения Российской Академии Наук (Иххт Со Ран)
Priority to RU2015123455/05A priority Critical patent/RU2587083C1/ru
Application granted granted Critical
Publication of RU2587083C1 publication Critical patent/RU2587083C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Изобретение относится к способу получения высокодисперсных порошков оксида индия InО3, которые могут быть использованы в качестве полупроводников и газовых сенсоров. Способ получения субмикронного порошка оксида индия включает приготовление исходного водного раствора сульфата индия, который приводят в контакт с реагентом-осадителем, в качестве которого используют сильноосновные гелевые аниониты АВ-17-8 или Purolite А300 в гидроксидной форме. После контакта с анионитом продукт-прекурсор отделяют от раствора, промывают водой, сушат и обжигают при температуре 400°С. Ионообменный способ обеспечивает получение высокодисперсного порошка оксида индия с бимодальным распределением (50, 150 нм) частиц по размерам, не содержащего катионов осадителя, без применения агрессивных сред и давлений. 2 ил., 4 пр.

Description

Изобретение относится к технологии получения порошков оксида индия, которые могут быть использованы в качестве полупроводников и газовых сенсоров.
Известен способ получения нанодисперсных порошкообразных оксидов 3d-металлов, 4d-металлов оксида индия [патент RU №2538585, МПК C01G 25/02, B01J 19/12, опубл. 10.01.2015]. Раствор карбамида и раствор нитрата индия смешивают в смесителе. Полученную смесь подают в камеру электромагнитного излучения, где компоненты смеси взаимодействуют между собой с образованием нанодисперсного оксида индия. В процессе взаимодействия реагенты также образуют пары, которые конденсируются и выводятся из камеры электромагнитного излучения.
К недостаткам данного способа можно отнести сложность и дороговизну аппаратурного оформления, высокую стоимость исходного сырья (карбамида), а также необходимость улавливания паров из камеры электромагнитного излучения.
Известен способ получения нанодисперсных порошков оксида индия [S. Maensiri, P. Laokul, J. Klinkaewnarong, S. Phokha, V. Promarak, S. Séraphin. Indium oxide (In2O 3) nanoparticles using Aloe vera plant extract: Synthesis and optical properties. Optoelectronics and advanced materials - rapid communications Vol. 2, No. 3, March 2008, p. 161-165], в котором 3 г ацетилацетоната индия растворяют в 30 мл водного экстракта алоэ вера и выдерживают в течение нескольких часов при температуре 60°С до удаления воды. Полученный порошкообразный прекурсор измельчают и обжигают при температуре 600°С.
К недостаткам данного способа можно отнести: дороговизну исходных веществ, необоснованность применения алоэ вера для синтеза оксида индия.
Наиболее близким техническим решением, выбранным в качестве прототипа, является способ получения оксида индия [Руководство по неорганическому синтезу. Редактор Г. Брауэр. В шести томах. - М.: Мир, 1985, т. 3, с. 941]. К раствору хлорида индия при 100°С приливают в небольшом избытке раствор аммиака. На несколько часов осадок оставляют «стареть» под маточным раствором при 100°С, затем отмывают водой до отсутствия хлорид-ионов и сушат при комнатной температуре. Полученный гидроксид индия In2O3 прокаливают при 850°С до постоянной массы, а затем еще 30 мин на воздухе при 1000°С.
К недостаткам данного способа можно отнести большой расход воды на промывание осадка от хлорид-ионов.
Техническим результатом заявляемого изобретения является разработка анионообменного способа получения высокодисперсных порошков оксида индия, являющегося достаточно простым, не предполагающего применения агрессивных сред и высоких давлений.
Технический результат достигается тем, что в способе получения порошков оксида индия, включающем приготовление исходного раствора соли индия, осаждение из раствора продукта - прекурсора, отделение от раствора, промывку водой, сушку и обжиг, новым является то, что в качестве реагента-осадителя используют сильноосновный гелевый анионит АВ-17-8 или Purolite А300 в гидроксидной форме с полистирольной матрицей, содержащий в качестве функциональных групп остатки четвертичных аммониевых оснований - N+(СН3)3.
Эти отличия позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявляемый способ от прототипа, не выявлены в других технических решениях при изучении данной и смежных областей химии и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательный уровень».
Изобретение поясняется чертежами. На фиг. 1 показаны рентгеновские спектры оксида индия, полученного из сульфатного раствора. На фиг. 2 представлена микрофотография оксида индия.
Необходимость создания настоящего изобретения обусловлена тем, что по данным многих исследований, осаждение In(ОН)3 идет через промежуточную стадию образования основных солей различного состава, например In4(OH)10SO4, In5(OH)14Cl, In(OH)2.5(SO4)0.25 и т.п. При анионообменном синтезе образуются прекурсоры, не содержащие примесей основных солей. Кроме того, предложенный анионообменный синтез приводит к образованию высокодисперсного продукта.
При создании заявленного изобретения были использованы гелевые и пористые сильноосновные аниониты в ОН-форме. Полученные данные свидетельствуют, что использование пористых анионитов нецелесообразно, так как значительная доля осадка (более 50%) удерживается анионитом. Поэтому выбор гелевого сильноосновного анионита АВ-17-8 или Purolite А300 является предпочтительным.
Заявляемый способ осуществляется следующим образом.
Переводят анионит АВ-17-8 (ГОСТ 20301-74) или Purolite А300 в ОН-форму, осуществляют контакт анионита с раствором соли индия (III), отделение и промывку осадка, прокаливание.
Перевод анионита в ОН-форму проводят заливая исходный АВ-17-8 или Purolite А300 в хлоридной форме 1 М раствором NaOH (т:ж=1:3), затем 2 М раствором NaOH - 3 раза, выдерживая каждую порцию в течение часа. После чего анионит промывают дистиллированной водой до отрицательной реакции на хлорид-ион. Полученный анионит высушивают при температуре около 60°С.
Массу анионита, необходимую для синтеза, рассчитывают по формуле:
Figure 00000001
где CIn, - концентрация исходного раствора индия (III), VIn - объем исходного раствора индия, мл; n - молярное соотношение функциональных групп анионита и ионов индия, СОЕ - статическая обменная емкость анионита в ОН-форме, ммоль-экв·г-1.
Рассчитанное количество анионита, выступающего в качестве реагента-осадителя, приводят в контакт с 50 мл 0,42 М раствора сульфата индия. Систему перемешивают на шейкере со скоростью 120 мин-1 при комнатной температуре в течение 40 мин. После чего анионит отделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка проводят фильтрование на воронке Бюхнера под вакуумом. Осадок (прекурсор) после промывания водой сушат при температуре 100°С. Далее прекурсор обжигают при температуре 400°С для получения чистой фазы оксида индия (III).
На фиг. 1 представлена рентгенограмма продукта, прокаленного при 400°С. Дифракционные пики с d=2,925Å, 2,531Å, 1,791Å соответствуют чистой фазе кубического In2O3 (JCPDS 74-1990).
Согласно данным РФА продуктов, полученных с использованием анионита АВ-17-8 или Purolite А300 в качестве реагента-осадителя, образование оксида индия происходит при более низких температурах, чем описано в прототипе (1000°С).
Пример 1. Получение высокодисперсных порошков In2O3 из сульфатных растворов индия при температуре 400°С в течение 1 ч.
Навеску анионита АВ-17-8 массой 43 г (n=4,5) приводят в контакт с 50 мл 0,42 М раствора сульфата индия. Систему перемешивают на шейкере со скоростью 120 мин-1 при комнатной температуре в течение 40 мин. После чего анионит отделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка проводят фильтрование на воронке Бюхнера под вакуумом. Полученный осадок (прекурсор) промывают водой, высушивают при 100°С в сушильном шкафу. Далее прекурсор обжигают при температуре 400°С в течение 1 ч для получения чистой фазы оксида индия. По данным микрорентгеноспектрального анализа, соотношение In:ОН в любой точке твердой фазы составляет 1:3, т.е. соответствует стехиометрии фазы гидроксида. Полученный осадок анализировали методами ИК-спектроскопии, микрорентгенофлуресцентным, атомно-абсорбционным и химическим анализом. В осадке не обнаружено примесей основных солей. Выход продукта - 74%.
На фиг. 1 представлен типичный рентгеновский спектр.
На фиг. 2 представлена электронная микрофотография, из которой следует, что частицы оксида индия имеют форму, близкую к сферической, и размер порядка 50-100 нм, кроме того, наблюдается некоторое количество агломератов субмикронного размера.
Пример 2. Получение высокодисперсных порошков In2O3 из сульфатных растворов индия при температуре 400°С в течение 1 ч.
Навеску анионита АВ-17-8 массой 57 г (n=6) приводят в контакт с 50 мл 0,42 M раствора сульфата индия. Систему перемешивают на шейкере со скоростью 120 мин-1 при комнатной температуре в течение 40 мин. После чего анионит отделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка проводят фильтрование на воронке Бюхнера под вакуумом. Полученный осадок (прекурсор) промывают водой, высушивают при 100°С в сушильном шкафу. Далее прекурсор обжигают при температуре 400°С в течение 1 часа для получения чистой фазы оксида индия. По данным микрорентгеноспектрального анализа соотношение In:ОН в любой точке твердой фазы составляет 1:3, т.е. соответствует стехиометрии фазы гидроксида. Полученный осадок анализировали методами ИК-спектроскопии, микрорентгенофлуресцентным, атомно-абсорбционным и химическим анализом. В осадке не обнаружено примесей основных солей. Выход продукта - 85%.
Результаты РФА и электронно-микроскопического анализа аналогичны представленным в примере 1 на фиг. 1.
Пример 3. Получение высокодисперсных порошков In2O3 из сульфатных растворов индия при температуре 400°С в течение 1 ч.
Навеску анионита Purolite А300 массой 38 г (n=4,5) приводят в контакт с 50 мл 0,42 M раствора сульфата индия. Систему перемешивают на шейкере со скоростью 120 мин-1 при комнатной температуре в течение 40 мин. После чего анионит отделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка проводят фильтрование на воронке Бюхнера под вакуумом. Полученный осадок (прекурсор) промывают водой, высушивают при 100°С в сушильном шкафу. Далее прекурсор обжигают при 400°С в течение 1 ч для получения чистой фазы оксида индия. По данным микрорентгеноспектрального анализа, соотношение In:ОН в любой точке твердой фазы составляет 1:3, т.е. соответствует стехиометрии фазы гидроксида. Полученный осадок анализировали методами ИК-спектроскопии, микрорентгенофлуресцентным, атомно-абсорбционным и химическим анализом. В осадке не обнаружено примесей основных солей. Выход продукта - 76%.
Результаты РФА и электронно-микроскопического анализа аналогичны представленным в примере 1 на фиг. 1.
Пример 4. Получение высокодисперсных порошков оксида индия In2O3 из сульфатных растворов индия при температуре 400°С в течение 1 ч.
Навеску анионита Purolite А300 массой 54 г (n=6) приводят в контакт с 50 мл 0,42 M раствора сульфата индия. Систему перемешивают на шейкере со скоростью 120 мин-1 при комнатной температуре в течение 40 мин. После чего анионит отделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка проводят фильтрование на воронке Бюхнера под вакуумом. Полученный осадок (прекурсор) промывают водой, высушивают при 100°С в сушильном шкафу. Далее прекурсор обжигают при 400°С в течение 1 ч для получения чистой фазы оксида индия. По данным микрорентгеноспектрального анализа соотношение In:ОН в любой точке твердой фазы составляет 1:3, т.е. соответствует стехиометрии фазы гидроксида. Полученный осадок анализировали методами ИК-спектроскопии, микрорентгенофлуресцентным, атомно-абсорбционным и химическим анализом. В осадке не обнаружено примесей основных солей. Выход продукта - 87%.
Результаты РФА и электронно-микроскопического анализа аналогичны представленным в примере 1 на фиг. 1.
Преимущества предлагаемого способа заключаются в том, что он достаточно прост, не предполагает применения агрессивных сред и давлений. Используя данное техническое решение можно добиться получения продукта, не содержащего примесей основных солей, что освобождает в дальнейшем от необходимости длительной промывки полученного осадка. Кроме того, предложенный анионообменный метод синтеза оксида индия приводит к образованию высокодисперсного продукта.

Claims (1)

  1. Способ получения высокодисперсных порошков оксида индия In2O3, включающий приготовление исходного водного раствора, содержащего сульфат индия, осаждение из раствора продукта-прекурсора, отделение его от раствора, промывку водой, сушку и обжиг при 400°C, отличающийся тем, что в качестве реагента-осадителя используют сильноосновные гелевые аниониты (AB-17-8 (Россия) или Purolite A300) с полистирольной матрицей, содержащие остатки четвертичных аммониевых оснований -N+(CH3)3 в гидроксидной форме.
RU2015123455/05A 2015-06-15 2015-06-15 Способ получения высокодисперсных порошков оксида индия RU2587083C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015123455/05A RU2587083C1 (ru) 2015-06-15 2015-06-15 Способ получения высокодисперсных порошков оксида индия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015123455/05A RU2587083C1 (ru) 2015-06-15 2015-06-15 Способ получения высокодисперсных порошков оксида индия

Publications (1)

Publication Number Publication Date
RU2587083C1 true RU2587083C1 (ru) 2016-06-10

Family

ID=56115750

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015123455/05A RU2587083C1 (ru) 2015-06-15 2015-06-15 Способ получения высокодисперсных порошков оксида индия

Country Status (1)

Country Link
RU (1) RU2587083C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111454049A (zh) * 2020-04-01 2020-07-28 宁波大学 一种氧化铟透明半导体陶瓷的制备方法
CN114875451A (zh) * 2022-06-08 2022-08-09 广东先导稀材股份有限公司 一种硫酸铟电解液及其制备方法
RU2815042C1 (ru) * 2023-06-13 2024-03-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Способ получения наноразмерных порошков оксидов индия

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3738454B2 (ja) * 1993-08-11 2006-01-25 住友化学株式会社 複合金属酸化物粉末およびその製造方法
RU2538585C2 (ru) * 2012-08-31 2015-01-10 Общество с ограниченной ответственностью "Инновационные Технологии Синтеза" Способ получения нанодисперсных оксидов металлов

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3738454B2 (ja) * 1993-08-11 2006-01-25 住友化学株式会社 複合金属酸化物粉末およびその製造方法
RU2538585C2 (ru) * 2012-08-31 2015-01-10 Общество с ограниченной ответственностью "Инновационные Технологии Синтеза" Способ получения нанодисперсных оксидов металлов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
РУКОВОДСТВО ПО НЕОРГАНИЧЕСКОМУ СИНТЕЗУ, РЕДАКТОР Г.БРАУЭР. В ШЕСТИ ТОМАХ.- М. : МИР, 1985, Т.3, С. 941. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111454049A (zh) * 2020-04-01 2020-07-28 宁波大学 一种氧化铟透明半导体陶瓷的制备方法
CN111454049B (zh) * 2020-04-01 2021-11-30 宁波大学 一种氧化铟透明半导体陶瓷的制备方法
CN114875451A (zh) * 2022-06-08 2022-08-09 广东先导稀材股份有限公司 一种硫酸铟电解液及其制备方法
CN114875451B (zh) * 2022-06-08 2024-02-27 先导电子科技股份有限公司 一种硫酸铟电解液及其制备方法
RU2815042C1 (ru) * 2023-06-13 2024-03-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Способ получения наноразмерных порошков оксидов индия

Similar Documents

Publication Publication Date Title
Kim et al. Trends in structure and thermodynamic properties of normal rare earth carbonates and rare earth hydroxycarbonates
Song et al. Synthesis and characterization of magnesium hydroxide by batch reaction crystallization
Hsieh Spherical zinc oxide nano particles from zinc acetate in the precipitation method
Farrukh et al. Influence of reaction parameters on the synthesis of surfactant-assisted tin oxide nanoparticles
Soofivand et al. Simple and facile synthesis of Ag2CrO4 and Ag2Cr2O7 micro/nanostructures using a silver precursor
RU2587083C1 (ru) Способ получения высокодисперсных порошков оксида индия
Tang et al. Synthesis and characterization of Gd 2 Zr 2 O 7 defect-fluorite oxide nanoparticles via a homogeneous precipitation-solvothermal method
Perveen et al. Synthesis, structural properties and catalytic activity of MgO-SnO 2 nanocatalysts
Tien et al. Influence of the preparation conditions on the size and morphology of nanocrystalline lanthanum orthoferrite
Savinkina et al. Synthesis and morphology of anatase and η-TiO 2 nanoparticles
KR101108691B1 (ko) 수열합성법에 의한 나노 산화아연 분말의 제조방법
US9533354B2 (en) Method for preparing size-controlled gold nanoparticles and colorimetric detection method of strong acid using the same
CN106241856A (zh) 一种锌镁铝类水滑石的制备方法
RU2649443C1 (ru) Способ получения субмикронных порошков феррита кобальта (ii)
RU2699891C1 (ru) Способ получения наноразмерных порошков феррита меди (ii)
Gevorkyan et al. Synthesis of nanopowders and consolidation of nanoceramics of various applications
Anas et al. New insights on physico-chemical transformations of ZnO: From clustered multipods to single crystalline nanoplates
Ajibade et al. Synthesis and structural studies of nickel sulphide and palladium sulphide nanocrystals
Egorysheva et al. Microwave-Assisted Hydrothermal Synthesis of Bi 6 (NO 3) 2 O 7 (OH) 2 and Its Photocatalytic Properties
CN108946796A (zh) 一种掺杂钛酸盐及其制备方法
Liu et al. Nucleation and structure of supersaturated sodium zincate solution
Kuz’micheva et al. Composition, microstructure, and properties of anatase and η-TiO 2 nanoparticles
JP2547007B2 (ja) ペロブスカイト型酸化物微粉末の製造方法
JP6673841B2 (ja) 吸着材
Maslennikova et al. Role of mixing reagent solutions in the formation of morphological features of nanocrystalline particles of magnesium hydroxide and oxide

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200616